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SUMMARY. Regression models with random coefficients arise naturally in both frequentist and Bayesian 
approaches to estimation problems. They are becoming widely available in standard computer packages 
under the headings of generalized linear mixed models, hierarchical models, and multilevel models. I here 
argue that such models offer a more scientifically defensible framework for epidemiologic analysis than 
the fixed-effects models now prevalent in epidemiology. The argument invokes an antiparsimony principle 
attributed to  L. J. Savage, which is that models should be rich enough to  reflect the complexity of the 
relations under study. It also invokes the countervailing principle that you cannot estimate anything if you 
try to  estimate everything (often used to  justify parsimony). Regression with random coefficients offers 
a rational compromise between these principles as well as an alternative to analyses based on standard 
variable-selection algorithms and their attendant distortion of uncertainty assessments. These points are 
illustrated with an analysis of data on diet, nutrition, and breast cancer. 
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1. Introduction 
When should epidemiologic regressions use random coeffi- 
cients? I will argue that they are advisable whenever the 
analysis objective is estimation of multiple causal effects and 
some sort of dimensionality-reduction strategy is needed. My 
arguments are not of mathematical or simulation form be- 
cause there are many technical studies that support my the- 
sis (cf., the citations in Greenland (1998, p. 428-430)); I will 
instead focus on the scientific advantages of mixed model- 
ing that those studies reflect. I have derived these arguments 
from writings of Box (1976), Leamer (1978), Good (1983), 
and other pragmatic Bayesians or Bayesians with reservations 
and compromises (e.g., Rubin, 1984; Draper, 1995), though 
any oversights are my own. What follows is an attempt to 
apply these ideas in epidemiology, an often controversial and 
idiosyncratic field whose importance is recognized but whose 
use of statistics remains largely primitive; implementation de- 
tails can be found in textbooks under the topic of hierarchi- 
cal modeling (e.g., Gelman et al., 1995, Section 13.4; Leonard 
and Hsu, 1999, Section 6.3) though not at a level accessible 
to most epidemiologists. 

Causal effects are usually underidentified by epidemiologic 
data in that any realistic model for the effects cannot be fit 
without constraints. This underidentification is concealed by 
routine analysis strategies but can be addressed openly using 
models with random coefficients. The issue is important to so- 
ciety at large because of the seriousness with which the public 
and lay press often respond to epidemiologic studies (Taubes, 
1995). For example, massive lawsuits often result from weak 
suggestions of hazards while dietary fads get launched by even 

weaker data. I attribute some of this problem to inappropriate 
modeling strategies that are common in epidemiology today. 
The example below is intended to  show how these strategies 
lead to illusory significant results. I have encountered others 
in which this occurs, and I believe many reported findings (in- 
cluding several cited in Taubes (1995)) contain similar mod- 
eling artifacts. 

I will not contrast fitting methods, which have been the fc- 
cus of much research. That work, though important, has far 
outpaced work on connecting models to the scientific context 
(Hodges, 1996; Mallows, 1998). Nor will I address issues of 
model-form uncertainty or pure (noncausal) prediction mod- 
eling, as considered, e.g., in the literature on model averaging 
(e.g., Draper, 1995; Raftery, 1996; Buckland, Burnham, and 
Augustin, 1997), although mixed modeling can be viewed as 
a model-averaging method (Greenland, 1998, 1999). 

2. Complete Confounding in a Study of 

The example is from a casecontrol study of diet, food con- 
stituents, and breast cancer (Witte et al., 1994); controls are 
sisters of cases and so the data comprise matched sets with 
one to five sister controls. The variables include intakes of 
35 food constituents (nutrients and suspected carcinogens) 
computed from 87 diet questionnaire items plus five potential 
confounders. This study is typical of many: The number of 
subjects (140 cases, 222 controls) is not much larger than the 
number of variables. (For further study details, see Ursin et al. 
(1992).) I will assume for now that only the food constituents 
are of interest. This still leaves a dimensionality problem, as 
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one should expect with 35 primary plus 5 confounding covari- 
ates and only 140 cases (3.5 cases per covariate) available for 
analysis. 

