
When The CRC and TCP Checksum Disagree

Jonathan Stone
Stanford Distributed Systems Group

jonathan@dsg.stanford.edu

Craig Partridge
BBN Technologies

craig@bbn.com

ABSTRACT
Traces of Internet packets from the past two years show that
between 1 packet in 1,100 and 1 packet in 32,000 fails the
TCP checksum, even on links where link-level CRCs should
catch all but 1 in 4 billion errors. For certain situations,
the rate of checksum failures can be even higher: in one
hour-long test we observed a checksum failure of 1 packet in
400. We investigate why so many errors are observed, when
link-level CRCs should catch nearly all of them.

We have collected nearly 500,000 packets which failed the
TCP or UDP or IP checksum. This dataset shows the In-
ternet has a wide variety of error sources which can not be
detected by link-level checks. We describe analysis tools that
have identi�ed nearly 100 di�erent error patterns. Catego-
rizing packet errors, we can infer likely causes which explain
roughly half the observed errors. The causes span the entire
spectrum of a network stack, from memory errors to bugs
in TCP.

After an analysis we conclude that the checksum will fail
to detect errors for roughly 1 in 16 million to 10 billion
packets. From our analysis of the cause of errors, we propose
simple changes to several protocols which will decrease the
rate of undetected error. Even so, the highly non-random
distribution of errors strongly suggests some applications
should employ application-level checksums or equivalents.

1. INTRODUCTION
In a private talk in January 1998, Vern Paxson[9] stated
that in recent Internet packet traces he observed that about
1 datagram in 7,500 passed its link-level CRC but failed the
TCP or UDP checksum. Assuming the checksum was cor-
rect this result meant that the data was damaged in transit.
Furthermore, the damage took place not on the transmission
links (where it would be caught by the CRC) but rather must
have occurred in one of the intermediate systems (routers
and bridges) or the sending or receiving hosts.

We found this phenomenon of interest for two reasons. First,
the error rate is disturbingly high. A naive calculation sug-
gests that with a typical TCP segment size of a few hundred
bytes, a �le transfer of a million bytes (e.g., the size of a
modest software down-load) might well have an undetected
error. (We hasten to emphasize this calculation is naive. As
we discuss later in the paper, a more realistic calculation
requires an understanding of the types of errors.) Under-
standing why these errors occur could have a major impact
on the reliability of Internet data transfers.

Second, there has been a long-running debate in the net-
working community about just how valuable the TCP (and
UDP) checksum is. While practitioners have long argued on
anecdotal evidence and personal experience that the check-
sum plays a vital role in preserving data integrity, few for-
mal studies have been done. Studying these errors seemed
a good chance to improve our understanding of the role of
the checksum.

In this paper we report the results of two years of analy-
sis, using traÆc traces taken at a variety of points in the
Internet. While we do not have a complete set of explana-
tions (about half the errors continue to resist classi�cation or
identi�cation) we can explain many of the errors and discuss
their impact.

2. PRIOR WORK
In the Internet protocol suite, CRCs and the Internet check-
sum play a complementary role. CRCs are used to detect
link-level transmission errors. The Internet checksum, used
by most of the Internet protocols, is designed to detect
higher-level errors.

CRCs are based on polynomial arithmetic, base 2[1]. The
most commonly used CRC, CRC-32 [5] is a 32-bit polyno-
mial that will detect all errors that span less than 32 con-
tiguous bits and all 2-bit errors less than 2048 bits apart.
For most other types of errors (including at least some sys-
tems where the distribution of values is non-uniform[14]),
the chance of not detecting an error is 1 in 232 or 1 in 4 bil-
lion. Other 32-bit CRCs are also used, with error-detecting
characteristics which are broadly similar. Di�erences be-
tween CRCs are beyond the scope of this paper: relative to
16-bit checksums, they are all e�ectively equivalent.

Checksums are simpler error checks, designed to balance
the cost of computation (typically in software) against the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED'00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.

309

SIGCOMM '00, Stockholm, Sweden.
Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00.

chance of successfully detecting an error. Many checksums
exist; we discuss only one, the Internet checksum.

The Internet checksum is a 16-bit ones-complement sum of
the data[12][13][2]. This sum will catch any burst error of 15
bits or less[11], and all 16-bit burst errors except for those
which replace one one's complement zero with another (i.e.,
16 adjacent 1 bits replaced by 16 zero bits, or vice-versa).
Over uniformly distributed data, it detects other types of
errors at a rate proportional to 1 in 216. Over non-uniformly
distributed data its performance may be sharply worse. One
study found a detection rate of only 1 in 210[14].

Very few studies have been done on how CRCs and check-
sums actually perform in the real world of the Internet.
Wang and Crowcroft showed that CRC-32 was e�ective at
catching certain types of data reordering[15]. In a simula-
tion of network �le transfers using IP over ATM with real �le
system data, Stone et al. [14] showed that CRC-32 caught a
wide range of packet splices in which ATM cells from di�er-
ent packets were combined, but that the Internet checksum
detected cell erasures at a rate of only 1 in 210. A commer-
cial experiment of sorts was done in the 1980s when SUN
Microsystems and other vendors to ship Network File Sys-
tem (NFS) implementations with the UDP checksum dis-
abled. The vendors argued that the protection of the Inter-
net checksum was super
uous given that link level data was
protected by CRC-32 and the checksum computation clearly
hurt performance. Experience, however, soon led customers
to demand that the UDP checksum be enabled.1

3. METHODOLOGY
One of the major challenges in this study was simply ac-
quiring enough data to analyze. Unlike many other studies
which use only packet headers, we needed to examine full
packets to properly analyze checksum errors. Due to privacy
concerns, it is extremely diÆcult to get permission to put a
packet capture device on a network. And those sites that
capture traÆc for their own internal analysis are typically
unable or unwilling (again for privacy reasons) to share their
raw traces with others. Much of our time has been spent
negotiating access to data.

In the end, our data tends to come in two forms. First, on a
limited number of networks we were allowed to run our own
packet capture software. Because our capture software cap-
tures only a small fraction of all packets (and mostly packets
in error), we were permitted to run it on a few networks and
acquire a considerable amount of data.

Second, a few sites were gracious enough to run our software
on their stored full-packet traces, and provide us with the
results. These sites gave us access to data, especially for long
haul networks, that we might otherwise have been unable to
get.

