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In extreme environments, the relationships between species are often exclusive and

based on complex mechanisms. This review aims to give an overview of the microbial

ecology of saline soils, but in particular of what is known about the interaction between

plants and their soil microbiome, and the mechanisms linked to higher resistance of some

plants to harsh saline soil conditions. Agricultural soils affected by salinity is a matter of

concern in many countries. Soil salinization is caused by readily soluble salts containing

anions like chloride, sulphate and nitrate, as well as sodium and potassium cations.

Salinity harms plants because it affects their photosynthesis, respiration, distribution of

assimilates and causes wilting, drying, and death of entire organs. Despite these life-

unfavorable conditions, saline soils are unique ecological niches inhabited by

extremophilic microorganisms that have specific adaptation strategies. Important traits

related to the resistance to salinity are also associated with the rhizosphere-microbiota

and the endophytic compartments of plants. For some years now, there have been

studies dedicated to the isolation and characterization of species of plants’ endophytes

living in extreme environments. The metabolic and biotechnological potential of some of

these microorganisms is promising. However, the selection of microorganisms capable of

living in association with host plants and promoting their survival under stressful conditions

is only just beginning. Understanding the mechanisms of these processes and the

specificity of such interactions will allow us to focus our efforts on species that can

potentially be used as beneficial bioinoculants for crops.

Keywords: extreme environment, halophilic microorganisms, endophytes, PGPR—plant growth-promoting

rhizobacteria, agriculture, microbial metabolism, salty soils

INTRODUCTION

Soil salinization is a process of localised accumulation of soluble salts. This phenomenon today is

unanimously considered a severe threat to agricultural lands as it directly undermines the value and
quality of soil (Ammari et al., 2013; Daliakopoulos et al., 2016). The soil is a complex system in

continuous evolution and dynamic equilibrium with the other environmental components, sensitive
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to the effects of climate change and human activities (Smith et al.,

2012). Still, it constitutes a substantially non-renewable resource

in the sense that the rate of its degradation is potentially rapid

(Zewdu et al., 2017), while the soil formation and regeneration

processes are extremely slow.

Globally it has been estimated that 33% of the irrigated
agricultural land and over 20% of the total cultivated land of

the world is saline. If the current trend of salinization is

maintained, then by 2050 we will see an approximately 30%

increase in the cultivated land salinity. This means that

agricultural productivity will be reduced due to the decline in

cultivable land, with a consequent increase in the number of
people suffering from hunger. Plants are the first in the chain of

food production to be hit by salinity stress, which hampers their

basic physiological and biochemical processes, such as water

absorption and photosynthesis, thus resulting in overall reduced

growth (Vaishnav et al., 2016). However, plants develop various

morphological, physiological, biochemical, and molecular
strategies in response to salinity in their environment (Meng

et al., 2018).

In recent decades, significant overviews about mechanisms of

salinity tolerance in plants have been shared by several authors

(Munns and Tester, 2008; Deinlein et al., 2014; Gupta and

Huang, 2014; Meng et al., 2018). In general, two types of

plant adaptation to high salt concentration in the soil are
distinguished: avoidance and tolerance strategy (Dajic, 2006).

The first consisting of creating physical, physiological or

metabolic barriers that counteract the penetration of stress

factors in the plant, which causes morphological and

physiological changes at the whole plant level. The tolerance

strategy is based instead on plant ability to survive in stress
conditions through cellular, molecular, and biochemical

modifications aimed at minimising stress effects (Bahmani

et al., 2015). Interestingly, those plants have a strong influence

on shaping the rhizosphere and endorhiza microbiome

(Abedinzadeh et al., 2019).

In particular, some plant growth-promoting rhizobacteria

(PGPR) may exert a direct stimulation on plants’ growth and
development by providing them with fixed nitrogen,

phytohormones (IAA, GB), iron (Egamberdieva et al., 2019),

and soluble phosphate (Shrivastava and Kumar, 2015) that help

to overcome the effects of salinity stress. Another mechanism

that minimizes the impact of salinity consists in the production

of substances (proline, trehalose, glycine, betaine) that work as
osmoprotectant for plants’ cells (Kushwaha et al., 2019).

Moreover, under various environmental stresses, plants typically

produce ethylene, from the precursor 1-aminocyclopropane-1-

carboxylic acid (ACC). It is a hormone that limits plants’ growth

in conditions of high salinity, high temperatures, drought, or at the

presence of toxic metals or organic pollutants. PGPRs produce a

particular enzyme that degrades ethylene (ACC-deaminase),
allowing the plants’ roots to develop despite the environmental

stress (Glick, 2012).

When salt meddles between soil, plant and microorganisms in

and around the rhizosphere, a unique extreme environment is

created, that provides a scene for mutualistic relationships. In this

system, plant-endophytes and plant-microbiome interactions play

a crucial role in the activation or stimulation of different

adaptation mechanisms for survival in saline soil (Acosta-Motos

et al., 2017). In this review, we provide information about natural

and anthropic causes of soil salinity and discuss the plant’s

strategies for stress management. An overview of the known
interactions occurring between endophytic communities and

host plants is provided along with a discussion on the potential

of plant growth-promoting rhizobacteria (PGPR) for increasing

plant’s salt stress tolerance.

NATURAL AND ANTHROPIC CAUSES OF
SOIL SALINITY AFFECTING
AGRICULTURAL LAND USE

All soils naturally contain a mixture of salts soluble in water, and

some of these are essential for plant development. Their origin is
mainly from the meteoric alteration of the igneous rocks of the

lithosphere. Following the hydrological and climatic events, in

past ages, there has been the deposition of large quantities of salts

in sedimentary rocks, in surface and underground waters, in seas

and oceans (Daliakopoulos et al., 2016; Zaman et al., 2018). From

these deposits, through various mechanisms, the salts reach the
soil. In particular conditions, the formation of a water

evaporation front in the soil moves water by evaporation

rather than by percolation, so the salts remain in the soil and

accumulate (Datta and de Jong, 2002).

Soil salinity can be distinguished in primary and secondary. The

first depends on factors related mostly to the lithology of the

substrate (in particular hydrological characteristics), morphological
characteristics of the area, intrinsic chemistry of soils and climatic

factors (Schofield and Kirkby, 2003). If soil parent rock contains

carbonate minerals or feldspar, physical or chemical weathering

operated by water bring salts in solution, increasing their

concentration in groundwater and consequently on the wetted

topsoil layer. Soil porosity, texture and mineral composition
influence soil hydrological properties which also depend on the

salts’ accumulation on the soil surface. The amount of saline

precipitates is in turn modulated by soil transpiration and the

extent and characteristics of the capillary fringe. This kind of

accumulation process is reported in different European areas

(Schofield and Kirkby, 2003; Kováčová and Velıśková, 2012;
Gkiougkis et al., 2015; Daliakopoulos et al., 2016).

Another group of naturally saline soils originate from salty

marine seawater in the coastal regions. This phenomenon can

occur under short- or long-term periods. In short term periods,

soil salinization can be caused by stochastic rapid events like floods

or tsunamis that cause salinization on the surface of the geographical

area beaten by the waves (Central Water Commission, 2017). In
contrast, in a geological time scale, prolonged high tides can cause

the formation of marine deposits. Soils of the coastal areas can be

therefore easily affected by salinization, due to the intrusion of the

marine seawater wedge inside the fresh groundwater (Daliakopoulos

et al., 2016). Despite the saltwater in a natural environment usually
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stays below the fresh, because of its higher density, in many cases the

water extraction by wells for different human uses could interfere by

breaking this balance, inducing the recall of the saline wedge with

rising saltwater and the consequent formation of an area of brackish

water near the ground surface. This anthropic cause is mainly due to

inadequate agricultural water management practices and could
induce “secondary soil salinization” along time by increasing the

salt content in the irrigation waters (Napoli and Vanino, 2011;

Greggio et al., 2012).

Agriculture plays an essential role as one of the leading causes

of secondary salinization given by the use of poor-quality water,

often worsened by the presence of soil components that limit the
leaching of salts, such as the presence of impermeable horizons

and an unfavorable physiographic position.

Secondary salinity could also depend by the overuse of

fertilizers, insecticides and fungicides, unsustainable use of the

land, excessive drainage of the water tables (Datta and de

Jong, 2002).
Salinization caused by overuse of fertilizers is due to different

phenomena. The excessive use of nitrogen fertilizers both

chemicals or organic can cause a rise in nitrate content in the

soil that can be detected as a rise in Electrical Conductivity (EC)

or interpreted through signs of crop disease often associated with

high soil salinity (Gkiougkis et al., 2015). The use of fertilizers

with a high content of potassium and sodium can cause soil
degradation by the accumulation of these salts in particular

conditions (Chang et al., 2018). The application of incorrect

irrigation practices added to an excess of fertilization, together

with particular climatic conditions sometimes may favor the

accumulation of salts (Daliakopoulos et al., 2016). Poorly

permeable silty-clay soils in climatic conditions with limited
rainfall and high temperatures favor high evapotranspiration and

therefore the quick accumulation of salts in the first layers of the

soil (Chang et al., 2018)

It should be considered, however, that even in areas irrigated

using “good” quality water, moderate levels of salinity were

detected as a consequence of the irrigation methods applied

and local arid climatic conditions. Vice versa, the phenomenon
of salinization may not occur on lands irrigated for several years

with waters rich in salts. These examples indicate that each area

is characterized by different and peculiar balances, which

influence its possible evolution. In certain soils, drained and

with particular thermo-pluviometric trends, the accumulation of

salts in the soils could be only temporary. A balance could
quickly be established between accumulation and leaching that

would allow over time, and with due care, to maintain

agricultural activity (Machado and Serralheiro, 2017).

Secondary soil salinization caused by incorrect irrigation

strategies is also associated with the use of wastewaters. When

the use of poor quality water exceeds the natural buffering effect

of the soil, a whole series of substances, such as insecticides and
fungicides remain on the ground which, as a result, cause an

increase in salinity (Kováčová and Velıśková, 2012; Rodrıǵuez-

Liébana et al., 2014). Another common cause of secondary

salinization phenomenon is the consequence of the replacement

of spontaneous vegetation (polyannual and primarily arboreal

species) with crops (annual and exclusively herbaceous),

characterized by superficial, less deep root systems than the

pristine vegetation. This artificial change of vegetation causes a

drastic modification of the delicate hydrological balance. In

essence, the reduced root systems of the new plant species,

requiring less water than the original tall trees leads, over time,
to a progressive rise of the water table and lower solubilization

of the salts in the subsoil, causing them to rise together with the

water until it affects the layer occupied by the roots of the

crops (Bui, 2013). The water absorption from the roots and

the evapotranspiration process inevitably causes a gradual

accumulation of the salts on the surface, making the soil
progressively inhospitable to agricultural plants and unsuitable

for agriculture (Hanson et al., 1993; Machado and Serralheiro,

2017). The saline sources in secondary salinization could also

come from the use of soil improvers that are themselves saline (i.e.

gypsum or elemental sulphur), from manure and chemical

fertilizers (Wallender and Tanji, 2012).