Standard analyses employ conditional logistic modeling 
with one of the following strategies: 

(1) Use all 35 food constituents as candidate variables for 
some sort of data-based variable-selection procedure, 
such as stepwise regression, forcing in the five con- 
founders (sometimes the confounders are also subject 
to selection based on significance testing, but this prac- 
tice has been condemned for leaving important con- 
founders uncontrolled (Greenland and Neutra, 1980)). 

(2) Force all 35 food constituents and the 5 potential con- 
founders into a single model and (if it fits) base infer- 
ence on this model. 

Strategy 1 can be condemned on the grounds that (i) the 
food constituents are strongly correlated and hence estimates 
from reduced subsets may be confounded by excluded vari- 
ables, even if the latter are nonsignificant, and (ii) data-based 
variable selection leads to nonnormal estimators and to severe 
downward bias in the P-values and standard errors that come 
from the final model (e.g., see the studies cited in Buckland et 
al. (1997) and Greenland (1998, p. 402)). Bootstrapping the 
selection procedure is occasionally used to address problem 
(ii), but this approach has its own problems (Reedman, Na- 
vidi, and Peters, 1988). Strategy 2 has also been promoted to 
avoid the shortcomings of strategy 1 but depends on asymp- 
totics whose applicability is dubious given the caselcovariate 
ratio (exact logistic programs exist, but such large problems 
remain beyond their reach). Here, however, I will focus on a 
major problem for causal inference that is overlooked by all 
these strategies, i.e., confounding by residual dietary effects. 

To describe this problem, let X represent the 362 x 87 di- 
etary data matrix, let W be the 362 x 5 confounder data 
matrix, and let Z = { z 3 k }  be the 87 x 35 composition matrix 
for the diet items; element z j k  is the amount of constituent 
k found in one unit of diet item j .  Thus, Z is the table of 
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contents for the diet items and X Z  is the 362 x 35 matrix 
giving the constituent intakes for the subjects. Letting Y be 
the vector of subject-specific disease indicators, the logistic 
model underlying the above strategies may be written 

l =  logit{E(Y I x, 2, W ) }  = a: + X Z T  + We, (1) 

where T is the target parameter vector of constituent coeffi- 
cients and a is a vector of nuisance parameters that are con- 
stant within matched sets. Strategy 2 uses model (1) in its 
entirety, whereas strategy 1 uses the data to select columns 
of X Z  for use in a reduced model. The models are fit by con- 
ditional maximum-likelihood to eliminate a ,  and effects are 
measured by the vector of odds ratios en (Breslow and Day, 
1980). 

The first column of Table 1 presents selected results from 
applying strategy 1 to the fo.od constituents using backward 
deletion with a-to-remove = 0.10; 15 of the 35 constituents are 
retained, and 11 of these have P < 0.05. The second column 
presents conditional maximum-likelihood (CML) estimates of 
odds ratios from strategy 2 (fit the full model); only 2 of the 
35 coefficients have P < 0.05. The first four food constituents 
are shown because they have received considerable publicity 
as potential factors in carcinogenesis (possibly protective for 
03 fatty acids, &carotene, and phytoestrogens and possibly 
causal for alcohol). The differences in the point estimates from 
strategies 1 and 2 are trivial relative to the confidence-interval 
widths, but the intervals from the full model are meaningfully 
wider for C23 fatty acids and for alcohol. The differences in 
widths are unsurprising given the downward bias in standard 
errors estimated from data-selected models. The latter consid- 
eration should be enough to make one prefer the full-model 
intervals over the backward-deletion intervals. I will argue, 
however, that even the full-model intervals are misleadingly 
narrow. 

Use of model (1) implicitly assumes absence of any effects of 
the diet variables X beyond the logit-linear effects mediated 
through the constituents in 2. There is no scientific basis 
for this assumption, and there are good reasons to reject it. 