1Indeed, one of the authors worked for a computer vendor
who found its own NFS data was periodically trashed by
power
uctuations on the bus. The experience helped con-
vince the vendor to ship its NFS product with UDP check-
sums enabled. The other author used systems from another
vendor, where a bus adaptor between a 16-bit Ethernet and
a 32-bit I/O bus on one machine occasionally rearranged
bytes within a 32-bit word.

3.1 The Capture Program
The capture program uses the Berkeley Packet Filter (BPF)[7],
via the libpcap library, to watch all packets passing on
a wire. For each complete packet, the software calculates
the checksum and if the checksum fails, the entire packet
is saved. We do not attempt to reassemble and check frag-
mented IP datagrams. Since IP fragments are quite rare,
we do not expect this omission to have had a major impact
on the results.

If the IP datagram contains a TCP segment, the capture
program records what bytes were in the segment (on the as-
sumption that the sequence numbers are correct!) and then
looks for valid retransmissions of those bytes. Capturing
the retransmissions makes it possible to compare the bad
data with the good data and see what type of damage was
done to the packet.2 At present, the software captures only
TCP retransmissions, in part due to the challenge of get-
ting our capture program to run at line speed. There are
UDP protocols, such as NFS, that reliably retransmit and
could be obviously be analyzed in the same fashion. Fur-
ther, for TCP ACKs with errors but no payload, we do not
capture retransmissions. Any subsequent ACKs are likely
to update the ACK �eld and window, leaving us with little
to compare. Also, an error in a 20-byte TCP header may
have corrupted the TCP port numbers, leaving no way to
�nd the right connection.

3.2 Capture Sites
The data presented in this paper was captured at four sites,
described below.

Campus: Next to the router of the computer science build-
ing at Stanford University. This data set was taken
over one week during a term in 1999.

Dorm: On a broadcast-Ethernet (10base2) LAN in a Stan-
ford University residential dormitory. This data set
was taken over the course of three months during a
term in 1999.

DoE-Lab: At the �rewall of Lawrence Berkeley National
Laboratory. This data was provided by Vern Paxson
and represents four distinct data sets taken at di�erent
times on several days in late 1998. This dataset is a
trace of inbound traÆc only.

Web-Crawl: A trace taken at 10Mbit Ethernet hub con-
nected to a web spider, which walked approximately
15 million URLs over the course of two days of tracing
in May 2000.

3.3 The Analysis Software
The analysis software is a suite of programs that takes traces
from the capture program, and attempts to make sense of
the errors. For TCP segments with data, the programs com-
pare the correct and errored packets to determine the source
of error. For non-TCP errors, or TCP errors where we did
not catch valid copy of the datagram, there is little we can
do except count the error and, in some cases, analyze the

2We would like to thank Matt Mathis for suggesting cap-
turing retransmissions.

310

path the errored packet took in the hopes of getting some
insight into how it was damaged.

Finding Twin Packets
The core of our analysis is to compare a bad packet, with
any retransmissions on the same connection which have the
same or overlapping sequence-number range. From these re-
transmissions, we construct an image of what the bad packet
should have been. For clarity, we call these packets twins:
the recorded erroneous packet is the bad twin, and the re-
constructed packet is the good twin.

The simplest case of constructing the good twin is also the
most common case: both the good and the bad twin have
identical TCP sequence numbers and length. Then the good
twin is exactly the retransmission. We can compare not only
the TCP payload of the good and bad `twin' packets, but
also the TCP pseudo-header (taking care to note that some
pseudo-header �elds such as the ACKed sequence number
and the PSH/FIN bits can legitimately be changed on a
retransmission).

Packets whose sequence-number and length strictly include
a bad packet can be compared similarly, after deleting bytes
outside the sequence-number space of the bad packet, and
adjusting the pseudo-header datagram-length and the check-
sum �eld accordingly.

The hardest case, which is also rare, is when no single packet
covers the payload of the bad packet, and we have to take
good bytes from two or more distinct retransmissions.

Figure 2 shows TCPdump output of one set of twins (with
addresses deleted for anonymity).

08:27:02.907787 X.X.X.X.22 > Y.Y.Y.Y.38201: P

3286558421:3286558441(20) ack 1212716141 win 25144

4500 003c d7e4 4000 f506 9029 XXXX XXXX

YYYY YYYY 0016 9539 c3e4 e6d5 4848 946d

5018 6238 9e26 0000 0000 000a 7476 b63b

203f a89e 751f fa39 5e13 f425

Figure 1: A Bad Twin : : :

08:27:02.907787 X.X.X.X.22 > Y.Y.Y.Y.38201:

[tcp sum ok]

3286558421:3286558441(20) ack 3221241833 win 8760

4500 003c d7e7 4000 f506 9026 XXXX XXXX

YYYY YYYY 0016 9539 c3e4 e6d5 0848 d455

5010 2238 9e06 0000 0000 000a 7476 b63b

203f a89e 751f fa39 5e13 f425

Figure 2: and Matching Good Twin.

The TCP payload of both packets is identical, but �ve 16-
bit words of the TCP headers have di�erences. For example,
the bad twin has 0x4848 in the high-order half of the ACK
�eld instead of 0x0848, the low half is 0x946d not 0x5010
(implying an reception rate impossible on Fast Ethernet),
and the TCP PSH bit changed. After acquiring the data
sets, our analysis task was to �nd explanations for several
tens of thousands of `twins' such as these.

Analyzing the Twins
Our analysis tools run in two separate passes. First we pre-
process each output libpcap �le from the capture program.
This pass writes each bad packet, plus any captured retrans-
missions, into a separate libpcap �le. At this stage we sep-
arate out the UDP traÆc, IP header errors, and any single-
tons { bad packets that have no retransmission, and so no
good twin { which we cannot analyze further. Our analy-
sis tools catch essentially all packets (e.g., 32 drops out of
200 million packets). Singletons are thus likely due to er-
rors that corrupted the 96-bit TCP connection identi�er or
which corrupted the sequence number.

Then, over each set of twins, we run a second pass which
examines the bit-by-bit di�erences between the twins (or
triplets). This phase tries to construct an explanation for
each error. That is, we try to create a sequence of bit substi-
tutions or byte substitutions, insertions, or deletions, which
will transform the good packet into its corrupted bad twin.

We start by identifying the starting and ending byte o�sets
at which the twins di�er. As part of this process we can
trivially identify errors which cause di�erences in a single
bit, byte or word.