Classification and Extension of
Saline Soils
As reported by Bui in 2013, the definition of saline soil is

confusing. Are considered saline the soils in which salt

concentration can interfere with the capability of plants to

absorb water, affecting their growth or more specifically a soil
with an electric conductivity (EC) on a saturated soil paste

extract >4 dS m-1 (Bui, 2013; Shrivastava and Kumar, 2015;

Zaman et al., 2018). Salts concentration and the osmotic pressure

of a saline soil also depend on soil texture and relative water

characteristics more than only on the salt content (Darwish et al.,

2005; Daliakopoulos et al., 2016; Zaman et al., 2018).
In literature, there are two most accepted classifications for

saline soil. One is the US Salinity Laboratory Staff Classification

in which it is most commonly used the term “salt-affected soil” to

indicate saline, saline-sodic and sodic soils. In this classification,

a saline soil has an EC ≥4 dS m-1, exchangeable sodium

percentage (ESP) <15 and pH <8.5 while saline-sodic differs

only for ESP ≥15 and pH ≥8.5. Sodic soils have EC <4 dS m-1,
ESP ≥15 and pH >8.5. These soils are also characterized by the

loss of permeability to water caused by the disruption of soil

aggregate operated mostly by the Na+ ions (Daliakopoulos et al.,

2016; Machado and Serralheiro, 2017; Zaman et al., 2018) and

the ensuing collapse of soil structure in the Natric Horizon.

According to the classification approach of World Reference
Base Classification (IUSS Working Group WRB, 2014), salt-

affected soils are divided into two classes: solonchacks (saline

soils with ECe >15 dSm-1 in the top 125 cm) and solonetz (are

sodium-rich soils with an ESP > 15), both divided into subclasses

(Zaman et al., 2018).

The Reference Group of Solonchacks is quite widespread in

all the arid and semi-arid areas of North Africa, Near East,
Central Asia, India, Iran and Iraq, Australia and the Americas.

The Reference Group of Solonetz, mainly located in the steppe

climatic regimes and flat landscapes with poor drainage, were

mapped in Ukraine, Russian Federation, Eastern Europe, China,

India, USA, Canada, Southern and Eastern Africa and Australia.
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Last studies and maps at world level reported an estimated area

of about 260 Mha and 135 Mha covered by Solonchacks and

Solonetz, respectively (Cherlet et al., 2018).

Apart from mapping the soils classified as “saline”, the exact

extension and localisation of salinity based on its causes were

hardly addressed geographically. Primary (natural) salinization
was estimated to be slightly under 1 billion ha worldwide,

secondary (artificially induced by human activities) occurs on

around 77 Mha, mostly in intensively cultivated and irrigated

areas of India, Pakistan, China, Iraq, and Iran. Because of the

human activities linked to wrong water management, large areas

of the Mediterranean Basin, Australia, Central Asia, the Middle
East and Northern Africa are interested in the risk of salinization

(Cherlet et al., 2018).

In Europe, secondary salinization affects approximately 4

Mha of European soils (Daliakopoulos et al., 2016) and

focusing on the Mediterranean region. Soil salinization affects

25% of irrigated agricultural land. Along the Mediterranean
coasts, soil salinity is the primary cause of desertification due

to human activities. Artificially induced salinization caused by

irrigated agriculture is affecting significant parts of southern

Italy (Napoli and Vanino, 2011), Spain (e.g. the Ebro

Valley), Hungary (e.g. Great Alfold), Greece, Cyprus, Portugal,

France (West coast), the Dalmatian coast, Slovakia and Romania.

Besides, North Europe countries (e.g. Denmark, Poland,
Latvia, and Estonia) are facing similar issues (Daliakopoulos

et al., 2016).

Limitation to Agricultural Uses
Salinization represents a critical threat for agriculture because it

can cause the alteration of the delicate balance of ecological

processes occurring in soil.

The phenomenon of salinization represents only one of the
multiple aspects that the accumulation of salts in soil causes

(Shrivastava and Kumar, 2015; Nouri et al., 2017). The loss of soil

occurs in terms of both surface subtraction (Peng et al., 2019),

and the alteration of its chemical characteristics Nouri et al.,

2017). The salinized soil readily undergoes to a further series of

degradation processes, such as erosion (Ishida et al., 2009), a
decrease of organic matter content (de Souza and Fay, 2014),

local or widespread contamination (Hanson et al., 1993), sealing,

compaction, and decline of biodiversity (Nouri et al., 2017).

These processes contribute to compromising the quality of the

soil and its ability to interact with the ecosystem to maintain

biological productivity, environmental quality and promote the
health of all living organisms (Salvati and Ferrara, 2015; Zaman

et al., 2018).

Saline and sodic soils reduce the value and productivity of

large areas around the world (Qadir et al., 2014; Acuña-

Rodrıǵuez et al., 2019). It is estimated that every day in the

world 2000 hectares of arable land are lost due to salinization,

and this problem can cause loss of yield for many crops of 10-
25% and in exceptional conditions can lead to desertification

(Zaman et al., 2018).

Geographical areas affected by salinity problems have an

impact on both the environmental and socioeconomic sphere.

These areas face the loss of productivity (Datta and de Jong,

2002) with a different degree of magnitude depending on the

crops (Qadir et al., 2014) seeing their farmers sometimes reduced

to poverty or forced to migrate searching for a new source of

income (Ammari et al., 2013; Salvati and Ferrara, 2015; Zaman

et al., 2018). Soil can become saline at first, causing a decrease in
agricultural yield and then, in the long run, it can progressively

turn into completely sterile (desertification) (Gorji et al., 2017;

Cuevas et al., 2019).

The pollution from chemicals causes the water that returns to

the water cycle to be of poor quality with negative consequences

on agriculture and health, giving rise to a vicious cycle Zewdu
et al., 2017). Soil salinization has a significant impact on the

environment, causing landscape and consequently, ecosystem

fragmentation (Cramer and Hobbs, 2002). A poor vegetative

growth leads to the reduction of the protective role of the plants

cover, enhancing soil degradation and erosion. The presence of

chemical residues on the soil surface, together with salts, cause
the elevation of toxic clouds of dust (Zewdu et al., 2017).

The enrichment of the soil with organicmatter, humic substances,

the application of biofertilizer containing microorganism and the

application of fertilizers through irrigation water (fertigation) could

help to alleviate the negative effect of salt accumulation on salt-

sensitive crops (Darwish et al., 2005).

Given the importance of agricultural production, it is crucial
to understand the impacts of salinization on different crops and

to find effective strategies to reduce economic losses in salt-

affected areas.

EFFECTS OF SALINITY STRESS ON
PLANT GROWTH

Soil salinity affects (directly or indirectly) both growth and

reproduction of plants as a consequence of complex interactions
between physicochemical properties of soil (salt content, poor

aeration, an increase of crusting, hard setting, reduced infiltration,

reduction of water uptake, and difficult root penetration) and

plants’ morphological and physiological features (Rogers et al.,

2005; Akbarimoghaddam et al., 2011).

Salinity causes low water potential in the soil, which
negatively affects plants’ water and nutrients uptake. Plants

collect salts simultaneously with the water they use and often

accumulate Na+ and Cl- ions, that result toxic to plants’ cells due

to ion imbalance mechanisms. What is more, enzymatic activity

in cells may be disturbed. These factors trigger different

responses in plants, manifested by a variety of symptoms both

at cell and organ’s level (Figure 1).
A reduction in respiration characterises stressed plants, which

also show altered assimilates distribution, inhibited photosynthesis

process and lower production of new leaves. Simultaneously,

increased morphological changes of organs (leaf thickening and

succulence, a decrease of internode lengths), wilting, drying and

even necrosis of organs and entire plants are observed (Parida
and Das, 2005; Kumar and Verma, 2018). Not to mention that
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cultivation of crops in saline areas can adversely affect their

palatability. Some plants under salinity stress might accumulate

higher amounts of compounds such as oxalate and tannins, which

are bitter, whereas for others, higher sugar content, and an
improved flavour was observed (Masters et al., 2005; Rahneshan

et al., 2018).

Different models may describe plants’ salt tolerance. One of the

most popular is the Maas-Hoffman model and its modifications

(van Straten et al., 2019). This mathematical tool reflects the

relationship between crop yield in response to soil salinity, and for
most crops, this follows a sigmoidal function. The breakpoint

between the first part of the plot, being horizontal, and the second,

which is sloping downward, is known as a threshold (ECt) or

salt tolerance. Based on threshold and slope values, a classification

in sensitive, moderately sensitive, moderately tolerant and

tolerant crops can be made. There is a large variation in salt

tolerance between plants’ species, from the extremely sensitive
(like chickpea) to more tolerant (like cotton or beet). Among

agricultural species, greens are particularly sensitive throughout

the whole ontogeny of the plant, whereas the majority of cereals

are highly resistant to salt impact (Munns and Rawson, 1999;

Machado and Serralheiro, 2017).

In each crop, salt tolerance or sensitivity depend on the ability
to uptake water and nutrients from saline soils avoiding at the

same time an excessive accumulation of salt ions in the tissues.

The absolute sensitivity and tolerance of plants to salinity, vary in

a wide range, depending upon species, climate, soil type and its

features, and agricultural practices including water management,

e.g. irrigation or waterlogging methods, their frequency and

intensity (Shrivastava and Kumar, 2015 and references therein).
The plants are not susceptible to salt for the whole life since

their sensitivity changes during the various growth stages. In

general, it was found that plants are more sensitive to salt stress

when they are in their early growth stages (seedling or

establishment) compared to later development phases (Machado

and Serralheiro, 2017).
As mentioned, it is believed that the most sensitive to salinity

stage of the plant’s growth is the germination and seedling

(Läuchli and Grattan, 2007). Plants, which are better adapted

to soil salinity must either have a high tolerance to salt during

germination or can delay germination. Moreover, tolerance to

salinity differs widely among crops without always correlating to
salt-tolerances based on yield-response functions. Cotton, for

instance, which is considered a salt-tolerant crop, based on lint

yields, showed to be susceptible to poor stands when growing in

fields irrigated with saline-sodic water (Grattan and Oster, 2003).

With maturation, plants acquire a higher tolerance to salinity.