Table 1 
Estimates of odds ratios en from conditional logistic regressions 
of breast cancer on food constituents (95% confidence limits in 
parentheses); five potential confounders forced into each model 

Model 

With random diet residuals Backward CML, all 35 
deletion” constituents 7’ = 1/8 T2 = 112 

03 fatty acids 

,&carotene 

Phytoestrogens 

Alcohol 
(3 oz./day) 

Carbohydrate 

(glday) 

(mglday) 

(mg/day) 

(100 g/day) 

0.77 
(0.65, 0.92) 

1.1 

0.80 
(0.70, 0.92) 

0.94 
(0.88, 1.00) 

1 
(deleted) 

(0.99, 1.2) 

0.71 
(0.46, 1.1) 

1.2 
(1.01, 1.3) 

0.73 
(0.58, 0.93) 

0.89 
(0.63, 1.3) 

0.97 
(0.79, 1.2) 

0.58 
(0.17, 2.0) 

1.1 
(0.81, 1.6) 

0.73 
(0.40, 1.3) 

0.93 
(0.37, 2.3) 

0.99 
(0.58, 1.7) 

0.49 
(0.06, 4.3) 

1.2 
(0.64, 2.1) 

0.72 
(0.26, 1.9) 

0.91 
(0.18, 4.6) 

1.0 
(0.39, 2.6) 

a a-to-remove = 0.10; 15 food constituents retained. 
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Dietary factors that may influence health continue to be dis- 
covered, and their effects are not captured by ir. While the 
individual effects of single omitted factors are likely to be 
small, so are the effects under study. Furthermore, the aggre- 
gate confounding due to the omitted effects may be impor- 
tant because of the high positive correlations among healthy 
dietary habits. 

TO account for this confounding problem, consider the ex- 
panded model 

e = 0: + x z T +  xs+ we. 
The term X 6  is intended to capture the residual diet-item 
effects. Because X Z  is a linear function of X ,  however, the 
constituent and diet effects are completely confounded in that 
model (2) is not identified without side constraints. This non- 
identification reflects the following fact: To control for other 
dietary effects using a fixed-effects-only model, one would 
have to measure the constituents responsible for those effects 
and add them to model (1); without such measurements, the 
effects of the measured constituents Z are not logically sepa- 
rable from other dietary effects because those constituents are 
measured only through diet variables in X .  Standard analyses 
of nutrient effects dodge this logical problem by not looking 
beyond model (1). Of the two models, however, model (2) 
is the only scientifically reasonable one for effect estimation. 
Use of model (1) corresponds to imposing the implausible con- 
straint S = 0 on model (2), which leads to understatement of 
uncertainty about e* . 

Underidentified structures like model (2) are common in 
epidemiology. Other examples include occupational studies in 
which X contains job histories and Z is a matrix of expo- 
sure levels within jobs, exercise studies in which X contains 
physical-activity histories and Z is a vector of metabolic ex- 
penditures of activities, and other studies in which X con- 
tains questionnaire items and Z is a matrix that transforms 
the items into quantities of focal interest. Most often, the po- 
tential effects of X items not captured by X Z  are ignored; 
occasionally, items from X may be tested and added in a 
forward-selection strategy, although the number that can be 
added in this way is severely limited by the linear dependence 
of X Z  on X .  

3. A Mixed-Modeling Approach 
3.1 A Famaly of Estimators 
By treating S as a vector of random coefficients, we can 
achieve identification using less restrictive and more plausible 
constraints than setting components of 6 to 0. Perhaps 
the simplest way to do so is to treat model (2) as a 
mixed model by specifying 6 - MVN(p,T), where p and 
T are known or are simple functions of a few unknown 
parameters. I will here use p = 0, T = 7'1; a more 
realistic prior would have the diagonal elements of T vary 
with diet item (indeed, Witte et al. (1994) constructed a 
more complex prior for 6 based on extensive review of the 
background nutrition and e idemiology literature). The fact 
that the components of eB represent residual odds ratios 
after regressing out food-constituent effects makes the zero- 
correlation (diagonal 2') assumption reasonable, because prior 
correlations among the diet-item effects are, for the most 
part, due to  shared constituents. The normality of the prior is 
chiefly for computational ease and could be replaced by other 

(2) 

assumptions if one had skill with software for Monte 
Car10 fitting. Assuming normality, however, leads to simple 
fitting methods such as restricted generalized least squares 
(Goldstein, 1995), restricted maximum likelihood (Wolfinger 
and O'Connell, 1993), penalized likelihood with a quadratic 
penalty for 6 (Breslow and Clayton, 1993; Greenland, 1997), 
data augmentation (Bedrick, Christensen, and Johnson, 
1996), and ridge regression with ridge parameters for S 
proportional to 1 / ~ ~  (Titterington, 1985). 