For the remaining packets, we look for longer insertions or
deletions. Starting from the �rst byte which di�ers, we look
for a window of up to 64 bytes for a deletion or insertion
that will re-synchronize the bad packet with its good twin.
To reduce computational cost, we use a heuristic of only
accepting insertions which re-synchronize the two packets
for more bytes than the purported deleted or inserted length.
For insertion errors, we also check to see if the inserted data
occurred in the packet in a window of 64 bytes preceding
the insertion. If it does, the error is classi�ed as a sliding
error, where the inserted data is a duplicate of earlier packet
content. (One potential cause of sliding errors is an bug in
DMA hardware, which causes a DMA engine's read pointer
to suddenly jump backward.)

The next phase in analysis is to look for multiple occurrences
of errors of the same type. The �rst case is repeated single-
byte deletions. Serial UARTs which require an interrupt for
every byte, like the NS16450, are still commonplace, and
we expected to see single-byte deletions due to overruns on
SLIP links. We also expect such overruns to cluster. We also
check for multiple longer (64-byte) insertions, deletions, or
sliding errors. Our rationale is that where DMA errors strike
once, they may well strike again.

Our analysis tools also use several `pretty-printers' which
summarize di�erences in TCP payloads. For the privacy
reasons in section 3, the pretty-printers do not show actual
packet contents. Instead, they show byte-by-byte Hamming
distances, or histograms of Hamming distances, or byte-by-
byte xor's of the data. We can also print these out visually,
one byte every 64 characters, to check for periodic di�er-
ences. Figure 3 shows pretty-printer output on a pair of
`twins' chosen at random. The �rst line is a TCPdump-like
header. Matching bytes are shown as spaces; bad bytes are
shown by their Hamming distance, or 0 or F for replacement
by all-zero or all-one bytes. Ten bursts errors, each a mul-
tiple of 32 bytes long, each starting some 24 bytes from a

311

171.64.77.1.XXX(www) > 199.108.89.13(28716) len 1460

+--+

| |

| |

| 3455235544734454423434545o762426 |

| |

| 4255443145374355174674344142553655444|

|35642355348416643543o654546 25434|

|754525575343434oo4336556345 |

| 64334|

|3447426446453425435562333555454433255445646343444454325353456442|

|44333655135544o444485526543 43244|

|23633323354244233344726234o6562424664445761254633364344353354644|

|353435356445456522543234345 54355|

|2o355455434252332475354534446353652252544434 43334142443645 |

| 6354343464366446253416454544423332145|

|54567621757364554335444443434344143522543565214652654364345 |

| 233461435414425644465444fo644553o4552|

|43454365fo376344633554643236345615225423424473252544343456444564|

|254453444625523342334623236 |

| |

| |

| 5434445233155554635444574122565537514|

|455634354667324444365334444 64454|

|6345326556534524532532351446535111674346443525475534|-----------+

+--------------------------------+-------------------+

0 63

Figure 3: Pretty-printer output: per-byte Hamming

distances

64-byte boundary, are easy to see. Figure 4 shows a second
example, where for 128 bytes, every 4th byte is bad, except
for the 52nd and and 104th. Tedious manual examination of
thousands of pretty-printer packet dumps uncovered a num-
ber of error patterns, many of which we had not expected.
As we have discovered new patterns, we have added code to
the classi�er to recognize them.

207.24.0.129(www) > 171.64.71.YY(12669) len 1460

+--+

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| 1 3 3 2 2 3 3 2 |

|2 3 3 2 2 1 2 3 3 2 2 1 2 3 3 |

|1 2 2 2 1 3 3 |

| |

| |

| |

| |

| |

| |

| |

| |-----------+

+--------------------------------+-------------------+

0 63

Figure 4: pretty-printer output with every 4th byte

bad

Finally, for packets which are otherwise unclassi�ed, we bin
packets into buckets, based on where the �rst bad byte oc-
curs (toward the head, in the middle, or at the tail) and on
what fraction of the packet after the �rst byte is bad (less
than 5%, more than 5%, or somewhere in between).

In addition, for each error category, we sort the output of
the analysis pass by source IP address, then look for clus-
tering of errors at speci�c IP addresses. When we know the
topology of local sources, we can also look for clustering of
error classes on speci�c subnets within the local or campus
LAN.

4. ANALYSIS
We start our analysis by presenting some basic information
about each site and the data collections taken. We then look
at various questions about error rates and the form errors
take.

The main thrust of our analysis is an attempt to determine
what caused each type of error. We have successfully iden-
ti�ed the source of about half the errors. The discussion of
these errors takes up the majority of this section. Last, we
discuss the likelihood of undetected errors in data traÆc.

Trace Name Total Pkts Errors Protocol
IP UDP TCP

Campus 1079M 33851 0 8878 24973
DoE-LAB 600M 37295 0 173 37122
Dorm 94M 11578 1278 613 9687
Web-Crawl 436M 396832 0 0 396832
Total 479556 1278 9664 468614

Table 1: Trace Sites and Basic Statistics.

4.1 Basic Statistics for The Data Collections
Table 1 gives a summary of the overall error rate at each of
the three sites listed in section.3.2. The �gures for the DoE
trace include all four trace �les and the total packet count
for the DoE trace is extrapolated from the packet counts for
two of the four traces.

Three important (and striking) observations are visible in
this table.

The �rst observation is wide variation in error rates. The
Web-Crawl data was heavily a�ected by the ACK-of-FIN
bug (see section 4.3.3), and su�ered the highest error rate: 1
in 1,100 packets with an hourly peak (not shown) of 1 in 400
packets. The DoE-Lab mean rate (the value varies among
the DoE traces) is 1 in about 15,000 packets The lowest rate
was in the Campus trace: about 1 in about 31,900 packets.

The second observation is the large number of IP header
errors in the Dorm trace. The Dorm trace is the only one
collected adjacent to a variety of end-hosts. All our other
traces were captured at points one or more hops removed
from most hosts, so the �rst-hop routers would have already
dropped packets with malformed IP headers.

The third observation is the high UDP error count in the
Campus trace, which is addressed in section 4.3.3.

It is important to keep in mind that we were only able to
compare good and bad twins for TCP data segments. The
information on TCP segments seen and TCP data segments
see is summarized in Table 2.

4.2 General Observations
As the next section illustrates, we found that just about
any factor that could cause a bad checksum periodically
does. We found buggy software, and defective hardware,
and problems in both end-systems and routers. Nonethe-
less, there are also some general observations that we can
make about how bad checksums occur.

