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Abstract

We use a supply-demand framework to model the hourly day-ahead

spot price of electricity based on publicly available information. With the

model we can forecast the level and the probability of a spike in the spot

price defined as the spot price being above a certain threshold. Several

European countries have recently started publishing day-ahead forecasts

of the available supply. In this paper we show potential uses of such

indicators and test their forecasting power in an hourly spot price model.

We conclude that a forecast of the available supply can be part of a useful

indicator and discuss ways to further improve the forecasts.

1 Introduction

Day-ahead spot electricity prices provide an important reference point to all
members of the electricity industry. These prices are characterized by high
volatility and rare but violent spikes. These aspects have motivated significant
research efforts. In this paper we model the spot electricity price based on the
supply-demand equilibrium.

There are several ways spot electricity models can be applied. In short-term
tactic planning it is important to forecast the absolute height of the day-ahead
spot prices and to forecast the probability of a spike. On a long-term basis
the variability of spot prices becomes interesting as well. This variability can
be used as an input for the long-term planning of powerplants. In the current
article we focus mainly on the short-term horizon.

We focus on the relation between several fundamental drivers and hourly
spot electricity prices. Using hourly prices instead of daily prices increases
the sample size and hence the likelihood of obtaining robust empirical results.
Accurate forecast of demand and supply is of paramount importance to the
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electricity industry because these two must be balanced at any time to maintain
the stability of the power grid. Forward electricity contracts are traded several
years before actual delivery. Contracts are traded both on the OTC market
and on organized exchanges and delivery is normally channelled through a day-
ahead market. The market design differs between electricity markets. Examples
of design differences include the exact time of settlement, the granularity of the
contracts (i.e, the time period for which power is to be delivered), the handling of
actual delivery in real-time and the exact information provided to the public. In
general day-ahead markets take the form of an auction. First, the independent
auctioneer aggregates buy and sell orders from the different market participants
for electricity to be delivered the following day for each individual hour. Then
it computes 24 market-clearing prices for the next day, which are the day-ahead
prices (or spot prices) we discuss in this article.

Some of these market design differences, like the exact time of settlement
and granularity of the market, do not have a great impact. Markets settle at
different moments in the morning creating small differences in forecasting. Most
markets operate at an hourly granularity, while the UK and Australia operate
at an half-hourly granularity.

On the other hand, it is worth noting that the relation between day-ahead
and real-time markets can be very different dependent on the market stud-
ied. Longstaff & Wang (2004) find in the PJM market in the United States
that power prices on the day-ahead market are on average higher than on the
real-time market and relate this spread to several risk factors. Karakatsani &
Bunn (2005) find that in the UK market the difference shows a diurnal pattern.
Boogert & Dupont (2005a) find that in the Dutch market differences are rarely
positive on average and are always characterized by very large potential losses.
Other differences occur in how much information is shown to the public, and
of what quality these numbers are. For example, is there a day-ahead estimate
of available supply, and do these numbers cover the full market? Is there a
day-ahead forecast for the national load?

This creates a situation in which the general structure of the models can
span several markets, but where local adjustments are needed to make a useful
model in a particular market. In this article we try to discuss both aspects while
creating an hourly spot electricity price model for the Dutch market.

The remainder of this article is as follows. In section 2 we give review the
literature. In section 3 we establish the supply-demand framework for a gen-
eral electricity market. First we discuss factors which influence spot electricity
prices. Then we introduce a first relation between supply demand and spot
prices and show how it can be used for forecasting hourly spot prices and prob-
ability of a spike. Subsequently, we contrast our non-parametric approach with
some parametric ones. In section 4 we introduce the situation in the Dutch
market. We specify which data is available and apply the techniques for fore-
casting an hourly spot price and the probability of spike. The section ends with
a study on the stability of the relation. In section 5 we discuss the implications
for further modelling.
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2 Review of the literature

The modelling of electricity spot prices has long focused on the reduced form
models (e.g. Deng (1999), Cartea & Figueroa (2005), Huisman & Mahieu
(2003).) Two popular modelling approaches are jump diffusion and regime
switching. Both of these approaches are mathematically tractable and have
received considerable attention, especially in order to perform good parameter
estimation. Another route is provided by fundamental models (e.g. Kosecki
(1999)), which carefully describe the characteristics of the supply stack in a
market. In monopolistic markets the full supply stack was known and used to
serve the load at the lowest cost. In liberalized markets only the general shape
of the daily supply stack is known. The marginal cost curves one obtains with
fundamental modelling and estimates of the supply stack need to be transformed
into spot prices. How to transform these marginal costs into a market price in
a liberalized market setting is not straightforward.

