When the Cartesian Product of Two Directed Cycles is Hyperhamiltonian

Joseph A. Gallian
David Witte
UNIVERSITY of MINNESOTA
DULUTH, MINNESOTA 55812

Abstract

We say a digraph G is hyperhamiltonian if there is a spanning closed walk in G which passes through one vertex exactly twice and all others exactly once. We show the cartesian product $Z_{a} \times Z_{b}$ of two directed cycles is hyperhamiltonian if and only if there are positive integers m and n with $m a+n b=a b+1$ and $\operatorname{gcd}(m, n)=1$ or 2 . We obtain a similar result for the vertex-deleted subdigraphs of $Z_{a} \times Z_{b}$.

S. Curran [4, Theorem 4.3] observed that by using the theory oí torus knots it is easy to prove that the cartesian product $Z_{a} \times Z_{b}$ of two directed cycles is hamiltonian if and only if there are positive integers m and n with $m a+n b=a b$ and $g c d(m, n)=1$. Using Curran's ideas, Penn and Witte [2] proved that $Z_{a} \times Z_{b}$ is hypohamiltonian if and only if there are positive integers m and n with $m a+n b=a b-1$ and $\operatorname{gcd}(m, n)=1$. (A digraph is said to be hypohamiltonian if it is not hamiltonian but every vertex-deleted subdigraph is hamiltonian.) Motivated by these results we define a digraph to be hyperhamiltonian if there is a spanning closed walk which passes through one vertex exactly twice and all others exactly once and determine when $Z_{a} \times Z_{b}$ is hyperhamiltonian and when a vertex-deleted subdigraph of $Z_{a} \times Z_{b}$ is hyperhamiltonian. We assume the reader is familiar with [2] and with the background on torus knots given in [1, Section 4].

Theorem 1. The cartesian product $Z_{a} \times Z_{b}$ of two directed cycles is hyperhamiltonian if and only if there are positive integers m and n with $m a+n b=a b+1$ and $g c d(m, n)=1$ or 2 .

Proof. Let C be a hyperhamiltonian closed walk in $Z_{a} \times Z_{b}$. Then C decomposes uniquely into a pair of edge-disjoint circuits C_{1} and C_{2} with a common vertex. Let (m_{1}, n_{1}) and (m_{2}, n_{2}) be the knot classes of C_{1} and C_{2}, respectively. Then $\left(m_{1}+m_{2}\right) a+\left(n_{1}+n_{2}\right) b=a b+1$. If C_{1} crosses C_{2}, then the algebraic intersection number is ± 1, so $\pm 1=m_{1} n_{2}-n_{1} m_{2}=$ $\left(m_{1}+m_{2}\right) n_{2}-\left(n_{1}+n_{2}\right) m_{2}$ and it follows that $\operatorname{gcd}\left(m_{1}+m_{2}, n_{1}+n_{2}\right)=1$. If C_{1} does not cross C_{2}, then the intersection number is $m_{1} n_{2}-n_{1} m_{2}=0$. From this and the fact that $m_{1}, n_{1}, m_{2}, n_{2}$ are non-negative and $\operatorname{gcd}\left(m_{1}, n_{1}\right)=$ $1=\operatorname{gcd}\left(m_{2}, n_{2}\right)$, we obtain $m_{1}=m_{2}$ and $n_{1}=n_{2}$. Thus $2 m_{1} a+2 n_{1} b=$ $a b+1$ and $g c d\left(2 m_{1}, 2 n_{1}\right)=2$.