312

Trace Name TCP Errors
Total No Data Data

Campus 24793 11482 13491
DoE-LAB 37122 24286 12836
Web-Crawl 396832 391950 4882
Dorm 9687 2876 6811

Table 2: Preliminary breakdown of TCP statistics

First, there's an interesting observation about TCP dynam-
ics and the data in Table 2. Typically, a TCP sends one
ACK for every two data segments. Furthermore, the typical
non-data segment is 40 bytes long while the average data
segment is between 128 and 256 bytes long. So if error rates
are related to the amount of data, we would expect to see
non-data segments to represent at most about 15% of the
errored segments. Instead we see non-data segments repre-
senting between 30% and 65% of errors (not including the
Web-Crawl data, which is skewed by the ACK-of-FIN bug
discussed in section 4.3.3). The suggestion is that there is a
large set of errors that are not related to length but rather
per packet or perhaps, per header.

Second, the errors cluster. Certain hosts (or their associated
path through the network) in each trace represent a large
fraction of the errors that we saw.

Finally, for the Web-Crawl data set, we were able to get
HTML headers from most hosts. These headers indicate the
type of server software the hosts were running and allows us
to guess with some accuracy at the TCP implementation on
each server. An analysis of this data suggests that, after
the ACK-of-FIN bug errors are eliminated, approximately
32% of the errors came from systems running a version of
UNIX and 68% came from systems running Microsoft Win-
dows or NT. Those numbers are similar to the fractions of
web servers generally reported to run UNIX and Microsoft
operating systems. This similarity suggests that, excluding
the dominant ACK-of-FIN software bug, a large fraction of
the observed checksum errors are occurring independently of
the choice of end-system software (e.g., are caused either by
end-host hardware or by equipment in the network path).

4.3 Sources of Errors
Our tools currently recognize 40 distinct error classes in
TCP segments. The error classes found in the traces are
described in Table 3. The size of the table is a strong re-
minder that there is no one source of errors.

With 468,434 TCP individual errors seen (about 78,500 er-
rors excluding the ACK-of-FIN bug) and 40 basic categories
of errors, there is not space to discuss all the analysis results.
Instead this section focuses on examples of di�erent types
of errors, especially where which we believe the underlying
causes or remedies are representative of a broader range of
categories.

Errors fall into four broad groups: errors in end-host hard-
ware, errors in end-host software, errors in router memory;
and errors at the link level or in network-interface hardware.
A �nal category is errors we cannot fully explain.

4.3.1 Confirming the Causes of Errors
The reader will note that we have been unable to verify the
source of many of the errors described. This lack is not for
lack of trying. We made several attempts to gain access to
hardware and software we suspected was buggy.

For the Campus trace, we were permitted to contact ad-
ministrators of hosts we identi�ed as error sources. Unfor-
tunately, only three machines inside the CS department at
Stanford had more than one error apiece. We also contacted
the owners of the Macintosh in section 4.3.5.

In theDorm trace, the organization providing the trace data
explicitly forbade us to contact the owners of hosts that we
located through our traces. The concern was that owners
might view our study as an invasion of their privacy.

In most other cases, the administrators of the a�ected hosts
and routers did not respond to repeated emails and tele-
phone calls.

4.3.2 End-host hardware errors
The Dorm trace, taken on a stub broadcast 10Mbit Ether-
net segment, was the best-placed to observe end-host errors:
it is the only trace where our collection point was on the
same network segment as the end-hosts it monitored.

The �rst surprise in the Dorm trace was the number of er-
rors in the IP header. Of the 24 hosts on the Dorm broad-
cast segment, two hosts sent packets with bad IP header
checksums. One particular host sent three packets where
the Ethernet CRC was correct, but the low two-order bytes
of the source IP address were replaced with two bytes from
another local IP address. (This error could be caused by
a driver bug, or a hardware memory error). A second host
sent several packets with single-byte deletions.

Overall, �ve di�erent systems, using network cards from
three manufacturers, demonstrated errors that could be hard-
ware errors. The two hosts with bad header checksums and
a third host that shifted addresses by 16-bit positions all
had OUIs indicating they used Realtek Ethernet interfaces.
We caught one error (a 16-bit replacement with 0x0) from a
host with a D-Link Ethernet interface, and several deletion
errors from a host with an Addtron Ethernet interface.

4.3.3 End-host software errors
While the evidence suggests that most errors (other than
ACK-of-FIN) are hardware related, there were plenty of soft-
ware errors in the traces. This section discusses some of the
most interesting ones. (One further class of end-host errors
in the Campus trace is discussed below in section 4.3.5.)

ACK-of-FIN
The largest single error found (in terms of bad checksums)
is the ACK-of-FIN bug detected in theWeb-Crawl traces.
Over a quarter million possible ACK-of-FIN errors were de-
tected in the Web-Crawl trace.

The ACK-of-FIN bug was a subtle (and now �xed) bug in
Windows NT. If the NT software was in the TIME-WAIT
state and received a retransmission of a TCP FIN, the NT

313

C
a
te
g
o
ry

D
es
cr
ip
ti
o
n

C
a
m
p
u
s

D
o
E
-
L
A
B

D
o
r
m

C
r
a
w
l

A
d
d
ed
P
S
H
+
T
C
P
le
n
b
a
d

B
a
d
tw
in
h
a
s
P
S
H
se
t,
th
e
g
o
o
d
tw
in
d
o
es
n
o
t.
T
C
P
le
n
is
a
ls
o
im
p
la
u
si
b
le

5

0

0

0

D
ro
p
p
ed
P
S
H
+
T
C
P
le
n
b
a
d

4

0

0

0

T
C
P
h
d
r
o
�
se
t

T
h
e
T
C
P
h
ea
d
er
le
n
g
th
o
f
th
e
b
a
d
tw
in
is
in
va
li
d
(l
es
s
th
a
n
5
),
o
r
w
a
s
h
eu
ri
s-

ti
ca
ll
y
fo
u
n
d
to
b
e
in
co
rr
ec
t.

1
0

0

0

0

O
th
er

a
g
s+
T
C
P
le
n
b
a
d

2
7

0

0

0

a
ll
b
y
te
s
b
a
d

N
o
p
ay
lo
a
d
b
y
te
in
th
e
b
a
d
tw
in
m
a
tc
h
es
th
e
g
o
o
d
tw
in
.

8
9

4
7
8

6

4
1

en
ti
re
ta
il
b
a
d

F
ro
m
th
e
�
rs
t
m
is
m
a
tc
h
to
th
e
en
d
o
f
th
e
b
a
d
tw
in
,
n
o
b
y
te
s
m
a
tc
h
.

1
9
4

2
0
4

1
6
1

2
0
2

m
o
st
b
y
te
s
b
a
d

8
0
%
o
r
m
o
re
o
f
th
e
b
y
te
s
in
th
e
b
a
d
tw
in
's
p
ay
lo
a
d
d
o
n
o
t
m
a
tc
h
.