A hybrid model incorporates ideas from the two approaches. Compared to
reduced-form models, hybrid models take into account useful additional infor-
mation besides the price time series like for example weather or availability of
power plants. Eydeland and Geman (1998), Eydeland and Geman (1999), Pir-
rong & Jermakayan (1999), Pirrong & Jermakayan (2000), Skantze, Gubina &
Ilic (2000) and Eydeland & Wolyniec (2003) are examples of a class of hybrid
models based on the assumption that there is an exponential relation between
price and load. This captures the behavior of strongly increasing prices when
the load is growing, while it can facilitate closed form solutions for the pricing
of electricity derivatives.

The underlying assumption for these models is that there is a clear relation
between price and volume on the day-ahead market. This makes them useful
in so-called pool markets where all supply has to be offered in the day-ahead
market (for example in the old NETA system in England and Wales or currently
in Spain.) In other markets a day-ahead forecast for the national load needs to
be created. For example, there is no apparent relation between price and volume
on the Dutch market (APX) as can be seen in figure 1. The APX represents
only about 20 percent of the total national load.

One main ingredient for our model is the reserve margin which covers the
fraction of the supply which is still available for covering the demand. Ingre-
dients for our approach have appeared in different forms. Mount et al. (2006)
created a regime switching model where the switching probabilities between the
regimes and the conditional means for each regime vary with time and with
reserve margin. Anderson (2004) prescribes a functional form (unfortunately
non-motivated) for the relation between a type of reserve margin and the prob-
ability of a spike. One difference is that our transformation is non-parametric.
Burger et al. (2004) prescribes a functional form for the relation between an
index related to the reserve margin and the spot price together with residual
short-term fluctuations and long-term variation of prices. The index incorpo-
rates the expected relative availability of power plants and load, though the
precise form is not given. The difference with our article is that Burger et al.
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Figure 1: APX price versus APX volume

more focus on the long horizon.
Spot electricity price modelling is not the only area where the reserve margin

is studied. Actually, the idea seems to stem from the public policy research on
market power (e.g. Visudhiphan & Ilic (2000)) and security of supply (e.g.
Birnbaum (2002)). The difference with our work is their focus on assessing the
market mechanism, and thus on explaining the relation. Our focus is on the
description and simulation of prices, and thus on exploiting the relation.

3 The supply-demand framework

In this section we discuss factors which influence spot electricity prices. Besides
past spot electricity prices, there is a range of factors which could impact the
analysis. As one of our goals is to investigate the forecast of the available
capacity, we dedicate the first subsection to this topic. Subsequent we discuss
additional price drivers.

3.1 Forecasting available capacity

It is important to distinguish between supply and supply curve. Accurate in-
formation is readily available on the amount and the price of power traded on
the market in the past. Naturally, by construction, supply equaled demand at
those prices. More interesting for forecasting purposes would be information
about the supply curve around past equilibria, or, equivalently, information on
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the elasticity of supply. The elasticity of supply is determined by spare capac-
ity available. In turn, this capacity crucially depends on the granularity of the
market. In the very short run (e.g. in a 15 minutes) some flexible units can be
turned on and the output of running units can be increased. On a day-ahead ba-
sis one can start up units, though there are technical restrictions on production
schedules.

Demand elasticity is normally not taken into account as consumers are gen-
erally price insensitive. However, there are groups of large customers (e.g. in
the metals industry) for whom it is possible to temporarily shut down. These
customers are willing to reduce their demand in exchange for a reduction of the
electricity price. In financial terms: the customers buy an interruptable con-
tract. These demand elasticity effects are explicitly taken into account in Fezzi
& Bunn (2006). In this article we refrain from this effect, and assume it will
enter the model implicitly.

Within the existing literature most articles do not explicitly introduce supply
because of an apparent of data. Recently, the situation has improved as indica-
tors have been introduced in several European electricity markets. Regulators
are currently providing estimates for the available capacity in The Netherlands,
UK and Germany. In this article we will focus on the Dutch market, which has
the longest history of these three. In the US, for the PJM market information
is published on available capacity with a delay of 6 months (see Mount et al.
(2006)).