However, a prolonged exposure to salinity causes a reduction in

biomass, due to lower stems numbers and smaller leaf area. A
decreased leaf area commonly expresses salt-affected reduction

in shoot growth, which is crucial for water uptake by the plant

(Munns and Tester, 2008). In sugar beet leaves, cells’ elongation

was found to be more salt-sensitive in comparison to leaf

initiation related to cells’ division (Rozema et al., 2015). Hu

and Schmidhalter (2007) reported that cells’ division of grass
leaves was reduced by salinity. Khan et al. (2017) found in

chickpea (Cicer arietinum L.) a reproductive failure due to

reduced supply of assimilates to reproductive tissues, decreased

leaf area and reduced photosynthesis, water restriction and

hormonal imbalances.

Roots are the organs directly exposed to the saline environment,

and they control the uptake and internal translocation of water,
nutrients and salts. The anoxic situation often present in saline soils

can have a more significant impact on radical architecture than

FIGURE 1 | The impact of soil salinity on morphology and physiology of plants.
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salinity itself. In the case of root systems, oxygen deficiency

contributes significantly to poor uptake of nutrient ions and

decreased ability to toxic ions (such as Na+) removal (Barrett-

Lennard, 2003). It is believed that roots are generally affected by

excess salinity but commonly still less than aboveground organs

(Rahneshan et al., 2018).

BACTERIAL AND FUNGAL COMMUNITIES
ASSOCIATED WITH ROOTS AND
RHIZOSPHERE IN SALINE SOILS

According to Matilla et al. (2007), two selective forces of different

nature are essential for microorganisms to colonise the

rhizosphere: stress adaptation and the availability of particular

nutrients. In saline soils, microbial communities associated with

the rhizosphere, phyllosphere, and endosphere of halophytes

comprehend members of Archaea and Bacteria domains and
kingdom Fungi (Mukhtar et al., 2019). These communities are

directly or indirectly involved in the osmoregulation of

halophytes that allows them to survive under salinity stress

conditions. Endophytic bacteria and fungi are those organisms

whose life-cycle take place partly or entirely inside a plant. These

organisms can live in the intercellular spaces of different tissues
and plant’s organs (Kandel et al., 2017) without causing visible

external sign of infection or a negative effect of the host (Weyens

et al., 2009). Endophytes’ population in a specific environment or

within a single plant may differ with tissue type, plant growth

stage and dimension of the ecological niches. Several studies

comparing rhizosphere and endophytic microbial communities

showed how species assemblages are significantly different but
also that endophytic bacteria and their communities have some

peculiar, commune, traits (Kushwaha et al., 2020).

Endophytic bacterial species, for example, have larger

genomes as compared to rhizosphere bacteria (Pini et al.,

2011). Moreover, the diversity, richness and evenness of

rhizosphere bacterial communities seem higher compared to
endophytic ones (Huang, 2018). Bacterial phyla are different

when considering rhizospheric soil and the plant’s tissues, with a

predominance of Proteobacteria and Chloroflexi in the former

and Acidobacteria, Bacteroidetes, and Planctomycetes in the latter

(Kandel et al., 2017; Huang, 2018). However, Compant et al.

(2010) pointed out that the majority of plant-associated bacteria
derives from the soil environment. Some of them can penetrate

plants’ roots thanks to specific mechanisms that are responsible

for rhizosphere and endophytic competence. Chemotaxis,

quorum sensing, flagella, antibiotic secretion, siderophore

production are only some of the tools that rhizosphere bacteria

need to be able to inhabit some specific plant-associated niches

(Matilla et al., 2007; Compant et al., 2010). Liu et al. (2017)
suggested that plant roots act as “gatekeepers” because they select

soil bacteria from the rhizosphere and rhizoplane. This result in

an endophytic root microbiome dominated by Proteobacteria,

Actinobacteria and to a lower degree, by Firmicutes and

Bacteroidetes, but with Acidobacteria and Gemmatimonadetes

resulting almost depleted (Liu et al., 2017). The traits that

characterise the bacteria that can successfully colonise and

establish in endophytic niches are motility, reactive oxygen

species scavenging, plant cell-wall degradation abilities. The

salinity is in itself a critical environmental filter that selects

species with very particular characteristics, which are probably
upstream of the further selection that the rhizosphere first, and

the tissues of the plant then, exert in soil microbial communities.

In some studies, it has also emerged a decisive role of salinity in

defining the type of endophyte associations that a plant

establishes. Qin et al. (2016) provided further evidence that

plants gain a higher advantage from association with a diverse
microbial community (microbiome) compared with the

interaction with single members of a community.

In addition to bacterial communities, also mycorrhizal

symbioses showed a fundamental role in the improvement of

plant nutrition, especially at the presence of environmental

stresses (Qin et al., 2017). Plant-associated mycobiota belong to
arbuscular mycorrhizal fungi (AMF), ectomycorrhizal fungi

(EMF), non-mycorrhizal basidiomycetous fungi (NMF), and a

consistent number of ascomycetous species (Zuccaro et al., 2014).

Different groups, mostly based on host colonisation pattern and

type of transmission, have been delimited in plant-fungal

endophytes. Some fungal endophytes exhibit a vertical

transmission through the host seeds or a horizontal transfer
with soil- or air-borne spores (Rodriguez et al., 2009). Moreover,

habitat-adapted symbiosis has been observed in some groups of

fungal endophytes, and they impart a host-specific tolerance to

stress in limiting environments (Qin et al., 2017). Certain groups

of soil fungi have only recently been associated with the

rhizosphere and endophytic situations, particularly in extreme
environments or where one or more forms of stress exist (Khidir

et al., 2010). Like some bacterial species, that live both as

saprophytes in the soil and as endophytes, many fungal species

can be isolated from both the free soil, far from the roots of plants

and in close association with them (Maciá-Vicente et al., 2012).

However, it must be said that several studies, conducted at

different functional scales, have shown that in saline soils, the
gradient of salinity as well as the presence of a high spatial

heterogeneity favor the presence of species with very different

functional traits and an extremely uneven distribution of

communities (Maciá-Vicente et al., 2012). A similar

phenomenon has been observed in the distribution of

communities of bacteria in Mediterranean saline soil. Canfora
et al. (2014) showed apparent differences in bacterial community

distribution, diversity and composition, according to an increasing

degree of soil salinity, as a consequence of a multi-scale spatial

variability. A patchy distribution of vegetation structure and soil

chemical properties coincided with a heterogeneous distribution

of many bacterial groups. Coversely, some bacterial phyla resulted

spread in the whole study area, along with the occurrence of a
significant number of “salinity unrelated” phyla (Nitrospira,

Spirochaetes). Canfora et al. (2014) hypothesized that a patchy

saline environment could be “compared to a set of islands that

allow the formation of different communities, separated from each

other by the discontinuity of the limiting and stress factors”.
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Therefore, a patchy saline environment would contain not a

homogeneous microbial community developed to tolerate an

extreme environment, but a whole set of different communities.

By comparing this evidence to the rhizosphere, it is also possible to

imagine that the roots and tissues of halophilic or halotolerant

plants in a saline soil represent islands of biodiversity and
constitute a complicated system in which processes, at the

microscale level, are particularly relevant. The living conditions

within the tissues of a plant in an extreme environment such as a

saline soil can reasonably be less limiting than those an organism

can experience when living free in the soil. Therefore, it can be

hypothesized that in saline soils, it is possible to find species as
endophytes that in other systems are more easily found free in the

soil. Kearl et al. (2019) isolated bacteria from halophytes

(Salicornia and Allenrolfea) and observed that there were

different populations in samples collected at different times of

the year, with a majority of the genera, however, present

independent of when the samples were collected.
Thiem et al. (2018) analysed the community structure

of plant-associated endophytes of Alnus glutinosa, that is a

dual mycorrhizal tree that forms ectomycorrhizal (EM) and

arbuscular (AM) root structures, and can typically associate

also with nitrogen-fixing actinomycetes. The authors sampled

the plant’s root microbiome present at two forest test sites (saline

and non-saline). They found that the dominant type of root
microsymbionts of alder were ectomycorrhizal fungi, whose

distribution depended on the site (salinity). In contrast,

representatives of fungal saprotrophs or endophytes displayed

the opposite tendency.

Same applies to fungi, as the Pleosporalean taxa (i.e.

Pleosporales order, within the class Dothideomycetes,
Ascomycota) and other generalist endophytes and epiphytes

that seem particularly present in high salinity environments

(Quin et al., 2017). Pleosporalean fungi like those belonging to

the genera Pleospora, Alternaria, and Phoma, are very frequent

colonisers in halophytes (Quin et al., 2017 and references

therein), and in plants from arid environments (Khidir et al.,

2010), and have common traits of endophytes from other
adverse environments. More recent studies based on a

comprehensive molecular analysis involving both fungal and

bacterial communities have also highlighted a close relationship

between the two. Furtado et al. (2019) examined the microbiome

of the non-mycorrhizal halophyte Salicornia europaea and

showed a significant influence of the Salicornia bacterial
community on the fungal one, but not the other way around.

They also found that the sampling season was not influencing the

biodiversity. Seasonality did not appear to be an essential factor

in shaping endophytic microbial communities in saline soils also

from other studies (Thiem et al., 2018).

Recent studies illustrated some main mechanisms that

emerged as capable of supporting directly or indirectly plant
growth under saline stress (Kushwaha et al., 2020). Plants’

strategy to survive under salinity conditions comprises the

synthesis and accumulation of osmolytes, as free amino acids

(i.e. proline) and sugars to sustain an adequate osmotic cellular

pressure needed for the functioning of cellular metabolism

(Kushwaha et al., 2020). Endophytes in plants living in saline

soils proved to help them accumulating osmolytes and

antioxidant compounds (Vaishnav et al., 2019).

STRATEGIES FOR INCREASING SALT
STRESS TOLERANCE

Halophytes are considered model plants, enabling the study of

adaptive mechanisms like the induction of enzymes with

antioxidant functions, the accumulation of toxic ions in their
vacuoles, the storage of compatible soluble substances, occurring

in the cell in response to cellular stress. Consequently, the

salt-resistance genes involved in the above processes can be

expressed in conventional crops, increasing their resistance to

environmental salinity. So far, however, this strategy has

proved to be inefficient and was implemented mainly under

laboratory conditions. An equally costly and environmentally
unfriendly approach in the production of salinity resistant plants

is the pre-treatment of biological materials with specific, selective,

chemicals, e.g. ascorbic acid, nitric oxide, H2O2, Ca
2+, K+,

paraquat and glutamate, silicon, phosphorus and humic acid,

glycine betaine, jasmonates and salicylic acid, 5-aminolevulinic

acid (El-Esawi et al., 2018) or with physical effectors like UV-B
irradiation (Dhanya Thomas et al., 2020). However, these

methods are not recommended for sustainable agriculture.