1
5
4
4

3
5
0
2

9
5

2
9
1

m
o
st
b
a
d
=
0
x
0
0

N
o
p
a
tt
er
n
,
o
th
er
th
a
n
8
0
%

o
r
m
o
re
o
f
th
e
b
a
d
tw
in
's
in
co
rr
ec
t
p
ay
lo
a
d
b
y
te
s

a
re
0
x
0
0
.

5
9
9

9
0

1
3

7
8

m
o
st
b
a
d
=
0
x
0
0
o
r
0
x
F
F

N
o
p
a
tt
er
n
,
o
th
er
th
a
n
8
0
%

o
r
m
o
re
o
f
th
e
b
a
d
tw
in
's
in
co
rr
ec
t
p
ay
lo
a
d
b
y
te
s

a
re
0
x
0
0
o
r
0
x
F
F

0

4
4

0

0

p
ay
lo
a
d
o
k

B
o
th
p
ay
lo
a
d
a
n
d
h
ea
d
er
(p
o
ss
ib
ly
m
o
d
i�
ed
to
co
rr
ec
t
T
C
P
h
ea
d
er
le
n
g
th
)

m
a
tc
h
.

3
1
0

4
8
0

6
0
0

1
4
1

o
n
e
re
g
io
n
b
a
d

T
h
e
n
o
n
-m
a
tc
h
in
g
b
y
te
s
in
th
e
b
a
d
tw
in
a
re
in
o
n
e
co
n
ti
g
u
o
u
s
re
g
io
n
.

1
7
7

2
1
1

1
2
8

1
6
3

p
u
re
in
se
rt
io
n

A
si
m
p
le
in
se
rt
io
n
.

4
7

4
8

2
4
8

1
1

p
u
re
d
el
et
io
n

T
h
e
b
a
d
tw
in
h
a
s
o
n
e
d
el
et
io
n
.

2
5

2
8

2

2
8

in
se
rt
io
n
ta
il

T
h
e
b
a
d
tw
in
a
p
p
ea
rs
to
h
av
e
a
n
in
se
rt
io
n
w
h
er
e
th
e
g
o
o
d
tw
in
en
d
s.

0

3

2

1

d
el
et
io
n
ta
il

T
h
e
b
a
d
tw
in
h
a
s
h
a
d
b
y
te
s
d
el
et
ed
a
ll
th
e
w
ay
to
it
s
en
d
.

3

2

3

0

tr
a
n
sp
o
si
ti
o
n

a
d
el
et
io
n
w
h
er
e
th
e
d
el
et
ed
b
y
te
s
w
er
e
re
-i
n
se
rt
ed
la
te
r
in
th
e
p
a
ck
et
.

1
9
2

1
8
5

2
7

1
2
6

ev
er
y
4
th
b
y
te
b
a
d

A
b
u
rs
t
er
ro
r
w
h
er
e
o
n
ly
ev
er
y
4
th
b
y
te
is
a
lt
er
ed
.
(s
ee
F
ig
.
4
).

6
2

6
6

1
1

4
4

4
th
-b
y
te
n
y
b
b
le
b
a
d

a
s
fo
r
4
th
b
y
te
b
a
d
,
b
u
t
o
n
ly
th
e
lo
w
-o
rd
er
n
y
b
b
le
is
co
rr
u
p
t.

0

4

0

0

m
o
st
ta
il
b
a
d

A
s
fo
r
ta
il
b
a
d
,
b
u
t
a
ll
ow
in
g
u
p
to
2
0
%
o
f
th
e
b
y
te
s
in
th
e
b
u
rs
t
to
m
a
tc
h
.

6
2
7

7
3
5

4
3
1
1

4
7
4

si
n
g
le
to
n

A
n
is
o
la
te
d
b
a
d
se
g
m
en
t
w
it
h
n
o
g
o
o
d
tw
in
to
co
m
p
a
re
.

4
3
4
1

3
2
3
5

3
9
4

1
1
2
1

sl
id
in
g
er
ro
r

se
e
se
c.
3
.3

3

2
2

5

1
5

x
su
m
�
el
d
sa
m
e

T
h
e
b
a
d
p
ay
lo
a
d
m
a
tc
h
es
th
e
g
o
o
d
tw
in
.
T
h
e
T
C
P

a
g
s
a
n
d
co
n
n
ec
ti
o
n
ID

m
a
tc
h
.
th
e
ch
ec
k
su
m
�
el
d
m
a
tc
h
.
T
h
e
A
C
K
o
r
w
in
d
ow
�
el
d
o
f
th
e
b
a
d
tw
in
is

li
k
el
y
co
rr
u
p
t.

5
4
7

2
0
2

1

8
5

U
n
cl
a
ss
i�
ed
{
ca
tc
h
-a
ll
.

1
1
4
0

1
3
5
7

6
9
0

6
0
6

A
lw
ay
s-
ca
u
g
h
t
er
ro
rs

o
n
e
b
y
te
b
a
d

G
o
o
d
a
n
d
b
a
d
tw
in
s
d
i�
er
o
n
ly
in
o
n
e
p
ay
lo
a
d
b
y
te
.

4
7

2
1

4

4
7

la
st
b
y
te
b
a
d

G
o
o
d
a
n
d
b
a
d
tw
in
s
d
i�
er
o
n
ly
in
th
e
v
er
y
la
st
b
y
te
o
f
a
n
o
d
d
-l
en
g
th
se
g
m
en
t.

9
1

1
1
3
2

3

6
9

o
n
e
w
o
rd
b
a
d

P
ay
lo
a
d
d
i�
er
en
ce
s
co
n
�
n
e
to
a
si
n
g
le
a
li
g
n
ed
1
6
-b
it
w
o
rd
.

2
5

6
4

1
8

1
6

si
n
g
le
-b
it
er
ro
r

G
o
o
d
a
n
d
b
a
d
tw
in
s
d
i�
er
o
n
ly
in
o
n
e
b
y
te
o
f
th
e
p
ay
lo
a
d
.

2
0
1
1

8
4
4

2
3
6

6
1
9

ta
n
d
em
si
n
g
le
b
it

tw
o
si
n
g
le
-b
it
er
ro
rs
in
a
d
ja
ce
n
t
b
y
te
s.

4
5
1

3

1

0

A
d
d
ed
P
S
H

T
h
e
b
a
d
tw
in
h
a
s
th
e
P
U
S
H
b
it
se
t,
th
e
g
o
o
d
tw
in
d
o
es
n
o
t.