Another grey area in the definition of available capacity is the use of import
and export capacity. The question is how to include potential import and export
into the total available generation capacity. We think this is dependent on
the market design and on actual market behavior. An important difference is
created by the timing of the import/export capacity market in comparison to
the day-ahead markets, and the timing between day-ahead markets in different
markets. In case the capacity auction is in advance of the day-ahead market, the
resulting price is an indicator for the day-ahead spot price. To be more precise:
it is an indication for the upcoming spread between two different day-ahead spot
electricity markets.

3.2 Additional price drivers

Natural price drivers are factors which impact supply or demand or both. Be-
sides there can be feedback effects from prices in either the previous spot price
or the most recent real-time prices. To give an indication about the variety
of potential price drivers, we refer to Hughes & Parece (2002). They men-
tion power supply factors (installed capacity, outages, generation resource mix,
transmission constraints), demand factors (load duration, weather sensitivity,
economic activity, retail price) and market organization and design (retail price
caps, revenue share of spot sales, capacity requirements and wholesale price
caps) as possible price drivers.

In this paper, we focus on finding a simple relation between price and avail-
able capacity. Alternatively, one could apply data mining techniques like neural
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networks and adaptive splines (see e.g. Lu et al. (2005) for reference).

3.3 A relation between supply, demand and spot price

One of the goals of this article is to understand the relation between supply,
demand and the spot price. Inspired by Anderson (2004) we have decided to
consider a relative demand-supply ratio (RDS) of the following kind:

RDS := 1 −

demand

available capacity
(1)

This index is a reserve margin index: it covers the fraction of the supply
which is available for covering demand. It is realistic to believe this index
will have a negative correlation to the spot prices. We note that the lower
the index, the less capacity is available and the tighter the market. This will
then imply that more expensive units are coming online, and marginal costs
increase. In addition, we expect the bandwidth around the average to increase
for lower indices. Note that this index is closely related to the concept of capacity
utilization as used by Anderson (2004). Capacity utilization states how much of
the available capacity is used to cover the demand (that is: capacity utilization
equals 1 - reserve margin.)

There are two natural candidates which could provide an alternative to our
index. Instead of a relative demand-supply ratio, we could opt for a relative
supply-demand ratio (RSD) or a difference between the absolute supply and
demand (ADS). As mentioned by Visudhipan & Ilic (2000), the supply-demand
ratio is more sensitive to variation in supply than the demand-supply ratio,
while the demand-supply ratio is more sensitive to variation in demand than
the supply-demand ratio.

RSD :=
available capacity

demand
− 1 (2)

ADS := available capacity - demand (3)

3.4 Forecasting hourly spot prices

One way to forecast the spot price is to consider the average transformation
from reserve margin to hourly spot prices. Simultaneously this allows us to
produce a confidence interval around the average. From an economic viewpoint
we expect this transformation to increase for a decreasing reserve margin. As
well, we expect the bandwidth to increase for decreasing reserve margin. In our
data part, we have used both a smoothed b-spline fit and a piecewise linear fit.

The natural extension is to consider a two-dimensional version of this ap-
proach. Such a step was taken in Lu et al. (2005) where besides a reserve
margin a steepness-of-load indicator was used.
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3.5 Forecasting the probability of a spike

Besides the absolute height of the prices, an important variable for market par-
ticipants is the probability that the prices will end up above a certain threshold.
We will call a price above the threshold a spike. In this article we define the
threshold as a fixed amount of euros. An alternative would be to define the
threshold in terms of the cost of the marginal unit in the market at the time.

We estimate the probability as the relative number of observations above
the threshold in our data sample. We vary the threshold to avoid our results
are dependent on the specific threshold. At this moment it is interesting to
relate our work to Anderson (2004). She put a parametric transformation from
reserve margin to spike probability at a central point in the model and kept the
transformation fixed. This motivated us to study the stability of the transfor-
mation in the data part. In the following paragraph we discuss more parametric
models to contrast such an approach to our non-parametric approach.

3.6 Parametric approach

In our approach we assume there is a non-linear relation between the reserve
margin and spot prices. Another approach is to parametrize the relation. In a
functional form, we can rewrite our reserve margin index as follows:

St = f

(

1 −

Dt

Ct

)

(4)

where St is an hourly spot price, Dt is the demand, Ct is the available capacity
and f is a non-linear function.