Instead, the use of soil bacterial and fungal community

colonizing plant’s roots and stimulating plant’s growth under

stress conditions are promising for the increase of agricultural

productivity in saline areas. Kloepper and Schroth (1978)
introduced the term “rhizobacteria” to describe this microbial

community collectively. Three years later, the same authors

expanded the term to “plant growth-promoting rhizobacteria”

(PGPR). PGPRs can be distinguished between “extracellular plant

growth-promoting rhizobacteria (ePGPR)” and “intracellular

plant growth-promoting rhizobacteria (iPGPR)” (Martinez-

Viveros et al., 2010). The ePGPRs are bacteria that can have
their niche in the rhizosphere, on the rhizoplane, or in the

interstitial microenvironments of the root cortex. The iPGPRs

live inside specialised nodular structures of root cells

(Bhattacharyya and Jha, 2012). Some ePGPRs and iPGPRs

show tolerance to a high concentration of salts and thus can

also grow in saline soils and be associated to halophytes, or more
in general, in niches characterized by low water potentials

due to salt stress or to a dry climate (Khan et al., 2019)

(Supplementary Material Table 1). Salt-tolerant PGPRs

(ST-PGPR) include mainly bacteria of the genus Bacillus,

Pseudomonas, Enterobacter, Agrobacterium, Streptomyces,

Klebsiella and Ochrobactrum (Sharma et al., 2016). Whipps

(2001) roughly distinguished between three strategies of
interaction of the rhizobacteria with the plants: neutral,

negative, or positive. Neutral interaction means that the

rhizobacteria, although living in the plant’s rhizosphere have no

visible effect on the growth and metabolism of the host (Beattie,

2006). Positive interactions comprise those ST-PGPRs (salt-
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tolerant plant growth promoting rhizobacteria) that have a

promoting effect on plant physiology and tolerance to salinity

(Figure 2). The ST-PGPRs, in turn, from a utilitarian point of

view, can be subdivided into biofertilizer microorganisms,

phytostimulators, and biopesticides. Negative interactions

comprehend all those situations where the bacteria are
phytopathogenic or produce substances toxic to plants (i.e.

hydrogen cyanide or ethylene). However, sometimes, the

secretion of the toxic substance, such as hydrogen cyanide by

PGPRs, is also beneficial as it is one of the many ways to protect

the plant from phytopathogens. ST-PGPR can improve plant’s

growth and tolerance to salinity stress through the accumulation
of osmolytes (proline, trehalose, and glycine betaines)

(Supplementary Material Table 2), the production of

phytohormones (auxins, gibberellins, cytokinins), ion

homeostasis, the improvement of nutrients uptake (N2 fixation,

solubilising of P, K, Zn, and Si), the activation of plant’s

antioxidative enzymes, and the synthesis of ACC deaminase,
indole-3-acetic acid (IAA), exopolysaccharides, and siderophores

(Egamberdieva et al., 2019).

Plant growth-promoting fungi (PGPFs) are soil-borne, non-

pathogenic, saprophytic microorganisms. This group contains

several fungal taxa, and among the most quoted genera,

especially in saline environments, there are Penicillium spp.,

Fusarium spp., Alternaria spp., Aspergillus spp., Sclerotium

spp., and Phoma spp., which colonise plants roots and form

symbiotic interactions with them (Gangwar et al., 2017; Naziya

et al., 2020). Pereira et al. (2019), for example, surveyed the

culturable endophytic mycobiota of Festuca rubra, a perennial
grass diffused in coastal environments with low nutrient

availability, wind, and salinity. Taxa belonging to Fusarium,

Diaporthe, Helotiales, Drechslera, Slopeiomyces, and Penicillium

were constant inhabitants of the plant’s roots (occurred in more

than 20% of the plants the authors analysed). Seventy-one point

eight percent of the strains they could culture were halotolerant.
When the authors used the isolates to inoculate the grass Lolium

perenne, a Diaporthe strain increased leaf biomass production

under both normal and saline watering regimes (200 mM NaCl).

PGPFs enhance the plant growth directly and indirectly by the

production of IAA, siderophore, cellulase, chitinase, gibberellins,

and increasing phosphorus solubilisation and availability
(Mishra et al., 2017; Naziya et al., 2020).

High salinity increases susceptibility to various phytopathogens

and promotes some fungal soil-borne diseases in plants. Crops

protection against pathogens is extremely difficult, because the use

of chemicals agents e.g. fungicides, bactericides and nematicides

FIGURE 2 | Three basic strategies of interaction (neutral—blue line, negative—red line, positive—green line) existing between the rhizobacteria and growing plants.

In the negative interaction, it is highlighted the pathway of ethylene (ET) that occurs under soil stress, and the effect of mitigation that can be played by PGPRs on a

plant root’s cell. Regulation of ethylene signalling and plant stress response. Ethylene pathway in plants. ACC (1-aminocyclopropane-1-carboxylic acid) the amino

acid methionine is converted to SAM (S-adenosylmethionine) by the action of ACC synthase enzyme (ACS). ACC is then converted to ethylene by the enzyme ACC

oxidase (ACO), triggering different ethylene response factors (ERFs). Plant growth-promoting bacteria can alter all steps of ethylene signalling. Some bacteria species

can increase the ethylene levels by producing ACC oxidase (microbial ethylene-forming enzyme), by inducing ACC synthase in plant or by affecting other plant

hormones indirectly. They can also modulate ethylene response by producing plant hormones that interact with ethylene signalling. Other microorganisms can also

decrease ethylene production by cleaving its precursor ACC. ACC, 1-aminocyclopropane-1-carboxylate; ACS, ACC synthase; ACO, ACC oxidase; Ax, Auxine; ET,

Ethylene; ERFs, Ethylene Response Factors; SAM, S-adenosyl methionine.
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has a negative impact on the environment and organisms while

increases the costs of cultivation (Egamberdieva et al., 2017;

Sharma et al., 2017). An alternative to the use of chemicals is

the use of PGPRs and PGPFs, which could synthesise the

aforementioned lytic enzymes, siderophores, IAA, and

antibiotics. These compounds could reduce and inhibit
phytopathogens that cause plant infections (Labuschagne et al.,

2010; Murali et al., 2012; Gangwar et al., 2017). Trichoderma

isolates widely used in bio-fungicidal formulations can be

ineffective at high salinity conditions, since most of these fungal

species have a low osmotolerance (Mohamed and Haggag, 2006;

Bheemaraya et al., 2013). However, some studies targeted
halotolerant biological control fungi. This is the case of the

experiments by Gal-Hemed et al. (2011) who isolated T.

atroviride and T. asperelloides from the Mediterranean sponge

Psammocinia sp. and used them to reduce Rhizoctonia solani

disease in beans, and more recently the study by Sánchez-

Montesinos et al. (2019). They isolated Trichoderma strains
from the seagrass Posidonia oceanica and evaluated its capacity

to control the disease caused by Pythium ultimum in melon

seedlings under various levels of salt stress.

Osmoprotectants
In response to salinity stress, ST-PGPRs accumulate many

metabolites called compatible (organic) solutes, among which

amino acids and derivatives (e.g., glutamate, proline, peptides,
and N-acetylated amino acids), quaternary amines (e.g., glycine

betaine and carnitine), sugars (e.g., sucrose and trehalose), and

tetrahydro pyrimidines (ectoines). These metabolites enhance

the stability of protein conformation, the balance of cell redox

condition, cytosolic pH, complex II electron transport,

membrane integrity, and the activity of enzymes such as

ribulose bisphosphate carboxylase/oxygenase (RUBISCO)
(Saghafi et al., 2019). Moreover, the storage of osmolytes

represents a successful stress response mechanism that helps

the bacteria to limit water loss, increasing their cytoplasmic

concentration of K+. In some halophilic bacteria, the internal

concentration of osmoprotectants due to salt stress may reach up

to 1 M (Saum and Müller, 2007). Rodriguez-Salazar et al. (2009)
observed that Azospirillum spp. accumulates proline, trehalose,

and glycine betaine as a mechanism for protection against

osmotic stress. Kushwaha et al. (2019) found in Halomonas sp.

that accumulation of betaine suppresses the de novo synthesis of

ectoine at low NaCl concentrations, however, at higher NaCl

concentrations the amount of ectoine is significantly larger than
betaine. It means that the salinity stress transcriptionally up-

regulates ectoine accumulation. The expression of the genes

proH, proJ, and proA involved in proline biosynthesis was

induced in some of the halophilic bacteria at higher salt

concentration, leading to the highest accumulation of proline

(Saum and Müller, 2007). Also, several reports determined the

link between proline accumulation and pyrroline-5-carboxylate
synthase (P5CS) gene expression level after PGPR inoculation

and hypothesized that bacterial treatment upregulates the P5CS

gene expression in plant roots, causing intracellular storage of

free proline (Kim et al., 2007; Kumari et al., 2015a; Kumari et al.,

2015b). Many ST-PGPRs showed a high expression of genes

implicated in trehalose biosynthetic pathways (e.g. trehalose 6-

phosphate gene) (Qin et al., 2018). Trehalose is an

osmoprotectant, and its role in salt-stress tolerance has been

well documented (Garg et al., 2019; Orozco-Mosqueda et al.,

2019; Shim et al., 2019). Figueiredo et al. (2008) reported that

Rhizobium tropici and Paenibacillus polymyxa were modified to
overexpress trehalose 6-phosphate gene and were co-inoculated

in Phaseolus vulgaris plants resulting beneficial for plants grown

under saline stress, with higher nodulation and N content. A

differential gene expression analysis of the tissues of the nodules

compared to normal roots revealed upregulation of stress

tolerance genes, which suggested that extracellular trehalose
works as an osmoprotectant, including tolerance to salinity

(Figueiredo et al., 2008).

Ion Homeostasis
One strategy used by bacteria to limit salt uptake, also by plants,

is by trapping cations in their exopolysaccharide matrix. This

mechanism results in an altered root structure with the

formation of extensive rhizo-sheaths (agglutinated soil that
adheres to roots when they are removed from the pot or field).

Moreover, at the rhizosphere level, it has been found differential

regulation of the expression of genes involved in ion affinity

transporters. PGPR often impact the mineral nutrient exchange

of both macro and micronutrients as a strategy to react to

nutrient imbalance due to a higher uptake of Na+ and Cl− ions
(Saghafi et al., 2019). Both fungi and bacteria can help plants to

keep cellular ion homeostasis and sustainable K+/Na+ ratios in

shoots. This has been documented as a mechanism that reduces

Na+ and Cl− accumulation in leaves, by increasing Na+ exclusion

via roots and boosting the activity of high-affinity K+

transporters (Ilangumaran and Smith, 2017). Zhang et al.