1
0
0

8

2
1
7

7

D
ro
p
p
ed
P
S
H

B
a
d
tw
in
h
a
s
P
S
H
cl
ea
r.

7
4

7

6

1
2
0

R
es
er
v
ed
b
it
s
ch
a
n
g
ed

T
C
P
's
re
se
rv
ed
h
ea
d
er
b
it
s
ch
a
n
g
ed
.

1
0

0

0

0

O
th
er

a
g
s
er
ro
r

T
C
P

a
g
b
it
s
o
th
er
th
a
n
S
Y
N
,
A
C
K
,
F
IN
,
P
S
H
,
R
S
T
,
w
er
e
ch
a
n
g
ed
.

1
3
8

1
3

0

1
0
7

IP
L
E
N
sm
a
ll
er

P
ay
lo
a
d
o
f
th
e
b
a
d
tw
in
m
a
tc
h
th
e
g
o
o
d
tw
in
,
b
u
t
th
e
IP
d
a
ta
g
ra
m

le
n
g
th
o
f

th
e
b
a
d
tw
in
is
sm
a
ll
er
.

7
9
4

4
7
4

4
1
9

6
0
8

tw
ic
e
co
u
n
te
d

m
is
a
li
g
n
ed
-s
eq
n
o
b
a
d
p
a
ck
et
s,
co
m
p
a
re
d
to
tw
o
g
o
o
d
p
a
ck
et
s

-1
9
6

-6
2
6

-7
9
0

-1
3
8

T
o
ta
l

1
3
4
9
1

1
2
8
3
6

6
8
1
1

4
8
8
2

A
C
K
-o
n
ly

A
C
K
-o
n
ly
,
n
o
d
a
ta
to
co
m
p
a
re
(s
ee
T
a
b
le
2
).

1
1
4
8
2

2
4
2
8
6

2
8
7
6

3
9
1
9
5
0

G
ra
n
d
T
o
ta
l

2
4
7
9
3

3
7
1
2
2

9
6
8
7

3
9
6
8
3
2

T
a
b
le
3
:
D
e
s
c
r
ip
ti
o
n
o
f
b
a
s
ic
T
C
P

e
r
r
o
r
c
a
te
g
o
r
ie
s
.

314

software would (due to an incorrectly initialized bu�er) send
an ACK with a bad checksum. While no data was damaged
due to this bug (all data is sent and acknowledged before
any FINs are sent), the bug did cause a slight extra TIME-
WAIT load on the server, as the retransmitted FINs would
extend the time the server spent in TIME-WAIT.

It turns out that the web spider doing the crawl, for reasons
not yet determined, frequently lost the initial ACK sent in
response to its own FIN3. As a result, the spider was rou-
tinely triggering the ACK-of-FIN bug, which explains the
high number of errors in this trace. However, the ACK-
of-FIN bug has been seen in other traces, at much lower
frequencies.

Bad LF in CR/LF
The very �rst error pattern adduced from the data was a
group of errors where the client end of an SMTP, NNTP
or HTTP transaction is sending an odd-length line to the
server. The packet should end in an ASCII CR/LF pair,
and the good twin does, but the bad twin substitutes some
other value for the last odd byte. The combination of occur-
ring only with odd-length packets, yet with correct retrans-
missions, convinces us that this is a software error. The
DoE-Lab trace contains 1123 instances of this error, from
25 distinct hosts. The Campus trace contains 82 more in-
stances. The Web-Crawl contains 24 instances, of which
21 are from from a single host, which has been iden�ed as
running Solaris 2.5. The software on all of the other hosts
has not been identi�ed.

Bad Hosts
Another surprise in our traces was the large fraction of er-
rors which are due to persistently-misbehaving hosts. One
example is the Campus trace, where 6340 packets out of
33,000 or roughly one-�fth of the errors in the entire trace,
occurred in two consecutive UDP streams between a single
pair of hosts within one two-hour period. One of the two
hosts has a WWW server with a banner suggesting the mis-
behaving
ow was a RealAudio session. UDP errors like
these are not a unique case. In one experiment (not oth-
erwise presented here) we found a Quake server in Sweden
from which 1 in 5 UDP packets sent had invalid checksums.
The Dorm trace includes a TCP stream with similar misbe-
havior. In a one-hour window of that trace, an o�-campus
news server sent 2630 bad packets to a single client. We
were unable to contact the owners of these systems.

4.3.4 Router memory errors
Table 3 shows that single-bit errors are relatively common.
For each single-bit error, our analysis tools report the o�set
of the bit and whether the error set or cleared the bit. If
we examine occurrences of bit o�sets modulo 8 (to track
bit o�sets within bytes) and sort the occurrences by source
IP addresses, we can �nd a set of hosts which may share a

3In several cases, the adjacent monitoring machine had
logged the �rst (valid) ACK sent by an NT server in re-
sponse to the spider's FIN. We have no explanation for why
the spider does not process the �rst ACK. The Ethernet
cards on both the spider and the monitor machine were cor-
rectly con�gured to half-duplex. Other hardware miscon�g-
uration has not been ruled out.

common bad bit. If we know the topology and the paths to
each of the sources, and assuming a single bad bit, we can
infer the probable location.

bit pos 7 6 5 4 3 2 1 0
On 4 0 0 6 45 142 8 70
O� 0 12 0 0 0 162 336 31

Table 4: Frequency of single-bit errors in DOE-

Trace, by bit position.

For the DoE-LAB trace, we managed to obtain traceroute

paths between the trace-collection point, to each recorded
source of single-bit errors. (Note that the traceroute data
is slightly later than the trace, and gives the reverse route
to the source of the inbound erroneous packets.) Table 4
shows the frequency of each of the bit o�sets. The most
frequent error is bit 1 forced o�. The only packets with that
error came from 5 distinct hosts; all but a single occurrence
(335 out of 336) came from just 4 hosts with addresses on
207.115.200.0/24. The traceroute data shows route
apping
to these hosts. As illustrated in �gure 5, the routes to each
host diverge at the �fth hop router and converge again at
twelfth hop router.

131.243.1.1

131.243.128.11

198.128.16.11

134.55.24.16

192.41.177.249

246.188.160.94

146.188.161.190

146.188.136.202

146.188..240.185

146.188.240.125

137.39.75.198

146.188.160.90

146.188.161.162

148.188.136.178

146.188.240.57

146.188.240.25

137.39.75.221

207.115.200.1 207.115.200.12 207.115.200.117 207.115.200.118

148.118.160.90

146.118.161.174

146.118.136.178

146.118.240.57

146.118.240.9

137.39.75.141

146.188.160.94

146.188.161.178

146.188.136.182

146.188.240.65

146.188.240.5

137.39.75.141

207.175.100.237

209.84.26.2

Figure 5: Paths for a Bit Error Pattern.