The variable 1− Dt

Ct

takes values between 0 and 1, and St can take very high
values. If one assumes a monotonic relation between reserve margin and price,
it is reasonable to base f on the inverse of a cumulative distribution function
(cdf) with infinite support and given in closed form, for example, the logistic
distribution. This appears (the function is given without explicit motivation)
to be the motivation behind Anderson (2004). Similarly, Barlow (2002) uses a
displaced diffusion model, where the power price is a function of a latent variable
that follows a diffusion process (this variable need not be between 0 and 1). The
function is built to contain a singularity, which pushes the price toward +∞ in
the neighborhood of the singularity. The inverse cdf technique can be seen as
refinement of this technique. Such approaches are elegant, but lack flexibility.
We focus on non-parametric methods instead.

Another route is obtained if we treat supply and demand separately, and
introduce a functional form for the relation. This functional form allows an
explicit link between spot and forward prices, and creates a possibility to study
the forward risk premium. Bessembinder and Lemmon (2002) formulated a
general equilibrium model for the day-ahead forward prices, which they applied
to the PJM market. In their model speculators cannot participate and supply
is not a random variable. Saravia (2004) extended the model and studied the
effect of speculators on the relation between the day-ahead and real-time market
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in the New York electricity market. Villaplana (2005) extended the model by
considering supply as a random variable and applied the model to the Nordpool
market.

In these models the relation is assumed to be of exponential or power form.
This creates the possibility to estimate the parameters by a linear equation, and
allow for closed form solutions for forward prices. Simultaneously, it captures
the empirical phenomenon that prices rise for increasing demand and decreasing
capacity. To give an example, Villaplana (2005) estimates

St = γ1C
γ2

t eγ3Dt (5)

4 Application to the Dutch market

We first discuss the structure in the Dutch market and the availability of data.
Second, we describe how this data behaves and show how to make a forecast
for spot prices and probability of spike. Finally, we discuss the stability of our
relation.

4.1 Overview of the Dutch market

The Netherlands was among the first countries in the European Union to liber-
alize its electricity market. The Dutch ISO, TenneT, manages the high-voltage
grid (380 and 220 kV), which interconnects regional electricity networks and
links the Dutch grid to Belgium and Germany. TenneT, a wholly state-owned
company, ensures access to the domestic high-voltage network and organizes,
through its subsidiaries, the day-ahead market for electricity (Amsterdam Power
Exchange or APX) and the imbalance market. It also auctions capacity at the
five cross border interconnectors. The maximum import in normal circum-
stances is 3650 MW, which can be enlarged to 3850 MW in case of emergencies.
The scheduled day-ahead import is not exactly realized in real-time. Although
the electricity traded on the APX represents about 20 percent of the Dutch
daily consumption, the APX is considered an important benchmark.

In the Dutch market import/export capacity is auctioned before the day-
ahead spot electricity and imported electricity has to be offered on the day-
ahead market. It is worth noting, that there is a need for import to the Dutch
market and that the available import capacity is used frequently. This makes it
possible to treat the import/export mainly as import.

A new development (starting 21st November 2006) is the introduction of
market coupling between the Netherlands, Belgium and France (Belpex (2006)).
Under this new system the import/export auction will be integrated into the
day-ahead auction. This means that the current explicit auctions, will be trans-
formed into implicit auctions. Similar types of markets are present in the US
and in Nordpool.
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4.2 Available data in the Netherlands

Before 2004 no public estimates were made of the available supply in normal
circumstances. Only when available capacity dropped below a lower threshold
the public was informed about the state of the system. As this happened rarely,
it was difficult to estimate the available capacity and the demand-supply equi-
librium in general. In a previous article, Boogert & Dupont (2005b), we have
shown a good indicator for the spot prices in the period 2000-2003 was the water
temperature: hot water reduces potential capacity and hot water occurs when
temperatures are high leading to high demand.

Since 2004, TenneT publishes an estimate for the available capacity for the
coming 30 days in the Dutch grid. TenneT gathers statements of the different
generators about the availability of their indvidual plants, and summarizes them
on an aggregate level.

The problems with the TenneT estimate are twofold. On the one hand there
is no reliability check on the provided data. The generators are not checked
whether the indicated available capacity is indeed available and there exists no
penalty in case of bad performance. On the other hand the estimated available
capacity does not cover the total available capacity. The estimate contains
neither potential wind production nor generation in smaller units (< 10 MW).
We decided to use this estimate as it gives a unique opportunity to estimate a
supply-demand framework.