(2008a) reported that the inoculation of Arabidopsis thaliana
with B. subtilis moderated the adverse effects of salinity by

regulating HKT1 potassium transporter. This bacterium also

stimulated the overexpression of the AtHKT1 gene, expressing

for a high-compatibility transporter for potassium ion, in

Arabidopsis under conditions of salt stress. Puccinellia

tenuiflora, a salt-excluding halophytic grass, when inoculated
with B. subtilis showed lower levels of Na+ accumulation. The

plant at the same time upregulated plasma membrane Na+/H+

transporters SOS1, and HKT-type protein and tonoplast Na+/H+

antiporters genes. However, one of the HKT genes was

downregulated in roots under high salt concentrations (Zhang

et al., 2008a; Niu et al., 2016). This showed how the bacterium
synergistically regulated Na+ homeostasis by controlling Na+

transport systems at the whole-plant level under both lower and

higher salt conditions, differentiating the mechanisms at play in

case of high or mild salinity conditions. According to Rojas-Tapias

et al. (2012), the inoculation of auxin-producing strains of

Azotobacter in maize plants exposed to saline stress resulted in

better K+ uptake and Na+ exclusion from plant’s tissues.
Moreover, the authors showed that after PGPR inoculation

chlorophyll, proline, and polyphenol contents in maize leaves

increased along with a better general plant stress response

(Rojas-Tapias et al., 2012). Ilangumaran and Smith (2017)

reported that in many studies on the interaction between
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plants and PGPR species, the genes involved in ion homeostasis

showed differential expression under saline stress. For example, in

an experiment where Arabidopsis thaliana was treated with

Burkholderia phytofirmans the expression of both bacterial and

plant’s genes involved in ion homeostasis (KT1, HKT1, NHX2,

and SOS1) was rapidly altered as a result of an imposed saline
stress (Pinedo et al., 2015).

Also, fungi can play a decisive role in a plant’s ability to

improve nutrients’ uptake and regulate the osmotic balance in

soils affected by salinity. Arbuscular mycorrhizal fungi are plants

symbionts that increase root phosphorus uptake and confer the

mycorrhizal plants’ tolerance to salinity. Romero-Munar et al.
(2019) demonstrated that in Arundo donax a commercial

inoculum containing the arbuscular mycorrhizal Rhizophagus

intraradices and Funneliformis mosseae improved the nutritional

status by enhancing nutrient use efficiency. The authors

suggested that increased use efficiency of phosphorus could

have improved ion (Na+ and K+) uptake and allocation.
Arbuscular mycorrhizal fungi have also been reported to

enhance the ability of wheat plants to modulate the reactive

oxygen scavenging system when coping with salinity stress

(Talaat and Shawky, 2011) (Table 1).

Symbiotic fungi can modulate gene expression of the host plant

to modify its phenotype in order to improve the tolerance to

abiotic stress factors caused by soil salinity (Khan et al., 2013).
Molina-Montenegro et al. (2020) showed that inoculation of

plants’ roots with Antarctic fungal endophytes improves growth

and survival by changing the expression of a gene responsible for

Na+/H+ antiporters proteins integrated with vacuolar membranes.

In particular, the NHX proteins are involved in the maintenance of

cell turgor through ionic balance control and are associated with
the capacity of accumulating Na+ inside vacuoles.

The Improvement of Phosphorus,
Potassium, and Zinc Solubilisation
Phosphorus (P) is one of the essential macronutrients for plants,

although its availability is limited due to its low solubility. P is

required as an essential nutritional element for photosynthesis,
energy transfer, biosynthesis of macromolecules and respiration

(Fernandez et al., 2007). The average content of phosphorus ions in

the soil is 0.05% (w/w). Still, often only 0.1% of the total P is

available to plants because of its precipitation in soil (Etesami and

Beattie, 2018). Salinity leads to depletion and sedimentation of

absorbable phosphorus. Phosphate-solubilising halotolerant
PGPRs (Bacillus, Pseudomonas, Achromobacter, Alcaligenes,

Brevibacterium, Serratia, Xanthomonas, and Rhizobium) provide

an opportunity to enhance P availability to plants without

deteriorating soil salinity levels. These microorganisms can

hydrolyse inaccessible phosphorus forms into absorbable forms

via various mechanisms like chelation, ion exchange, and

acidification by secreting low molecular weight organic acids,
such as gluconic acid, citric acid, succinic acid, propionic acid,

and lactic acid (Choudhary, 2012; Etesami and Beattie, 2018;

Saghafi et al., 2018). In salt-affected soils, the inoculation of

wheat with Bacillus aquimaris increased plant P content under

salinity stress (Upadhyay and Singh, 2015). Khan et al. (2019)

identified highly salt stress-tolerant strains of Arthrobacter

woluwensis, Microbacterium oxydans, Arthrobacter aurescens,

Bacillus megaterium, and Bacillus aryabhattai, which showed to

increase phosphate uptake in several plants: Artemisia princeps,

Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera

biennis (Khan et al., 2019). Salcedo et al. (2014) identified seven
best phosphate-solubilising actinobacteria strains out of the 57

strains that they isolated from soil. El-Tarabily and Youssef (2010)

screened the mangrove A. marina rhizosphere and identified 129

bacterial strains capable of solubilising rock phosphate. In

particular, Oceanobacillus picturae showed to be able to mobilize

97% of the available mineral P. Many other genera of bacteria
isolated from halophytes (i.e. Arthrobacter, Bacillus, Azospirillum,

Vibrio, Phyllobacterium) were found capable to implement P

absorption in halophytes under salinity stress (Banerjee et al.,

2010; Yasmin and Bano, 2011). Bashan et al. (2000) showed that

in the leaves of halophytes inoculated with halotolerant PGPRs, as

species of the genera Azospirillum, Vibrio, Bacillus, and
Phyllobacterium, the P content increased. Vaishnav et al. (2016)

used a hydroponic system to demonstrate how insoluble

phosphate-solubilising bacteria that solubilise sedimentary

phosphorous actively increased the availability of assimilable P to

plants in salinity stress conditions. Yadav et al. (2011) reported the

contribution of Aspergillus niger, Penicillium citrinum, and

Trichoderma harzianum in phosphate solubilisation and their
beneficial effects on chickpea growth. Amongst studied fungal

genera, the highest P-solubilizing ability was attributed to

Aspergillus and Trichoderma species. Ceci et al. (2018) showed

that many saprotrophic fungi could mobilize P from insoluble

forms according to a variety of mechanisms, with strains of

Rhizopus stolonifer var. stolonifer, Aspergillus niger and Alternaria
alternata among the best performing strains in terms of amounts of

insoluble phosphate solubilisation.

Apart from phosphorus, another essential nutrient ingredient

for plants is potassium (K). This element plays a vital role in

plant metabolism and improves the quality of the crop

production due to its role in grain filling, and in promoting

disease resistance, leading to a higher resistance of plants to
stress. The concentration of potassium in the soil solution is

usually 1%–2% (Sindhu et al., 2010). The potential of soil

application of potassium solubilising microorganisms (KSBs) is

widely studied, especially in saline soils where this element is

even less available to plants. These bacteria solubilise potassium-

containing minerals (mica and orthoclase) by producing tartaric,
succinic, citric, oxalic, and alpha-ketogluconic acids (Saghafi

et al., 2019). Singh et al. (2010) reported that Bacillus

mucilaginosa, Azotobacter chroococcum, and Rhizobium sp.

were able to increase potassium absorption by wheat and corn.

Several authors showed that also fungi, especially

ectomycorrhizal species, can weather silicate minerals to extract

nutrients like P actively, K, Ca, Mg, and Fe, in particular under
conditions of nutrient limitation. Mycorrhizal (ecto- and endo-)

contribution to K+ acquisition by plants has also been

demonstrated (Benito and Gonzalez-Guerrero, 2014). Fungi are

already used at industrial level to mobilize or precipitate also other

metals, like Cu, Mn, Zn, even though they are poorly applied for
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TABLE 1 | The effect of halophilic PGPRs and PGPFs on alleviating salt stress in halophytes.

Host halophyte Microorganisms Bacterial/Fungal activity Plant response References

Arthrocnemum

macrostachyum L.

(glaucous glasswort)

Bacillus alcalophilus,

Bacillus thuringiensis,

Gracibacillus saliphilus

IAA production, siderophore, and phosphate

solubilisation

Mitigating the effects of high salinity on plant growth and physiological

performance

Navarro-Torre et al., 2017

Aster tripolium L. (sea

aster)

Bacillus cereus,

Serratia marcescens

IAA production, siderophore production, N2

fixation, and ACC deaminase activity

– Szymańska et al., 2016

Atriplex leucoclada L.

(orache)

Arthrobacter pascens Phosphate solubilization and siderophore

production

Increase in root and shoot length, fresh and dry weight, accumulation of

osmolytes (e.g., sugar, proline), increase in activity of antioxidant enzymes

Ullah and Bano, 2015

Bassia indica L. (Kochia

indica)

Bacillus subtilis IAA and ACC deaminase production Improving root and shoot growth, total lipid content, the phospholipid

fraction, photosynthetic pigments (chlorophyll a and b and carotenoid

contents); 200 mM NaCl

Abeer et al., 2015

Beta vulgaris L. (beet) Micrococcus yunnanensis,

Planococcus rifietoensis,

Variovorax paradoxus

ACC deaminase production Improving germination and plant biomass, higher photosynthetic capacity

and lower stress-induced ethylene production; 50–125 mM NaCl

Zhou et al., 2017

Brassica napus L. (canola) Rhizobium legominozaroum,

Sinorhizobium mellilote,

IAA, ACC deaminase production and phosphate

solubilizing

Increasing in all of the growth indices (plant height, root and shoot dry

weight), nutrient uptake and restricted availability for plants

Saghafi et al., 2018

Bacillus aryabhattai,

Brevibacterium epidermidis,

Micrococcus yunnanensis

IAA, ACC deaminase, ammonia production,

nitrogen fixation, phosphorus and zinc

solubilization, thiosulfate oxidation, production of

extracellular hydrolytic enzymes

40% increase in root elongation and plant dry weight; 150 mM NaCl Siddikee et al., 2010

Enterobacter cloacae,

Paenibacillus xylanexedens

IAA, ACC deaminase production Enhance plant root elongation Yaish et al., 2015

Catharanthus roseus L.

(Madagascar periwinkle)

Achromobacter xylosoxidans ACC deaminase production, nitrogen fixation,

increasing the level of antioxidative enzyme

Decreasing stress ethylene level; influence on germination, plant height

and root weight

Karthikeyan et al., 2012

Cicer arietinum (chickpea) Halomonas variabilis,

Planococcus rifietoensis

EPS production Increasing the plant growth and soil aggregation Qurashi and Sabr, 2012

Coriandrum sativum

(coriander)

Pseudomonas

pseudoalcaligenes,

Pseudomonas putida

P-solubilization, photosynthetic pigments, IAA,

ACC deaminase production and increasing the

level of POD

Improving plant growth and root system Al-Garni et al., 2019

Glycine max L. (soybean) Pseudomonas sp. EPS production Effects on the elongation of shoots and roots, number of lateral roots,

shoot and root fresh weight, and decreased Na+/K+ ratio under salinity

stress.