The �fth hop router in �gure 5 regularly showed up in tracer-
outes for packets with errors, but the single-bit errors only
occurred in the packets from net 207. The logical inference,
therefore, is that the bit errors are occurring past the �fth
hop, and (assuming a single source of errors), after the paths
converge again at the twelfth hop. As further con�rmation,
we also observe that of these 336 errors, all 335 from the
four 207.115.120.0/24 hosts are at a byte o�set of 0 (mod
4), whereas the sole remaining bit-1-o� error occurred at a
di�erent byte o�set.

The next-most-frequent error, bit 2 o�, shows a similar pat-
tern: three hosts, 210.157.0.13 210.157.0.16, 210.157.0.48,
are the only sources showing that error. The error seems to
be a router between the sixth and last hop in the path.

315

Memory errors in routers may also account for the categories
`every fourth byte bad' (see Figure 4 and a similar pattern
where the low-order four bits of each fourth byte are bad.
While it has been suggested that these fourth-byte-bad er-
rors are clocking-domain problems, (e.g., between the 4b/5b
encoder and the remainder of a FDDI or Fiber-Channel net-
work interface), those problems can likely be excluded be-
cause the link-level CRC should detect them. One anony-
mous reviewer suggested these may be due to DRAM-readout
errors. Whatever the precise cause, the every-fourth-byte er-
rors are clearly a pattern that is typical for hardware errors
and not software errors.

4.3.5 Link Errors
In general, link errors should be caught by the CRC. How-
ever, there are cases where the link level protocols can inter-
act to cause higher level checksum errors. The most notable
situation is header compression and we looked vigorously for
errors of this sort.

Van Jacobson Header-Compression
We isolated several dozen cases where a TCP connection
showed several otherwise unexplained errored datagrams which
were consecutive in TCP sequence-number space. In these
cases, the datagram length is incorrect and both the checksum-
�eld contents and the TCP payload of a bad packet match
the next good packet.

One possible cause is decompression of a link using Van Ja-
cobson[4] header-compression (VJ-HC), where the decom-
presser dropped a packet (perhaps due to a link-level CRC
error). When the receiver decompresses the next correctly-
received packet of that
ow after the drop, the decompresser
will reconstitute the packet header from deltas which do not
include the sequence-number delta of the dropped packet.
(see section 4.1 in [4]). The net e�ect is that sequence num-
bers are cut o� each packet and pasted on to the succeeding
packet. This continues until an end-to-end TCP retransmis-
sions kick in, whereupon the backward jump in sequence-
number space causes the VJ-HC sender to send an uncom-
pressed header, which �nally re-synchronizes the receiver.

There are two noteworthy points here. Section 4 of RFC
1141[4] strongly recommends that VJ-HC receivers should
be used with framing level CRCs to detect errors, and that
after a link-level error, decompressors should discard all
frames until they see an uncompressed packet. However,
our sampling of hosts known to use PPP and VJ-HC, indi-
cates that the deployed base is not discarding packets.

Second, packet drops on links with non-compliant VJ header
compression will cause the next few packets { three to �ve, in
our examples { to be decompressed with a sequence number
that originally came from the preceding segment. The TCP
checksum of the decompressed packet is therefore incorrect,
and the receiver will silently discard it.

False header-compression errors
The two-pass nature of our analysis tools made it diÆcult
to �nd header compression errors: the tools split captured
packets into separate �les, one for each bad packet. We
modi�ed our tools to look for patterns of successive packets

with checksums shifted from one packet to the next as an
error in header-compression would suggest. We promptly
found several possible errors. However, to our surprise, not
all were the result of header compression.

The �rst example we found was a nearby, but o�-campus
host from the Campus trace. We successfully contacted its
owner. The machine in question (a PowerMac 8100) was
connected via a dedicated T-1 and had never used header
compression. A second, similar Mac in the Campus trace,
used as a webserver, also showed a high rate of errors. Our
best hypothesis is that we are seeing the e�ect of a bug in the
single-address-space, STREAMS implementation of TCP in
Mac OS, which shares bu�ers between device drivers, TCP,
and the user application.4

Real header-compression errors
After this surprise, we we approached the problem of �nding
header compression errors from the other end. We veri�ed
our tools against synthetic generated VJ-HC traÆc. Then
we selected several hosts from one of our datasets which we
knew to be connected via CSLIP or PPP links and which
were not Macintoshes. When we reran the modi�ed analysis
tools over traÆc from those hosts, they diagnosed (correctly,
we assume) VJ-HC errors. But since our tools cannot dis-
tinguish true VJ-HC checksum errors from the MacOS bug
mentioned above, we cannot estimate the a�ect that packet
drops on VJ-HC links has on actual checksum failures.

4.3.6 Other Remarks
Space prohibits describing every class. The examples dis-
cussed above give the
avour of the full classi�cation. But
a few additional points are worth mentioning.

The �rst is errors in the TCP header. Our methodology re-
lies on TCP sequence numbers to match up erroneous pack-
ets with their retransmission. Two factors suggest that re-
liance on TCP headers numbers is a serious limitation. First,
nearly 5% of the observed errors are singletons: bad pack-
ets where we saw no matching retransmission. Our capture
tools run at nearly wire rate, so a likely cause for singletons
is an erroneous TCP sequence number or TCP port.

Second, the analysis tools do some limited check for cor-
rupted sequence numbers or TCP headers. For all `twins'
where good and bad twins have overlapping but non-identical
sequence numbers, our tools compare the TCP payload of
the good and bad twins, but instead of using the TCP header
length and sequence number from the bad twin to compute
payload o�sets, we use the header �eld form the good twin
for both packets, good and bad. If the modi�ed bad TCP
payload is identical to the good payload, our tools assume
the header was corrupted, not the payload.

4Contacts at Apple have told us that older versions of Mac
OS had a subtle, hard-to-�nd race condition in the driver
for the built-in Ethernet on the PowerMac 8100, which is
known to have caused data corruption in reception. Perhaps
a similar error existed on the transmission side?

316

4.4 How Many Errors Does TCP Reliably De-
tect?

One very simple (but informative) question is: How frequent
are errors that might get past the TCP checksum? Once we
answer how many errors get past the TCP checksum, we can
then estimate how frequently bad packets are getting past
both the CRC and checksum, and estimate the rate of bit
rot due to Internet data transfer.