Discussions of penalized likelihood and ridge regression 
often treat 1 / ~ ~  as a tuning or smoothing parameter for 
solving an ill-conditioned regression problem rather than as 
an inverse variance component, and thus may appear to 
finesse the problem of specifying a coefficient distribution. 
Nonetheless, from a Bayesian perspective, such a distribution 
is implicit in these methods (Learner, 1978) and the 
tuning parameter should reflect the precision of background 
information. I will thus use the prior information available in 
the example to assign plausible values to the prior variance 
of the residual effects in 6. 

Let %(r2) denote the penalized conditional likelihood 
(PCL) estimator of A obtained from fitting model (2) with 
p = 0 and the prior variance fixed at T ~ .  The third 
column of Table 1 gives results using %(1/8), i.e., with 72 = 
{ln(2)/1.96}2 = 1/8. The latter number is derived from the 
context by noting that odds ratios below 1/2 or above 2 are 
extremely implausible because the components of e' are odds 
ratios for the residual effects for typical intakes of the dietary 
items in X after regressing out effects mediated by measured 
constituents. Taking r2  = 1/8 corresponds to assigning 
95% prior probability to the odds-ratio interval exp(0 & 
1.96/8lI2) = (1/2,2) for each component of e'. The resulting 
point estimates differ little from those in the earlier columns, 
but the PCL intervals are considerably wider. Unlike the 
results from strategies 1 and 2, no mixed-model estimate has 
P < 0.05, and the precision of certain results in the first two 
columns apparently hinges on ignoring residual diet effects. 
Thus, mixed modeling indicates that there is little information 
in the data about effects of individual food constituents once 
we allow for the possibility of even small residual diet effects. 
As an added benefit, mixed modeling provides intervals for 
coefficients excluded by backward deletion. 

The similarity of the point estimates in this example is not 
coincidental. A large change in point estimates upon variable 
deletion requires that the deleted variables have strong 
relations to both the outcome and the retained variables 
(cf., Breslow and Day, 1980, Chapter 2). Backward deletion 
with a high a-to-remove tends to delete only those variables 
with a weak relation to the outcome. Conversely, addition of 
random coefficients constrained by a small T~ tends to keep 
the added coefficients small. Hence, while large changes are 
possible, both the backward-deletion and the mixed-model 
point estimates tend to stay close to the full-model point 
estimates in this example. Nonetheless, the interval estimates 
differ profoundly, with the naive backward-deletion intervals 
shrinking as coefficients are removed and the mixed-model 
intervals growing as random coefficients are added, in accord 
with results on the impact of variable addition on logistic 
regression (Robinson and Jewell, 1991). 
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The mixed-model intervals are preferable for causal effects of X as a source of bias. Suppose instead the goal is to 
estimate the effects of the basic covariates in X .  A standard 
analysis would select columns of X for use in a logistic: 
regression (strategy 1) or use all columns of X (strategy 2), 

e = ff + xp + wo. 

inference because model (2) better reflects current lack of 
knowledge about the diet residuals 6. The CML estimate 
i? under strategy 2 equals ?r(O), the mixed-model estimate 
obtained when 6 is given a degenerate prior concentrated 
at zero. As uncertainty about the size of these residuals 
increases. so does uncertainty about K .  This relation is 

in the model 

(3) 
illustrated by comparing the third column of Table 1 to the 
fourth column, which gives results using the contextually 
large value of r2 = {ln(4)/1.96}’ = 1/2; this r2 corresponds 
to assigning 95% prior probability to exp(0 i 1.96/2lI2) = 
(1/4,4) for each component of e’. The variances of the 
components of 5(r2) increase without bound as r2 + 00, 

reflecting the linear dependence of the constituents XZ on 
the diet items X .  