The TenneT estimate is one way to describe the supply-demand equilibrium
in the Netherlands. On top of that estimate (which we will denote by TAC)
we think the following types of data could be related to the supply-demand
framework:

IMEX Realized import or export: history published by TenneT on 15 minute
basis. We take import as a positive number since it adds to the available
capacity. This information is published with a delay of 30 minutes.

INT Maximum import: the maximum possible import and export is published
by TenneT. A day-ahead prediction is available, together with announce-
ments for future maintenance and enlargement in case of emergency. We
received a historical database from TenneT.

NL National load: realized generation including realized net import gives the
load which is published by TenneT on 15 minute basis with a delay of
two days. There is no official prediction available, though Essent Energy
Trading can provide an internal one. Note the official load data covers
only electricity generated by units larger than 10 MW.

IMB Real time imbalance prices and volumes: TenneT publishes the real-time
imbalance prices and volumes on their website.

RP Regulating power: TenneT publishes the prices for up and downward reg-
ulation for the coming day. This could provide an additional tweak to the
available capacity.
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WP Wind power: there is no official estimate for the total wind production
in the Netherlands. An internal estimate was provided by Essent Energy
Trading, but unfortunately the starting date of this series is 01/01/2005.

In this report we are working with data starting 01/10/2004 and ending
17/06/2006.1 The starting date is coincides with the first publishing date of the
forecast for the available capacity. As spot prices are published on an hourly
scale, we transformed all 15 minute data into hourly data by taking the average
over that specific hour. Subsequent graphs all show hourly data. In total there
are 14904 hourly data points.

As we mentioned in section 3.1, the definition of total available capacity is
not always clear. We note that in the Dutch market the first choice concerns
inclusion of realized or day-ahead maximum import or export. The second
choice to be made is whether we include wind power or not. This gives us four
different specifications of available capacity.

The potential for wind energy is growing in the Netherlands. In 2004 the
total installed capacity was 1073 MW, which grew to 1224 MW in 2005 (CBS,
2005). Given its size, it could be interesting to include wind power into the
available capacity. However, as the data is not public, we have for the current
version decided to exclude wind power from the available capacity. Concerning
the import/export number, we have chosen to use the day-ahead forecast of
maximum possible import/export. Real-time flows are not available day-ahead
and flows appear more a resultant of our model. Thus we work with the following
estimate for the total available capacity Ct:

Ct = TACt + INTt (6)

Comparing this to the situation studied by Mount et al. (2006), we see
the ISO in the PJM market had more information than the average market
participant for which the models perform less good. The available capacity
could not be fully recovered from the public data on offered capacity and an
assumption on the total available capacity was necessary.

4.3 Reserve margins in the Netherlands

Let us start with showing the development over time of the underlying data for
the reserve margin. In figure 2 we show the load, forecasted available capacity
and day-ahead maximum possible import capacity. To contrast we also included
the realized values of the import into the bottom panel. In the figure we see load
changes between 700 and 1600 MWh, while the forecast of the available capacity
moves between 1200 and 1700 MW. The realized import varies significantly,
while the maximum possible import capacity.

In figure 3 we show the development over time of both the APX price and the
reserve margin. In that figure the relation does not seem to be so strong, but a

1For convenience we deleted the four days with daylight saving hours in our sample:
31/10/2004, 27/03/2005, 30/10/2005 and 26/03/2006.
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Figure 2: Load, available capacity and day-ahead maximum possible import
capacity. In the bottom panel we include realized net import during our data
sample

scatter plot in figure 4 reveals a pattern of increasing prices with reserve margin.
In the same figure we plotted scatter plots between APX and load respectively
available capacity. We see the relation between APX and load appears stronger
than the relation between APX and available capacity. It is good to note that
there are some high prices for still medium index values. We will come back to
this point in section 4.6.