Kasotia et al., 2016

Helianthus annus L.

(sunflowers plant)

Bacterial strains ACC deaminase production Increasing plant height, shoot dry weight and root dry weight,

phosphorus, potassium contents, and K+/Na+ ratio in the shoot

Kiani et al., 2015

Prosopis strombulifera

(creeping screwbean)

Achromobacter xylosoxidans,

Bacillus licheniformis,

Bacillus pumilus,

Brevibacterium halotolerans,

Lysinibacillus fusiformis,

Pseudomonas putida

IAA production, siderophore production, N2

fixation, ACC deaminase activity, gibberelin

production, protease and antifungal activity

– Sgroy et al., 2009

Salicornia brachiata

(glasswort)

Brachybacterium saurashtrense IAA production, siderophore production, N2

fixation, ACC deaminase activity

– Gontia et al., 2011

Agrobacterium tumefaciens,

Brachybacterium saurashtrense,

Brevibacterium casei,

Haererohalobacter sp.,

Zhinguelliuella sp.

IAA production, phosphate solubilization,

siderophore production, N2 fixation, ACC

deaminase activity

Increase in amino acids, IAA, content of Ca2+, P, N of the inoculated

plants; in the percentage of water content in roots and shoots in

inoculated plants; increase total biomass; increased in plant length and

dry weight compared to un-inoculated plants

Shukla et al., 2012

(Continued)
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TABLE 1 | Continued

Host halophyte Microorganisms Bacterial/Fungal activity Plant response References

Solanum lycopersicum L.

(tomato)

Leclercia adecarboxylata IAA, ACC deaminase and osmoprotectants

production

Improving plant growth Kang et al., 2019

Achromobacter piechaudii ACC deaminase production Increasing fresh and dry weights of tomato seedlings grown in the

presence of up to 172 mM NaCl salt

Mayak et al., 2004

Suaeda salsa L.

(seepweed)

Pantoea agglomerans,

Pseudomonas oryzihabitans,

Pseudomonas putida

Gibberellic acid production, IAA production,

ACC deaminase activity, siderophore

production, abscisic acid production, and

antifungal activity

– Teng et al., 2010

Triticum aestivum L.

(wheat)

Bacillus methylotrophicus,

Bacillus siamensis,

Bacillus sp.

IAA, ACC deaminase, and EPS production Influence on the germination rate of wheat seedlings, root and shoot

length, and photosynthetic pigments.

Amna et al., 2019

Klebsiella sp.

Serratia sp.

Auxin and siderophores production Increasing the plant biomass; 0.25 M and 0.45 M NaCl Acuña et al., 2019

Bacillus gibsonii,

Bacillus sp.,

Halomonas sp.,

Oceanobacillus oncorhynchi,

Zhihengliuella spp.

IAA, ACC deaminase and ammonia production,

nitrogen fixation and phosphate solubilization

Increasing root and shoot length and total fresh plant weight Orhan, 2016

Triticum turgidum subsp.

durum (durum wheat)

rhizospheric and endophytic

bacteria

Nitrogen fixation, ACC deaminase and auxin

production, inorganic phosphate solubilization

and siderophore production

Improving survival in inoculated plants under high salinity stress

conditions, faster germination rates, and seedling growth

Albdaiwi et al., 2019

Zea mays L. (maize) Serratia liquefaciens antioxidant enzymes (APX, CAT, SOD, POD),

non-enzymatic redox antioxidants (ascorbic acid

and glutathione) induction and osmoprotectants

production

Reduction of oxidative stress markers and increase the maize growth and

biomass production along with better leaf gas exchange, osmoregulation,

antioxidant defence systems, and nutrient uptake under salt stress (80

and 160 mM NaCl)

El-Esawi et al., 2018

Pantoea alli,

Pseudomonas reactans,

Rhizoglomus irregulare

Osmotic adjustment Consortium tended to mitigate ion imbalances in plants across the

gradient of NaCl (0–5 g/kg of soil), promoting maize

growth and nutritional status.

Moreira et al., 2020

Arundo donax L. (giant

reed)

Rhizophagus intraradices

Funneliformis mosseae

Improving the nutritional status of plants by

enhancing nutrient use efficiency

Improving plant growth (1, 75, and 150 mM NaCl) Romero-Munar et al.,

2019

Brassica napus L. (canola) Trichoderma parareesei Increasing the expression of genes related to

the pathways of ethylene

Increasing rape seed yield Poveda, 2020

Lolium perenne

(ryegrass)

Diaporthe strain S69 Ion homeostasis Promoting leaf biomass production (200 mM NaCl) Pereira et al., 20192019

Arthrinium gamsii sp,

Stereum gausapatum sp.,

isolated from Salicornia europaea

Siderophores, polyamines, IAA and cellulolytic,

proteolytic, lipolytic and chitinolytic enzymes

production

Increasing the length, fresh and dry weights of the shoots and roots Furtado et al., 2019b

Sesamum indicum L.

(sesame)

Penicillium sp. Chlorophylls, proteins, amino acids, and lignans

production

Increasing the length of shoot and root, and fresh and dry seedling weight

(150 mM NaCl)

Radhakrishnan et al.,

2014

Wheat (cv. Yongliang 4) Trichoderma longibrachiatum Improvement of the antioxidative defense

system and gene expression in the stressed

plants

Increasing root and shoot length and total fresh plant weight Zhang et al., 2016

Wheat Trichoderma reesei Flavonoid, phenolic compounds,

phytoharmones, including IAA and gibberellic

acid production

Improving plant growth. Increased amount of chlorophyll a and b,

carotenoids

Ikram et al., 2019
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plant nutrition. There are studies, however, for the application of

fungi and bacteria as solubilizers of specific nutrients, and some

bacteria are already applied in fertilization treatments to this aim.

Zinc deficiency, for example, is a significant problem for the

plant, especially in saline arid and semi-arid soils. Plants absorb Zn

mainly in the form of Zn2+, zinc hydrate, and organic zeolite and
use it in biochemical reactions, for the stability of biological

membranes, the activity of oxidative and carbonic anhydrase

enzymes and the synthesis of the enzyme auxin (Broadley et al.,

2007; Alaghemand et al., 2018). The most important method to

provide plants with Zn is the application of rhizobacteria together

with Zn-containing fertilizers. These bacteria can increase the
solubility of poorly soluble Zn compounds by employing

different mechanisms, such as chelation by siderophore (Tariq

et al., 2007), reduction of soil pH by the production of organic acids

(2-ketogluconic acid, gluconic acid) and proton secretion

(Subramanian et al., 2009). Abaid-Ullah et al. (2015) reported

that Serratia sp. could increase wheat yield through solubilisation
of ZnO under different climates.

Biological Nitrogen Fixation by PGPRs
Halophytic crop species used in agriculture can be limited by the

lack of available nitrogen often affecting saline soils. PGPRs can fix

nitrogen through symbiotic and non-symbiotic mechanisms

(Saghafi et al., 2019). The first method involves the formation of

nodes in the host roots by bacteria which results in nitrogen content
of approximately 65% of the total nitrogen assimilation by plants

(Rajwar et al., 2013). The other group of nitrogen-fixing bacteria,

including Azospirillum, Azotobacter, Burkholderia, Herbaspirillum,

Bacillus, and Paenibacillus is not plant-specific (Goswami et al.,

2015). Salt-tolerant N2-fixing PGPRs are an essential source of

available N in saline soils, and the amount of nitrogen fixed by these

bacteria has been estimated as 20-30 kg h-1 year-1 (Oberson et al.,
2013). The potential benefits of nitrogen-fixing strains to halophytes

and salt-sensitive crops underline the need of implementing the

studies on N2-fixing halotolerant PGPRs to be used as boosters in

saline soil-based agriculture (Goswami et al., 2015; Ilangumaran and

Smith, 2017).

Siderophore Production
Some strains of bacteria produce siderophores, especially in the

rhizosphere, this increases plant growth and prevent phytopathogens

from proliferation by inhibiting them from accumulating iron

(Scavino and Pedraza, 2013). Siderophores are Fe(III)-chelating

compounds, usually small and with high-affinity so that plants, in

need for iron nutrient, quickly access the iron-siderophore
complexes. Iron is an integral part and cofactor of enzymes

involved in plants’ respiration, photosynthesis, N2 fixation and

many other biochemical processes (Abbas et al., 2015; Etesami and

Beattie, 2018). Bacterial siderophores have a higher affinity for iron

than fungal pathogens, which require iron for their metabolism and

plants’ infecting mechanisms (Miethke and Marahiel, 2007). Many
halotolerant PGPRs and PGPFs, particularly those isolated from

halophytes (Table 1) produce iron siderophores. Among biocontrol

agents, the strains belonging to Pseudomonas sp. secreting non-

fluorescent and fluorescent siderophores such as pyochelins and

pseudobactins are most effective competitors of Fe3+. The potential

uses of siderophore producing bacterial strains have been reported in

the suppression of fungal pathogens of rice and wheat (Labuschagne

et al., 2010). Moreover, pyoverdine synthetised by P. aeruginosa

under low-iron stress condition could inhibit the growth of

Aspergillus flavus, A. oryzae, F. oxysporum, and Sclerotium rolfsii

(Manwar et al., 2004).
Also, fungi, however, produce siderophores that can act as

protectants against plants’ pathogens. Fungal strains belonging

to Aureobasidium and Emericellopsis genera synthesise

siderophores, which are part of the biocontrol strategies

occurring in Salicornia plants (Furtado et al., 2019).

IAA Production
Indole-3-acetic acid (IAA) is the most common plant hormone

of the auxin class, and it regulates various aspects of plant growth

and development. IAA acts as an effector molecule between

bacteria and IAA producing plants, and in bacterial-bacterial

interactions (Spaepen and Vanderleyden, 2011). It is involved

in many processes such as seed germination, root system

development, or increasing plant tolerance to stress conditions
(Aeron et al., 2011). IAA-producing microorganisms increase

the root growth and root length of plants, which contributes to a

greater root surface area enabling the plant to acquire more

nutrients from the soil (Boiero et al., 2007). Tryptophan is the

IAA precursor in most biosynthetic pathways. However, several

reports indicate the possibility of IAA synthesis in tryptophan-
independent reactions (Sitbon et al., 2000; Saghafi et al., 2018).