Now assume there are positive integers m and n such that $m a+n b=$ $a b+1$ and $\operatorname{gcd}(m, n)=1$ or 2 . Clearly a and b are relatively prime, so the group $Z_{a} \times Z_{b}$ is generated by $(-1,1)$. Let H be the spanning subdigraph of $Z_{a} \times Z_{b}$ in which a vertex $d(-1,1)$ travels by $(0,1)$ if $0 \leq d<n b$ and it travels by $(1,0)$ if $n b \leq d \leq a b$. Since the in-degree and the out-degree of each vertex are equal, H is the union of edge disjoint circuits $C_{1}, C_{2}, \ldots, C_{N}$. All vertices of H have out-degree 1 , except $(0,0)$ which has out-degree 2 , so, by renumbering if necessary, we may assume that C_{1} and C_{2} are the only circuits in the decomposition of H which intersect. We wish to show that C_{1} and C_{2} are, in fact, the only circuits in the decomposition of H, so that H is the union of two circuits with a single point of intersection, for then H can obviously be realized as a closed walk with one repeated vertex. To this end, suppose $N \geq 3$. Then, for $i \geq 3, C_{i}$ is disjoint from C_{1} and C_{2}, so $\operatorname{knot}\left(C_{1}\right)=\operatorname{knot}\left(C_{i}\right)=$ $\operatorname{knot}\left(C_{2}\right)$. Set $(r, s)=N \cdot \operatorname{knot}\left(C_{1}\right)=\sum_{i=1}^{N} \operatorname{knot}\left(C_{i}\right)$. Then $r a+s b=a b+1$. Since a and b are relatively prime, only one pair of positive integers u and v may satisfy $u a+v b=a b+1$. Thus $(r, s)=(m, n)$. Hence $\operatorname{gcd}(m, n)=\operatorname{gcd}(r, s)=N>2$, a contradiction.

We next consider vertex-deleted subdigraphs $Z_{a} \times Z_{b}-\{v\}$. Since $Z_{a} \times Z_{b}$ is vertex-transitive, the particular vertex which is deleted is unimportant.

Theorem 2. Let $v \in Z_{a} \times Z_{b}$. Then $Z_{a} \times Z_{b}-\{v\}$ is hyperhamiltonian if and only if there are positive integers m and n with $m a+n b=a b$ and $g c d(m, n)=1$ or 2 .

Proof. The proof of necessity is similar to that in Theorem 1. To prove sufficiency, let H_{0} be a spanning subdigraph of $Z_{a} \times Z_{b}$ with $\operatorname{knot}\left(H_{0}\right)=(m, n)$. (Namely: Put $m_{0}=m a / \operatorname{lcm}(a, b)$ and $n_{0}=n b / \operatorname{lcm}(a, b)$. Let m_{0} cosets of $(-1,1)$ travel by $(1,0)$ in H_{0}; and let the other n_{0} cosets travel by $(0,1)$.) Since m_{0} and n_{0} are positive, there must be some vertex w, such that w travels by $(0,1)$, and $w-(1,0)$ travels by $(1,0)$. Replacing H_{0} by a translate if necessary, we assume $w=v$. Set $v_{-}=v-(1,0), v_{-}=v+(0,1)$, and $v_{0}=v+$ $(-1,1)$. In H_{0}, there is an arc from v_{-}to v, and from v to v_{+}. Create a new digraph H by removing the vertex v from H_{0} (and removing the two arcs inci-

FIGURE 1. (a) The digraph H_{0}. (b) The digraph H. Dotted arcs and the vertex v have been deleted.
dent with v), and by inserting two arcs: from v_{-}to v_{0}, and from v_{0} to v_{+}(see Figure l). Then H is a spanning subdigraph of $Z_{a} \times Z_{b}-\{v\}$. An argument similar to that in Theorem 1 shows H is the union of two circuits with a single point of intersection, namely v_{0}. Thus $Z_{a} \times Z_{b}-\{\boldsymbol{v}\}$ is hyperhamiltonian.

We remark that $Z_{5} \times Z_{7}$ is a cartesian product of two cycles which is neither hamiltonian, hypohamiltonian nor hyperhamiltonian. Likewise, $Z_{3} \times Z_{7}-$ $\{(0,0)\}$ is a vertex-deleted subdigraph of a cartesian product which is not hamiltonian, hypohamiltonian, or hyperhamiltonian.

ACKNOWLEDGEMENT

The first author was supported by the National Science Foundation (Grant number DMS-8407498). The second author was supported by a Sloan Doctoral Dissertation Fellowship.

References

[1] S. J. Curran and D. Witte, Hamilton paths in cartesian products of directed cycles. Annals Discrete Math. 27 (1985) 35-74.
[2] L. E. Penn and D. Witte, When the cartesian product of two directed cycles is hypohamiltonian. J. Graph Theory 7 (1983) 441-443.
[3] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, CA (1976).
[4] D: Witte and J. A. Gallian, A survey: hamiltonian cycles in Cayley graphs. Discrete Math. 51 (1984) 293-304.