4.4 Forecasting the spot price

Given the reserve margin, one way to forecast the spot price is to consider the
average transformation from reserve margin to APX prices. In figure 5 we show
a b-spline fit and a piecewise linear fit. The piecewise linear fit was created by a
discretization of the reserve margin. We create intervals of width 0.05, and take
the average of all spot prices within each interval. In the reserve margin, values
were taken between 0.10 and 0.70, leading to 12 intervals (0.10−0.15, 0.15−0.20,

etc). We denote an interval by its ending point (so the first interval is 0.15) This
is a data driven approach which does not comply with economical sense that
prices should reduce for increasing reserve margin. For comparison reasons
we introduced a smoothed, monotonic fit as well using smoothed b-splines.2

Looking at the smoothed curve, we see that the b-spline fit appears rather linear
most observations occur: values between 0.20 and 0.60. A similar observation

2The b-spline regression is performed with software provided by Jim Ramsay on his website:
ftp://ego.psych.mcgill.ca/pub/ramsay/
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Figure 3: APX price and reserve margin during our data sample
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Figure 4: Scatter plots of APX versus respectively load, available capacity and
reserve margin
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was made by Visudhiphan and Ilic (2000) in the NEPOOL market. Another
alternative would be to use outlier detection. If certain points are too unrealistic
to fall within our economic theory, we exclude them from the sample. However,
we decided to avoid the discussion about what is realistic.
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Figure 5: Interpolated graph of the APX-index relation via spline and piecewise
linear fit. The lower diagram shows the number of underlying observations in
each box.

The next question is how spread the real spot prices are around the average
transformation. In figure 6 we show the variability around the fit by the 5
different percentiles (10, 30, 50, 70, 90) of the relation between the APX and the
reserve margin. From the figure we can conclude the price spread is decreasing
with the reserve margin. Again we see a local hump around index 0.30.

To get a better feeling for the distributions, we give the summary statistics
in table 1. In the table we see standard deviation, skewness and kurtosis are
rising for decreasing reserve margin.

0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15
nr obs 2 125 1519 2291 1717 1689 1767 1940 1966 1501 348 39
mean 13.70 16.10 24.90 30.39 38.02 43.97 52.63 65.42 79.64 81.15 87.80 127.16
std 19.35 9.57 9.65 9.98 12.37 16.44 22.83 36.67 50.10 73.06 87.03 63.49

skew 0.00 -0.22 -0.18 0.42 2.09 2.28 2.75 4.25 4.17 5.84 5.20 1.79
kurt 1.00 1.75 3.10 5.50 17.73 13.85 19.20 37.94 39.24 56.84 43.08 5.76

Table 1: Summary statistics for different intervals: mean, standard deviation,
skewness and kurtosis
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Figure 6: The top diagram shows the average transformation occurring for the
different intervals together with the 10, 30, 70 and 90 percentile.

4.5 Forecasting the probability of a spike

In this article we define a spike as a price above 90 euro. This threshold was
originally established by traders as a reasonable benchmark for which they would
like to receive a warning. In this article we take the threshold as given, and do
not include it as one of the parameters to be estimated. A threshold of 90 euro
implies that about 11% of the data sample is qualified as a spike. In table 2 we
give the percentage of the data sample that would be qualified as a spike for
some other threshold choices.

APX threshold 80 90 100 120 150 200
Exceeding probability 0.1410 0.1084 0.0760 0.0485 0.0214 0.0086

Table 2: Different exceeding probabilities for different threshold levels. In the
full sample there are 14904 points.

In figure 7 we show the relation between the probability of a spike and the
reserve margin. We take as the probability of a spike, the relative number of
observations in a specific reserve margin interval above 90 euro. By varying the
threshold we found similar graphs as the ones presented.

Again, we see our data does not follow the economic theory that the proba-
bility should increase for decreasing reserve margin. For comparison reasons we
included the spike probability function indicated by Anderson (2004). Although
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Figure 7: Probability of a spike versus reserve margin. The dashed graph is
proposed by Anderson (2004) for the PJM market.

estimated in another market, we see that our data spikes earlier and that the
cut off point is not as clear as in the PJM data.

The same result in the PJM market has been established by Birnbaum (2002)
and Mount et al. (2006): the probability of spike rises fast for reserve margins
below 20%. A similar result was found by Ilic & Visudhiphan (2000) in the
NEPOOL market: ”Spot prices tend to vary proportionally to the ratio. How-
ever, when the ration exceeds 0.8 the proportionality is no longer valid. There-
fore 0.80 could be considered to be a good cut-off value for the current NEPOOL
market.” It is good to note that the results by Mount et al. were for the ISO,
who had better data than the average market participant. Results worsened for
the average market participant who did not have access to this data. If we would
continue on this line of thought, we could put a question mark on the reliability
of the current capacity estimate. Another approach would be to question the
stability of the relation. This is the approach we will take in the last paragraph
of this section.