The positive impact of IAA produced by PGPRs on the

growth of various plants in conditions of salinity stress has

been determined. For example, IAA-producing, halotolerant

and halophilic bacteria significantly affected root and shoot

elongation and freshly available mass of Triticum aestivum

plants under salt stress conditions (Orhan, 2016). Also,
Brassica napus L. seedlings inoculated with IAA producing

Rhizobium bacteria showed an improved growth rate under

salt stress, regarding especially plant height, as well as root and

shoot dry weight (Saghafi et al., 2018). It has been confirmed that

the salt-tolerant B. subtilis promotes the growth and fitness of

Indian bassia plants (Bassia indica) under salt stress by providing
an additional supply of IAA, and induces salt stress resistance by

reducing ethylene levels. Inoculation of unstressed and salt-

stressed Indian bassia with B. subtilis has significantly

improved root and shoot growth, total lipid content, the

phospholipid fraction, the content of photosynthetic pigments

and also increased oleic, linoleic, and linolenic acids in plant
leaves, as compared to uninoculated plants (Abeer et al., 2015).

IAA-producing bacteria are also involved in suppression of plant

disease-causing pathogenic fungi. Pseudomonas extremorientalis

and P. aureantiaca were successfully used for control cucumber

root infection caused by F. solani (Egamberdieva et al., 2014).

Other examples are given in Table 1. Sodium chloride (NaCl)

induces a decline in the IAA level in rice seedlings
(Sakhabutdinova et al., 2003). Auxin activates the transcription

of various genes known as primary auxin response genes in

Arabidopsis, rice and soybeans (Hagen and Guilfoyle, 2002).

Auxin negatively regulates the expression of the rice gene

adenosine phosphate isopentenyltransferase (OsIPT) that
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encodes a key enzyme in CTK biosynthesis in nodes, thus

inhibiting the growth of tiller buds in rice (Liu et al., 2011).

Therefore, the identification of new genes that respond to high

saline conditions offers investigators the opportunity to develop

new approaches to select varieties with different mechanisms of

tolerance to salinity stress (Zhu, 2002).

ACC Deaminase Production
The production of ACC deaminase enzyme is an essential

mechanism for the direct promotion of plant growth by

PGPRs. Bacterial IAA affects the level of ethylene in plants by

increasing the activity of ACC deaminase, catalysing the

hydrolysis of 1-amino-cyclopropane-1-carboxylic acid (ACC),
an ethylene precursor, to ammonia and a-ketobutyric acid

(Glick, 2005; Etesami et al., 2015). In fact, under stress

conditions, including salinity, ethylene level increases in the

plant and 1-aminocyclopropane-1-carboxylate (ACC) is more

consistently enzymatically converted into ethylene (Figures 2, 3).

Ethylene is a plant growth regulator and stress hormone which

plays a key role in causing physiological changes in plants at the
molecular level (Pierik et al., 2009). Ethylene interferes with plant

growth under salinity stress by inhibiting roots elongation (Glick,

2005), causing defoliation, premature senescence (Shaharoona

et al., 2006; Bari and Jones, 2009). To increase resistance against

the harmful effects of ethylene, plants are commonly treated with

ACC deaminase-producing bacteria (Glick, 2005; Etesami

et al., 2015).

So far, many researchers focused on the performance of PGPR

with ACC deaminase activity to mitigate the adverse effects of

elevated ethylene levels caused by salinity stress (Table 1). Siddikee
et al. (2010) reported that 25 out of 140 halotolerant bacterial

strains isolated from coastal soils of the South Korean Yellow Sea

showed ACC deaminase activity. In particular, three of them

Brevibacterium epidermidis, Micrococcus yunnanensis, and

Bacillus aryabhattai generated more than 40% increase in root

elongation and plants’ dry weight when compared to uninoculated
salt-stressed canola seedlings (Siddikee et al., 2010). In the study by

Kiani et al. (2015), sunflower plants were inoculated with ACC

deaminase-producing bacteria, which resulted in better growth in

terms of plants’ height and dry weight of shoots and roots. It has

also been confirmed that Achromobacter piechaudii, an ACC

deaminase-containing PGPR, can significantly increase the fresh
and drymasses of tomato seedlings (Mayak et al., 2004). The study

by Amna et al. (2019) investigated the role of halotolerant ACC

deaminase-producing Bacillus spp. strains to help wheat seeds

germination and seedling growth at different NaCl levels. There

are pieces of evidence that ACC deaminase producing PGPRs

enhance uptake of essential nutrients like N, P, and K, which

FIGURE 3 | Molecular interaction of ACCD-producing endophytic bacteria associated with plant roots under saline stress. Salt stress induces the ethylene

biosynthesis pathway by upregulation of ACS1. However, ACC is consumed as a result of the activation of acdS gene encoding ACCD of PGPR, whereas ACO1

and EREBP1 are down-regulated and ethylene production is reduced as a consequence. The reduction of ethylene induces a lower expression of MAPK5 and

reduces the accumulation of ROS. Increase in proline, betaine, and glycine improves salt tolerance in plant’s roots. Ca2+content is increased, and Na+/K+ ratio is

decreased, which are correlated with up-regulation of Cam1, SOS1, and NHX1 genes. Ca2+ signal activates the SOS3/SOS2 protein kinase complex, which

negatively regulates the activity of Na+ ion channel. Association of Ca2+ and calmodulin activates antioxidant enzymes which subsequently inhibits ROS. Bold orange

arrow indicates gene regulation, bold white arrow indicates plant physiological regulation, black arrow indicates positive regulation, dashed arrow indicates indirect

positive regulation, black line with bar-end indicates inhibition and dashed line with bar-end indicates indirect inhibition.
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consequently increase K+/Na+ ratios in the stressed plants

(Nadeem et al., 2009).

Some fungi use similar mechanisms to alleviate plants

stress. Some Trichoderma strains produce the enzyme

1-aminocyclopropane-1-carboxylate deaminase that regulates

plants’ endogenous 1-aminocyclopropane-1-carboxylic acid
(ACC), which is the direct precursor of the plant hormone

ethylene. The ACC level regulates the plant’s tolerance to

abiotic stress (Zhang et al., 2019). Poveda (2020) showed an

impact of the fungi on plant’s hormones as well. The author

determined the role that the enzyme chorismate mutase plays in

Trichoderma parareesei ability to promote tolerance to salinity
and drought in plants. This enzyme is at the base of a mechanism

that increases the expression of genes related to the hormonal

pathways of abscisic acid (ABA) under drought stress, and

ethylene (ET) under salt stress.

Exopolysaccharides Production
The biofilm formation and exopolysaccharide (EPS) production

by soil bacteria constitute important strategies to assist
metabolism during stress imposed by salinity. EPS produced

by PGPRs have a significant impact on plant growth and stress

tolerance, such as drought or high salt concentration. They are

hydrating compounds that are available for use before the decay

of roots or germinating seeds. Bacteria produce polymeric

biofilms on a variety of surfaces such as roots and soil,
cementing particles, and forming aggregates. This can improve

crop performance and soil physicochemical properties (Qurashi

and Sabr, 2012; Amna et al., 2019). Salt-tolerant Halomonas

variable and Planococcus rifietoensis strains can improve plant

growth and aggregation of soil. These strains showed the

formation of a biofilm and accumulated exopolysaccharides as

a result of increasing salt stress (Qurashi and Sabr, 2012).
Bacterial EPS can help to alleviate salinity stress by reducing

the Na+ content available for plant uptake (Upadhyay et al.,

2011). The kind of EPS produced by Pseudomonas spp. (Kasotia

et al., 2016), and Bacillus spp. (Amna et al., 2019) helped in the

binding of free Na+ from the soil, thus making Na+ unavailable to

the soybean and wheat plants, respectively.

Increased Antioxidant Activity
High soil salinity is also responsible for increased production of

reactive oxygen species (ROS) by plants, such as superoxide radical

(O2
−), hydrogen peroxide (H2O2), hydroxyl radical (OH·), and

alkaline radicals which have a negative impact on proteins, DNA,

lipids, and other biomolecules and cause oxidative effects

including plant cell damage and premature senescence or
necrosis (Møller et al., 2007; Miller et al., 2010; Habib et al.,

2016; Zhang et al., 2018). ROS are produced at a low level in

organelles (chloroplasts, mitochondria, peroxisomes) under

optimal plant growth conditions. However, under stress

conditions, their concentration increases significantly (Miller

et al., 2010). A critical system responsible for the production of
ROS is the plasma membrane-bound NADPH oxidase (RBOH),

which controls cellular redox homeostasis under salinity stress

(Hossain and Dietz, 2016; Hossain et al., 2017). Many other plant

cell components also play a role in regulating intracellular ROS

levels. Among them, the most important are antioxidant enzymes

such as peroxidases (POD), catalase (CAT), superoxide dismutase

(SOD), ascorbate peroxidase (APX), glutathione reductase (GR),

dehydroascorbate reductase (DHAR), monodehydroascorbate

reductase (MDAR), glutathione peroxidases (GPX), or
glutathione s-transferase (GST) (Yan et al., 2013; Hossain and

Dietz, 2016; Sukweenadhi et al., 2018). Non-enzymatic

components include glutathione, ascorbic acid, tocopherol,

phenolic or polyphenolic compounds (Yan et al., 2013; El-Sayed

et al., 2014; Fatma et al., 2014; El-Esawi et al., 2018a). To some

species of endophytic fungi or ectomycorrhizal fungi are attributed
antioxidant properties that could improve plant’s resistance to

plant’s endogenous reactive oxygen species. Trichoderma is a

genus of soilborne filamentous fungi that comprehend species

capable of triggering plants’ defensive mechanisms and inducing

tolerance to abiotic stress. Plants’ roots colonised by T. harzianum

increased the production of antioxidant enzymes (Zehra et al.,
2017). Also, Mastouri (2010) showed that plants colonised by T.

harzianum showed a lower accumulation of lipid peroxides and a

higher production of antioxidant compounds such as glutathione,

resulting in a mechanism based on the control of the accumulation

of reactive oxygen species that occur in stressed plants. T.

harzianum can accelerate seeds germination while reducing the

adverse effects caused to seeds and seedlings by thermal, osmotic,
saline, and water stress. Examples of PGPRs and PGPFs,

increasing the level of antioxidant enzymes and non-enzymatic

redox antioxidants are listed in Table 1.