As with S, there is considerable prior information about TI 
and 8 in this example. Bayesian philosophy says one should 
use this information to add priors for K and 8 to the analysis, 
while frequentist theory tells us that the resulting estimators 
may be superior to any above if that information is valid. 
Whether or not one finds these arguments compelling, they 
lack one crucial element in the argument for introducing the 
prior for 6: Some constraint on 6 is needed to get a sensible 
estimate of T within model (2) whereas a prior for T or 8 is 
not. 
3.2 Should the Prior Variance Be Estimated? 
What about uncertainty about r2 (or, more generally, T)? 
Because r2 is a parameter of the prior for 6, uncertainty 
about r2 is uncertainty about the uncertainty about 6, i.e., 
it is uncertainty about which prior we should use for 6. 
From a subjective Bayesian perspective, this hyperuncertainty 
concerns a parameter r2 that indexes different opinions 
about 6, and neither r2 nor a distribution for r2 have 
any objective meaning with respect to 6. In other words, 
uncertainty about r2 is nothing more than uncertainty about 
prior opinion. With this view, estimation of r2 is a pointless 
exercise; instead, uncertainty about r2 should be addressed 
by repeating the analysis using different values, as in the last 
two columns of Table 1. Those results suggest that, within 
the 6 N MVN(0, r21) prior specification, the main qualitative 
inference (no estimate appears incompatible with chance) 
should not vary among opinions with T~ > 1/8. 

Consider next a frequentist perspective in which one goal 
is to minimize expected loss in estimating K subject to the 
mixed-model specification. We don’t know what value of 
rz will minimize the expected loss of ?r(r2), so we might 
attempt to estimate it frcm the data. Because r’ controls 
the degree of shrinkage in 6(r2),  this approach accommodates 
intuitions that the data should have some say in how much 
to shrink 6. Unfortunately, common estimators for r2 can 
have very poor small-sample properties (Greenland, 1993, 
1997); furthermore, the estimates they produce often equal 
no one’s prior variance for 6, in which case the resulting 
odds-ratio estimates have no contextually relevant Bayesian 
interpretation. For this reason, if one feels compelled to 
estimate r2, I would recommend giving it a proper prior 
concentrated among contextually reasonable values. 

3.3 Mixed Coefficients 
So far, I have assumed that the analysis goal is to estimate 
effects of the composite covariates XZ, treating any residual 

In the example, this is a model for effects of the 87 diet items. 
Although ,Ll is identified without further specification, results 
from standard analyses are not credible: Upon fitting the full 
model, 29 components of the CML estimate ,8 have P < 0.05 
and many are absurdly inflated (Witte et al., 1994); after 
backward deletion with a = 0.10, there is much less inflation, 
but 14 of the 20 retained components still have P < 0.05. For 
example, the full-model estimate of the odds ratio for eating 
two oranges per week is 3.1 (95% confidence limits: 1.2, 8.4); 
after backward deletion, the estimate becomes 1.6 (1.2, 2.2). 

Much more plausible results can be obtained by exploiting 
the information in 2 about food composition to shrink the 
CML estimate of p toward the value expected under model 
( l ) ,  in which foods have no effect beyond that conferred by 
their measured constituents. Model 2 with 6 N MVN(0,T) 
is equivalent to a two-stage hierarchical (multilevel) model in 
which the first stage is model (3) and the second stage is 

,5=Z.ir+cf. (4 
/3 is now a combination of fixed and random coefficients; an 
independence structure for the random part, 6, implies thitt 
any prior correlations among the diet effects in p are entirely 
explained by known differences in constituents of the diet 
items. This implication is a scientific proposition that was 
evaluated against background literature (Witte et al., 1994). 