4.6 Stability

In this paragraph we discuss the stability of the relation we found above. In
particular, we consider time dependence on the daily and yearly level, one-off
events and out-of-sample performance. Before we start, let us give some reasons
why there could be instability in the relation
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4.6.1 Reasons for instability

In our approach we do not explicitly consider which behavior the system has
in surrounding hours. This makes that we do not explicitly consider the effect
of the start-up costs due to steepness of the load or maximum load (so-called
peak-shaving units). This can make prices temporarily higher than the levels
we would normally establish. A similar start-up cost problem is present in the
weekend, where especially Sunday can present a difficulty for our reserve margin
index. Turning down on Sunday is normally not an option as the power plant
has to participate on Monday again when load goes up. Meanwhile the minimum
and maximum load can vary a lot, such that the demand factor moves. Therefor
we expect our index to perform worse in those situations.

For the weekend one has to make the decision to run certain units or not.
After a decision to run, the unit is must run and prices can drop below normal
levels for certain moments. In the winter, power plants who produce both heat
and power, can become must-run in electricity to cover the heat demand. In
certain cases the prices can even become negative. With the effect of must-run
units known, one can make the hypothesis that hours which are covered with
must-run units have a lower price. For this hypothesis to be tested well, we
should be able to make the distinction between flexible and inflexible (must-
run) units in the forecast of available supply. Until now, this type of split has
not been made. A testable implication of our hypothesis is that weekend days
have a lower price even if the reserve margin is the same.

4.6.2 Dependence on time of day

In this and the next subsection we check whether the relation is similar among
different subsets of the data. Here we consider the usual time-of-day subsets.
Note, that the same product names are in use in different electricity markets,
but that that the exact definitions may vary. Table 3 describes the definitions
in the Dutch market.

Products Hours Nr. Observations
Baseload 0-23 14904
Off-peak 0-6+23 4968

Peak 7-22 9936
Weekend-peak 7-22 (weekend only) 2800

Shoulder 7+20-22 (week only) 1784
Super-peak 8-19 (week only) 5352

Table 3: Description of different time of day segments and the number of ob-
servations. Baseload denotes the full data set.

In figure 8 we see peak and off-peak prices are in line, though off-peak prices
fall below peak prices for reserve margin between 0.40 and 0.50. This is in line
with our hypothesis.
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Figure 8: The average transformation occurring for peak and off-peak together
with the number of underlying observations in each box. To show significant
values, we suppress a time of day in a certain box if it contains less than 10
observations of that kind.

To study the distribution for the peak-prices the average transformation for
weekend-peak, shoulder and super-peak are shown in figure 9. In the figure we
see the shoulder transformation is sometimes above the super peak transforma-
tion (reserve margin 0.45 − 0.55), while the weekend-peak is below both. This
confirms our hypothesis about weekend prices being lower than week prices for
the same reserve margin. The shoulder hours are not fully explainable with the
current figure. Therefore we consider the difference between summer and winter
in the following subsection.

4.6.3 Dependence on season

Next, we ask ourselves whether there is a seasonal effect. We divided the data
into summer (April-September) and winter months (October-March). In our
data set of totally 14904 data points, we have 8640 data points in the winter
and 6264 in the summer.

In figure 10 we see the difference between peak and off-peak is sustained
if we split the data in summer and winter The same conclusion holds for the
relation between weekend-peak, shoulder and super-peak hours as can be seen in
figure 11. This brings us to the conclusion that our hypothesis holds in general,
but that the shoulder hours and super peak hours with reserve margin between
0.45 − 0.55 need to be studied in more detail.

17



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140
Averages for weekendpeak (solid), shoulder (dashed) and suppeak (dotted)

Reserve margin

A
v
e

ra
g

e
 o

f 
A

P
X

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200
Nr. of obs. weeekendpeak (solid), shoulder (dashed) and suppeak (dotted)

Reserve margin

N
r.

 o
b

s
.