Biosynthesis of Hydrolytic Enzymes
One of the main indirect mechanisms of plant’s pathogens

biocontrol by PGPRs is the production of cell wall degrading

enzymes, like chitinases, glucanases, proteases and cellulases that
cause lysis of the fungal cell walls (Siddikee et al., 2010; Berrada

et al., 2012; Goswami et al., 2014). Teng et al. (2010) reported

that halotolerant Pseudomonas sp. strain isolated from Suaeda

salsa is a source of proteinases active against phytopathogenic

fungi like Fusarium oxysporum (Teng et al., 2010). Two bacterial

strains (B. halotolerans and B. pumilus) isolated from the
halophyte Prosopis strombulifera were able to produce

proteinases inhibiting the growth of Alternaria (Sgroy et al.,

2009). B. cereus and B. thuringiensis isolated from salty Tunisian

soils were able to produce N-acetyl-b-D-glucosaminidases,

chitobiosidases, endochitinases, and they were active against F.

roseum (Sadfi et al., 2001). The extracellular chitinases of Serratia
marcescens and Enterobacter agglomerans have been indicated as

biocontrol agents against Sclerotium rolfsii. The ability to

suppress Fusarium oxysporum and Rhizoctonia solani was

found in Peanibacillus spp., Bacillus spp., and Streptomyces

spp., which synthesise b-1,3-glucanase that are lytic enzymes

able to destroy the cell walls of some fungi (Compant et al., 2005;

Labuschagne et al., 2010).

Other Extracellular Molecules
Bacteria secrete many extracellular molecules such as lipo-

chitooligosaccharides, bacteriocins, polyamines and volatile
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organic compounds (Supplementary Material Table 2). It has

been demonstrated that these molecules often control metabolic

pathways and have a role in regulatory functions that increase

the plant’s defence and stimulate its growth, stress tolerance, and

disease resistance.

Lipo-chitooligosaccharides (LCOs), in particular, are
produced by rhizobia and have been found to initiate nodule

formation in response to root exudates and flavonoids

(Ilangumaran and Smith, 2017). The LCOs molecules have a

conserved core and a variable N-Acetyl chain length, with

different substitutions (sulfation or glycosylation) and degree of

saturation, which account for host specificity (Oldroyd, 2013).
Miransari and Smith (2009) reported how Bradyrhizobium

japonicum, when inoculated in soybean under different salinity

levels (from 36 to 61 mM NaCl), enhanced nodulation and

growth of plants with the effects becoming more consistent

with time.

Rhizobacteria secrete bacteriocins, that are small proteinaceous
or peptidic toxins. These act as bactericidal or bacteriostatic agents

against competing bacteria and indirectly promote microbial

diversity under salinity stress. Some bacteriocins showed a role

in plant’s resistance to stress. Bacillus thuringiensis is a soybean

endosymbiont that, in vitro, produces “thuricin 17”, a bacteriocin

that is capable of manipulating plant proteome profile, enhancing

its tolerance to salinity (Subramanian et al., 2016).
Polyamines (Pas) such as spermidine, spermine, and

putrescine, consist of low molecular weight aliphatic amines

that can have antioxidant activity. These compounds are present

practically in all living organisms and impact reactive oxygen

species by scavenging free radicals and inducing the expression

of genes related to cellular antioxidant mechanisms. Among all,
spermidine which is secreted by Bacillus megaterium showed to

increase the cellular accumulation of polyamines in plants. The

mechanism in Arabidopsis involved osmotic stress tolerance via

the activation of polyamines- mediated cellular signalling, which

resulted in greater biomass, higher antioxidant enzyme activity

and high photosynthetic capacity in the inoculated plant,

compared to the untreated control (Zhou et al., 2016;
Ilangumaran and Smith, 2017). Some authors used the

definition “systemic induced resistance (SIR)” to cover several

bio-protecting mechanisms induced by the PGPRs in plants and

that act on multiple functions, once activated at the presence of a

pathogenic infection (Numan et al., 2018).

Volatile organic compounds (VOC) are low molecular
weight compounds, such as aldehydes, alcohols, ketones and

hydrocarbons, which can enter the atmosphere as vapours due

to significantly high vapour pressure. They are released from

by PGPRs and stimulate plant growth, resulting in increased

shoot biomass, and modulated stress responses (Ilangumaran

and Smith, 2017). The role of VOCs in the biocontrol of plant’s

pathogens and antibiosis is not fully understood, but some of
the mechanisms at play gained attention in the last decades

and will require further research (Bailly and Weisskopf, 2012).

Paraburkholderia phytofirmans produced VOCs such as 2-

undecanone, 7-hexanol, 3-methylbutanol that stimulate plant

growth and induce salinity stress tolerance as demonstrated

both in vitro and in soil. Growth parameters of Arabidopsis

plants treated with these VOCs and measured as rosette area,

fresh weight, and primary root length were higher than in the

control plants (Ledger et al., 2016; Ilangumaran and Smith,

2017). VOCs emitted by Bacillus subtilis can stimulate many
different hormonal signals in Arabidopsis thaliana, which

includes cytokinins, salicylic acid, gibberellin, auxin and

brassinosteroids (Zhang et al., 2007; Zhang et al., 2008b).

Almost 600 genes related to metabolism, auxin homeostasis,

cell wall modification and stress response were identified, and

these studies showed that VOCs could play an essential role in
plant growth and development. PGPRs VOCS can stimulate

many chemical and physical changes, some of which could be

addressed to improve plants’ tolerance towards abiotic stress

(Mantelin and Touraine, 2004; Zhang et al., 2008a).

Several antimicrobial metabolites are the basis of biocontrol

mechanisms activated by PGPMs against other microorganisms,
and also phytopathogenic species. Strains of Arthrobacter spp.,

Pseudomonas spp., Bacillus spp., Streptomyces spp., can synthesise

one or several types of bioactive compounds including amphisin,

bacillomycin, 2,4-diacetylphloroglucinol (DAPG), fengycin,

hydrogen cyanide, iturin, macrolactin, phenazine-1-carboxylic

acid (PCA), pyoluteorin, pyrrolnitrin, surfactin, tensin, tropolone,

and viscosinamide (Compant et al., 2005; Hinarejos et al., 2016).
However, among bacterial biocontrol agents, the most cited are

Bacillus spp. (B. amyloliquefaciens, B. cereus, B. licheniformis, B.

pumilus, B. subtilis) and Pseudomonas spp. (P. chlororaphis, P.

fluorescens, P. putida). Their antagonistic properties against

bacterial (Ralstonia solanacearum, Xanthomonas axonopodis) and

fungal (F. oxysporum, F. culmorum, P. ultimum, Rhizoctonia
solani) phytopathogens of barley, chickpea, maize, peanut, rice,

and wheat were widely proven (Raaijmakers et al., 2002;

Yuttavanichakul et al., 2012). Moreover, due to multifaceted

mechanisms of action in preventing pathogens’ infections, some

strains of Bacillus sp. have been commercialized and used for

improving crop production (Radhakrishnan et al., 2017;

Nakkeeran et al., 2020). The formation of a biofilm around
plant’s roots by some Bacillus species and the secretion of

antagonistic metabolites inhibit pathogenic communities and

reduce the occurrence and frequency of the diseases in plants

(Radhakrishnan et al., 2017).

One of the antibiosis mechanisms adopted by Pseudomonas

spp. is the production of hydrogen cyanide. which inhibits the
therminal cytochrome c oxidase in the respiratory chain and binds

to metalloenzyme (Ramette et al., 2003). However, hydrogen

cyanide antagonistic potential against phytopathogens, mainly

fungi, is still a matter of discussion (Rijavec and Lapanje, 2016).

Ramette et al. (2003) showed a broad spectrum of antifungal

activity, whereas Rudrappa et al. (2008) and Blom et al. (2011)

reported that hydrogen cyanide is unlikely a biocontrol agent. The
authors indicated that pigments and other antibiotic substances

are more effective against fungi. Interestingly, Rijavec and Lapanje

(2016) proved that HCN regulates phosphate availability of

PGPRs and host plants.
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THE INTERPLAY BETWEEN HALOPHYTES
AND THEIR MICROBIOME: A GLIMPSE
INTO THE FUTURE

For many years, a wide range of PGPRs and PGPFs have been
studied, and some bacterial and fungal isolates, including species

of the genera Pseudomonas, Bacillus, Enterobacter, Klebsiella,

Azobacter, Variovorax, Azosprillum, Serratia and Trichoderma,

Aspergillus, Penicillium, Phoma have been used in commercial

products (Glick, 2012; Jahagirdar et al., 2019). Nevertheless, the

application of PGPRs and PGPFs in the agricultural industry is
only a small part of agricultural practice worldwide (Bashan et al.,

2014). Disadvantages regarding the utilization of bacteria are

connected with properties of the inoculated PGPRs and chiefly

depend on their survival in soil, their interaction within

indigenous soil microflora, and other complex environmental

factors (Martinez-Viveros et al., 2010). Moreover, the modes of

action of PGPRs are incredibly varied, and not all rhizobacteria
have the same effects with identical mechanisms (Choudhary,

2012; Arora et al., 2020). Little is known about PGPFs compared

to bacteria regarding their effectiveness in the plant growth-

promoting processes. However, many researchers reported

beneficial effects of PGPFs application to plants growth by

activation of induced systemic resistance (ISR) (Murali et al.,
2012; Naziya et al., 2020). Another frontier is the exploitation of

interactions between several microorganisms, as it is often from

the interaction of several species that the production of bioactive

compounds is obtained. Complex interactions between different

mycorrhizal species were documented, for instance. Poveda et al.

(2019) showed, for example, that plant roots’ colonization by

Trichoderma harzianum biocontrol strain increases the
colonization of the same host by arbuscular mycorrhizal fungal

species. The authors, analysing the expression profile of defence-

related marker genes, suggested that the phytohormone salicylic

acid could play a key role in the modulation of the roots’

colonization process when both fungi are jointly applied.

According to Gangwar et al. (2017) and Egamberdieva et al.
(2019), an ideal plant growth-promoting microorganisms

(PGPMs) should possess a high rhizosphere competence,

enhance plant growth capabilities, have a broad spectrum of

action, be safe to the environment, be compatible with other

rhizobacteria, and be tolerant to heat, UV radiation, and oxidizing

agents. So far, organisms with interesting properties have been

isolated, and some possess more than one of the qualities required
for a perfect PGPR, however, imagining such an ideal organism

capable of accomplishing all the necessary actions, is a kind of

extreme. Nevertheless, the direction is the right one because by

continuing to search and experimenting, it is possible to find

different organisms that together can work with complementary

mechanisms. The research on PGPMs as biofertilizers is the most
natural and realistic aspiration to face a global agricultural

productivity requirement, capable of feeding the world’s

population, which is going to escalate to 9 billion people by 2050.
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Kováčová, V., and Velıśková, Y. (2012). The risk of the soil salinization of the
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Matilla, M. A., Espinosa-Urgel, M., Rodrıǵuez-Herva, J. J., Ramos, J. L., and Ramos
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Rodrıǵuez-Liébana, J. A., ElGouzi, S., Mingorance, M. D., Castillo, A., and Peña, A.

(2014). Irrigation of a Mediterranean soil under field conditions with urban

wastewater: Effect on pesticide behaviour. Agric. Ecosyst. Environ. 185, 176–

185. doi: 10.1016/j.agee.2013.12.026
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