The mixed coefficient /3 can be estimated by plugging 
the mixed-model (model (2)) estimates % ( T ~ )  and 6(r2) into 
equation (4). Since the estimated random vector d ( ~ ’ )  is 
shrunk toward the zero vector, P(r2) = Z?r(r2) + b(r2) is an 
estimate of /3 that is shrunk toward Z 5 ( r 2 ) ,  that portion of 
the estimated dietary effects due to the constituents 2. With 
r2 = 1/8, the overall results appear much more ambiguous 
than those from CML or backward deletion; e.g., only 4 of 
the 87 components of P(l/8) have P < 0.05, and the estimate 
of the odds ratio for eating two oranges per week is reduced 
to 1.4 (0.93, 2.0). The degree of shrinkage is controlled by r2: 
p (0 )  = Z?, where ?r is the CML estimate of K under model 
( l ) ,  whereas p(r2) approaches as r2 increases. (For further 
illustration of these points in the example, see Witte et al. 
(1994) .) 

Use of model (4) does not require prior information as 
detailed as a diet-nutrient matrix. If that matrix had been 
unavailable for our analyses, we would have used other, more 
crude information to construct a second stage (prior) design 
matrix Z. For example, we could group the coefficients by 
food type (vegetables, fruits, white meats, red meats, etc.); 
Z would then be the matrix of group indicators. As before, 
the objectives of the prior grouping would be to produce 
uncorrelated or exchangeable priors for residual effects not 
captured by the grouping and to minimize bias in any one 
coefficient as a result of shrinkage toward an inappropriate 
mean (Greenland, 1992). Because we would expect greater 
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heterogeneity of effects within food-based than within 
constituent-based groups, however, we would have used a 
larger value of T~ (or a prior for r2 with a larger mean) with 
a food-based grouping. 
4. Discussion 
4.1 Mixed Modeling as an  Extension of Established Methods 
Epidemiologic regressions occasionally include random effects 
that are coefficients for a set of group or cluster membership 
indicators, where the groups are families, geographic areas, 
or sets of repeated observations on single individuals. The 
group-indicator coefficients are treated as i.i.d. or as having 
a specified correlation structure (e.g., exchangeable) because 
the groups are too numerous and small to allow stable 
estimation of their coefficients without constraints. In other 
words, the indicator coefficients are assumed random for the 
same reason as 6 was assumed random in the above example. 
This assumption is easily accepted in group-indicator cases 
because (i) the group coefficients are usually regarded as 
nuisance parameters, which makes the assumption seem to 
be of only indirect importance, and (ii) the groups constitute 
a single natural partition of the observations, which makes 
the prior correlational assumptions seem natural in that the 
latter reflect symmetries in prior information about the group 
effects. 

Mixed models extend standard random-effects models t o  
include prior information about causal and measurement 
processes in a model for the source of effect correlations 
(Greenland, 1992; Searle, Casella, and McCulloch, 1992, 
p. 330). Such modeling can provide shrinkage estimators 
superior to the original ridge and James-Stein estimators, 
which only shrink toward the origin. Consider estimation 
of dietary effects (,B in model (3)). Shrinking ,B toward the 
origin is equivalent to using model (4) with 7r = 0, an 
incorrect restriction. Mixed modeling allows shrinkage of ,B 
toward a manifold Z7r that is contextually determined, which 
increases coherence of the analysis with prior information. By 
dropping the incorrect restriction, we should also expect less 
bias (at a cost of greater variance) in mixed modeling than in 
classical shrinkage while retaining lower mean-squared error 
than unconstrained ML estimation. 
4.2 The Constraints of Unconstrained M L  
Standard epidemiologic analyses often begin and usually 
end with fixed-effects logistic regression fit by unconstrained 
maximum likelihood (ML). Unconstrained ML is often 
defended against shrinkage and Bayesian estimation with 
claims that it is unbiased and free from dependence on prior 
information. These claims are misleading because they are 
based on the assumption that the correct model is known 
and is the only model used in the analysis. In epidemiology, 
this assumption is always highly unrealistic, as in the example 
of estimating the constituent effects in 7r. Unconstrained ML 
forces use of an inadequately small fixed-effects model (such as 
model (1) or a backward-deletion model), whereas shrinkage 
allows use of a much richer mixed model (such as model (2) 
with random 6). In practice, then, ML tends to suffer from 
more bias due to model restrictions. 