Figure 9: The average transformation occurring for three different time of day
indices together with the number of underlying observations in each box. To
show significant values, we suppress a time of day in a certain box if it contains
less than 10 observations of that kind.
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Figure 10: The average transformation occurring for peak and off-peak indices
for both summer and winter. To show significant values, we suppress a time of
day in a certain box if it contains less than 10 observations of that kind
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Figure 11: The average transformation occurring for three different time of day
indices for both summer and winter. To show significant values, we suppress a
time of day in a certain box if it contains less than 10 observations of that kind

4.6.4 Outliers

In the previous section, we have seen that certain data points were not in line
with the average transformation. This leads to the question whether something
strange has happened in our data sample. To find out whether there has been
a bad period in the data, we consider how these “outlier” data are distributed
over the data sample.

We decided to look at data points which have high APX values, and relatively
high values of reserve margin. For example, if we use a definition of odd value
as APX > 200, reserve margin > 0.3, we call 16 data points outliers while in
total 128 data points had APX > 200. In figure 12 we graph how many of
such data points were clustered in one day over time. We see there are two
days with 6 outliers, and that they are mainly present around October 2005.
For comparison reason, we included again the development of APX prices over
time.

4.6.5 Out-of-sample

Up to now, we have used the whole sample to draw conclusions about the relation
between the reserve margin and the spot prices. In this subsection, we give a
first indication how stable the relation is over different parts of the sample.

For our stability check we divide our sample in three parts (the first 5000, the
second 5000 and the remaining 4904 observations) and compare the average price
(figure 13) and the probability of spike (figure 14). We see that the average price
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Figure 12: The top panel shows data points with high APX values (> 200) and
high reserve margin (> 0.2). The bottom panel shows APX prices

has increased, and that the transformation from the first period understates the
average price and probability of spike in the second period. The transformation
from the second period is close to the transformation of the third period. This
would show a good out-of-sample behavior. Part of the increase has been due
to an increase in marginal costs. This has not been captured by our current
definition of a spike.

The natural next question is how many data points we should use in our data
estimation by comparing the errors out-of-sample. We will address this question
in the full paper. This means we cannot address the question yet whether we
believe it is appropriate to specify a dynamic model like for example discussed
by Fezzi & Bunn (2006).

We have not yet considered the impact of different prices on the spot price
itself. Here one can think about the current real-time prices or recent spot prices.
Also, the prices of the import capacity could prove to be a useful indicator. In
case prices are rising, this could be an indicator that something is wrong in the
market and prices could potentially spike.

5 Discussion and conclusion

In this work we have shown how to create an estimate for the supply-demand
framework and how to build a simple model around it. One of the main findings
is that reserve margin matters and should be included into a spot electricity
model to enhance performance. Another useful area of application has shown
to be the development of a fundamental model. While most fundamental models
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can create estimates of future marginal costs, it needs a link from marginal costs
to market prices. Our model can provide such a link if marginal costs are driven
by reserve margin.

Estimates for available capacity are not public data in different electricity
markets. Due to the simple nature of our approach, we hope it will be easy to
replicate our results in other markets. In Europe, two examples would be the
UK and German market who both started to publish estimates. The UK market
is most similar to the Dutch market. For the German market, it is important
to look carefully at the inter-connectors and wind production.

Our relation initially contained a double hump structure which did not com-
ply with economic theory. As well, our results imply the Dutch market can
spike for a still medium values of the reserve margin. This could be a proof of
unreliable estimates for the available capacity, or that particular market par-
ticipants do not believe the true estimate. Such a situation could remain until
the regulator enforces that the data must be correct. Another improvement
would be to group available capacity by technology. We tested the hypothesis
that inflexible power plants have a downward impact on prices. We found the
hypothesis holds in general cases, with the exception of the relation between
shoulder hours and super peak hours for a reserve margin between 0.45 − 0.55.

The backbone of the our relation is an assumption on stability. We have
studied the stability over different time of days and seasons. We found it is
better to specify a separate model for different time of days, where especially
it is worth to split week and weekend days. Out-of-sample test gave promising
initial results, which will be extended.

The model can be extended in different directions. One of the directions
is into the relation between spot and forward. With a stability assumption it
is possible to simulate different underlying drivers and create a simulation of
future spot prices. This road has been followed by Anderson (2004). The study
of forward risk premia in a similar perspective has been performed by specifying
a functional form for the relation between supply, demand and spot prices.

Another direction is the extension to a coupled market. This type of markets
are present in the US and in Nordpool. As indicated by Belpex (2006), the
Dutch, Belgian and French market will be integrated too. This will provide a
new challenge for the current model.
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