There is a sense in which this bias reflects an enhanced 
dependence of unconstrained ML on prior information. Every 
nonexperimental inference is a function of prior information 
and data. Although unconstrained ML uses no explicit prior, 

it does use a prior in the form of restrictions on the class 
of models available for the analysis (Learner, 1978; Robins 
and Greenland, 1986). Mixed modeling expands that class 
and thus can reduce bias from incorrect model restrictions 
while facilitating use of plausible restrictions, as in the above 
example. Classical solutions to such problems involve sharp 
constraints, such as setting coefficients to zero or imposing 
absolute bounds, which do not reflect the vagueness of 
true prior information and which make valid uncertainty 
evaluation difficult. A smooth prior can be viewed as a 
probabilistic constraint requiring no sharp bounds. Mixed 
modeling represents a convenient means of imposing such 
fuzzy constraints. 

4.3 The Parsimony Problem and Model Selection 

The above arguments for model expansion using random 
coefficients oppose the usual parsimony principle, which says 
to seek the simplest model for the job. When one attempts 
a causal analysis of complex and poorly understood relations 
from observations made without the benefit of randomization 
(as in most of epidemiology), models need to be complex 
to capture uncertainty about the relations. In other words, 
an honest uncertainty assessment requires parameters for 
all effects that we know may be present. This advice is 
implicit in an antiparsimony principle often attributed to 
L. J. Savage, “All models should be as big as an elephant” 
(see Draper, 1995). When we attempt to operationalize this 
advice with conventional regression tools, however, we run 
into another problem-you can’t estimate anything well if you 
try to estimate everything simultaneously without constraints 
(illustrated by the fact that 7r in model (2) is not even 
identified without constraints). This problem drives analysts 
to search for simple models even if they do not explicitly adopt 
parsimony as a principle. Mixed models offer an alternative 
to purely data-driven model simplification and consequent 
uncertainty understatement. 

Results will be sensitive to reasonable model choices 
whenever one can envision more important parameters than 
can be identified from the data. This problem is often handled 
with mechanical selection algorithms that ignore all context 
and produce models that exclude important parameters. 
The true sensitivity of causal inferences to model choice 
is concealed because these algorithms avoid the territory 
of underidentified models. To address this problem, some 
authors add a single unidentified parameter for unmeasured 
effects to a simple model and examine sensitivity of results to 
variations in this parameter (Rosenbaum, 1995; Copas and Li, 
1997; Robins, Rotnitzsky, and Scharfstein, 1999), analogous 
to  the use of r2 above. These methods are a welcome advance 
beyond the usual approach, but as implemented to date, they 
do not incorporate prior information as rich as that in the 
above example. 

Many analysts recognize that no causal inference is possible 
from nonexperimental data without external identifying 
constraints. Placing distributions on coefficients provides 
more flexible and hence less unrealistic constraints than 
excluding them entirely. This flexibility can also be 
advantageous in pure prediction problems, for it allows one 
to move beyond the all-or-none approach of variable selection. 
Under a mean-zero, variance r2 specification for a coefficient, 

in Causal Inference 
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T’ = 00 corresponds to its inclusion as a fixed effect and 
T’ = 0 corresponds to its exclusion. By allowing T’ to 
be between these extremes, mixed models allow a smooth 
tradeoff between the excessive variability of estimators from 
complex models and the bias of estimators from oversimplified 
models. 

Of course, there is always a limited number of parameters 
that can be estimated meaningfully in an analysis model; 
mixed modeling only raises this limit, and initial screening 
of candidate effects will still be needed in many problems. 
Here again, however, no effect should be excluded if such 
exclusion is contextually implausible, and Bayesian screening 
can outperform conventional stepwise procedures (Faraggi 
and Simon, 1997). 

4.4 The Multiple-Comparisons Issue 
The example might be viewed as a multiple-comparisons 
problem and tempt one to use classical adjustments (such 
as a-level reduction) to screen the results from a standard 
analysis. Prominent epidemiologists have condemned such 
adjustments as unscientific and have even denied there are 
multiple-comparisons problems (Rothman, 1990; Cole, 1993; 
Savitz and Olshan, 1995). Others recognize the problems 
but join in criticizing classical solutions (Greenland and 
Robins, 1991; Greenland, 1993; Thompson, 1998). Giving 
the target parameters random components (as in model (4)) 
treats the problem with a global loss function quite different 
from that in classical adjustment: Mixed modeling of the 
sort described here attempts to minimize estimation error 
by using additional background information, while classical 
methods only attempt to preserve global a-levels through 
purely arithmetic adjustments. It should be no surprise, then, 
that critics of the latter find mixed modeling more acceptable 
(Poole, 1991; Savitz and Olshan, 1995). 

5.  Concluding Remarks 
The view of variable selection as an inadmissible form of 
shrinkage has been expounded for decades (e.g., Leamer 1978, 
Sections 5.2 and 5.3), yet naive modeling strategies based 
on pretest variable selection or other data-driven predictive 
approaches continue to dominate teaching, software, and 
practice. Meanwhile, strategies better suited for causal 
analysis (such as mixed modeling) go unmentioned in basic 
regression texts or are subsumed under specialty topics 
(like variance components) that focus on estimating T ~ ,  not 
p (although the empirical-Bayes and best-linear-unbiased- 
prediction (BLUP) literatures are noteworthy exceptions). 
As a consequence, mixed models are rarely used in fields 
like epidemiology that need them, even though there are 
many packages for generalized linear mixed modeling (Zhou, 
Perkins, and Hui, 1999). 

I believe statisticians have a professional responsibility 
to distinguish causal from purely predictive modeling and 
to integrate methods suitable for causal modeling of non- 
experimental data into the basic teaching and practice of 
epidemiologic analysis. This integration will require that 
teachers and practitioners learn how to begin modeling with 
an underidentified model (a scientifically rich model that 
one would use if given enough information, such as models 
(2) or (4)) and then develop identifying constraints that are 
plausible. This strategy will require more attention to analysis 

context than is the current norm in statistics texts, but this 
requirement should be viewed as a benefit, not a burden. 

Although mixed modeling is not the only scientifically 
sound approach to identification problems, it does have 
the advantage of using extensions of standard models in 
which the coefficients retain their familiar log-relative-risk 
interpretation. Mixed modeling can also encompass certain 
other flexible approaches, such as regression smoothing 
(through use of saturated splines with random coefficients). 
Nonetheless, like all methods, mixed modeling has limitations. 
One is its greater complexity and hence greater opportunity 
for misunderstanding relative to standard methods; others 
will no doubt become apparent with wider use. Such problems 
may, however, lead to improvements in the method and 
motivate implementation of other scientifically defensible 
approaches to underidentification. 
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RESUME 
Les moditles des regressions B coefficients aleatoires apparais- 
sent de fason naturelle 8. la fois dans les problkmes d’estima- 
tions frequentistes et Bayesiens. 11s sont en voie de devenir 
disponibles dans les logiciels standards sous la denomination 
de modkles lineaires generalis& mixtes, de modkles hierarchi- 
ques, et de modkles multi-6tats. Je soutiens ici que de tels 
modeles offrent un cadre scientifiquement plus defendable 
pour l’analyse en Bpidemiologie, que les modkles 8. effets 
fixes, actuellement les plus utilises. L’argument fait appel 
au principe d’anti-parcimonie, attribue B L. J. Savage: les 
moditles devraient Btre suffisamment riches pour refleter la 
complexit4 des relations 8. l’etude. I1 fait aussi reference ail 
principe de compensation selon lequel on ne peut rien estimer 
lorsqu’on cherche B tout estimer (souvent utilisC pour justifier 
la parcimonie). La regression 8. coefficients aleatoires offre 
un compromis rationnel entre ces principes, de mBme qu’une 
alternative aux analyses basees sur des algorithmes standards 
de selection de variables, avec les distorsions des evaluations 
d’incertitude qui les accompagnent. Ces points sont illustrbs 
par une analyse de donnees sur le regime, la nutrition et le 
cancer du sein. 
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