Looking at this problem analytically, the problem can be
stated as follows: Every packet caught by our packet-capture
tool was subjected to some set of errors. If the same se-
quence of errors occurred to a di�erent packet, or if the orig-
inal packet had di�erent contents, would the TCP checksum
still have caught the error?

The TCP checksum will always detect a single error that
is up to 15 contiguous bits long, and all 16-bit burst er-
rors except two: substitutions of 0x0000 for 0xFFFF and
vice-versa[11]. Longer errors and most multiple errors are
caught statistically, where the particular likelihood of de-
tection varies depending the particular characteristics of the
data being sent and the types of errors being experienced.
So the chance of an undetected error is:

Pue = 1� Pef � Pead � Pedp

Where ue is undetected errors, ef is error free packets, ead is
errors always detected the TCP checksum, and edp is errors
detected probabilistically by the checksum. The captured
checksum data does not give us any of these probabilities
directly, but we have a large enough sample to get fairly
good approximations.

First, we observe that the packets our capture tools deemed
to be good represent both undetected errors and error free
packets, or Pue+Pef . However we know that Pue is at best
1=65535 of Pedp and may be as poor as 1=1024 of Pedp[14].
Given a value for Pedp, we can compute the likely value of
Pue.

Finding Pedp, however, is not easy. The problem is that
to fully determine what errors are always caught (and thus
can be excluded), we need a very thorough understanding
of each error. Here's a contrived but illustrative example.

Consider a hardware error which occasionally overwrites the
contents of a 32-bit word to 0x00000000. If this error strikes
a word that contains random data, our tools will identify it
as a zero-replacement burst error that is caught only prob-
abilistically.5 But suppose the error instead strikes a word
which previously had only one nonzero bit { say 0x000010000.
When we compare the resulting bad twin to its good twin,
we would infer a single-bit error, and incorrectly claim the
error is always caught. One less-contrived example is re-
peated single-byte errors. If the good bytes are neither 0x000
nor 0xFF, these will always be caught. But the same net

5Since there are 216 unordered pairs (x; 1 � x) which are
congruent to 1, and each pair can appear in either order in
the original, this speci�c case will be caught at a rate of 1
in 215, assuming uniformly-distributed input.

result could also be caused by a burst error where, by co-
incidence, both the original and replacement data were all
zeros. Ambiguities like this are an unavoidable part of in-
ductive reasoning.

Given the inherent uncertainty of inferring causes given only
symptoms, error, we decided to simply look for burst errors
of 16 bits or less. The e�ect of this decision is probably to
somewhat overestimate the error patterns the TCP check-
sum will catch.

Trace Name Pedp Pue Range
Low High

Dorm 0.0000628404 0.0000000010 0.0000000614
Campus 0.0000090361 0.0000000001 0.0000000088
DoE-LAB 0.0000171166 0.0000000003 0.0000000167
Crawl 0.0000075436 0.0000000001 0.0000000074

Table 5: Estimated Rates of Undetected Errors

Table 5 lists Pedp and the range of values for Pue for the four
traces. The value for Pedp is only for data bearing segments
whose errors are caught probabilistically. Defective ACKs
are assumed to always be caught.6

The range of values for Pue suggests that between one (data)
packet in every 16 million packets and one packet in every
10 billion packets will have an undetected checksum error.
The wide range re
ects the diversity of traÆc patterns, and
also the impact that a few bad hosts or routers can have on
the error rates see at a particular. The smaller number is,
of course, the more worrisome. It suggests that some hosts
could regularly be accepting bad TCP data.

5. HOW TO REDUCE THE ERROR RATE?
Regardless of whether the errors are in hardware or software,
there are only three sources of error: the sending host, the
routers along the path, and the links between them. In gen-
eral, the CRC will detect the errors on the links and network
interfaces will log them, thus making the errors visible. So
our problem is with the hosts and routers.

5.1 Don’t Trust Hardware
Historically, most software engineers have had faith that the
hardware will work correctly and, in some cases, save them
from software errors. Probably the strongest message of this
study is that the networking hardware is often trashing the
packets which are entrusted to it. A tremendous number
of the errors in Table 3 are clearly hardware-related errors
(e.g., the every-4th-byte-bad and the bad tails).

The Dorm trace suggests that many these errors occur be-
fore the packet leaves the sending host. In the Dorm trace,
the strikingly large number of IP header errors must have
occurred before or during computation of the link-level CRC
at the source host's outgoing interface.

6If a damaged ACK somehow becomes the �rst to ack some
data, then either (a) the data was indeed received, in which
case the ack has done no harm; or (b) the data was lost, in
which case the ack will cause the connection endpoints to
become inconsistent and the connection will eventually fail.

317

In such a situation, the safest thing to do is checksum the
data as early as possible in the transmission path: before
the data can su�er DMA errors or data path errors in the
network interface. In the past, one of the authors has peri-
odically recommended improving transmission performance
by doing the checksum as part of the DMA process or in
the transmission path in the network interface[3]. Based on
this study, we can now say that advice is wrong because it
leaves data too exposed to hardware errors.

5.2 Reporting Host Errors
For hosts, one of the problems is that the sending host gets
no feedback that it is sending bad packets. Admittedly the
host has to retransmit packets somewhat more frequently,
but typically not enough to be obvious. What we need is
some way for hosts to be informed that they are sending
packets with bad checksums. This feedback can then be used
by host administrators to cause their hosts to be repaired.

To achieve this feedback, we propose adding a new param-
eter code, `transport checksum problem', to the ICMP `pa-
rameter message. Rather than silently dropping packets
with invalid TCP or UDP checksums, hosts would send back
a `transport parameter checksum' for each bad packet, along
with the header of the o�ending packet. Hosts which emit
thousands of errors over a short period would receive thou-
sands of ICMP messages about their bad checksums. Mis-
behaving implementations would then be noticed in short
order. The impact on hosts with correct network stacks will
be negligible: approximately 1 checksum ICMP generated
per several thousand packets.

5.3 Reporting Router Errors
Determining which routers have errors, and informing them
of it, is harder than informing hosts. The obvious answer,
namely using a mechanism such as Router Alert[6, 8] to in-
form routers along the path that there was an error, doesn't
work well for two reasons. First, even on a router that is not
generating errors, the rate of reporting is likely to be high:
a few thousand noti�cations per second on a multi-gigabit
router in the backbone. Second, the asymmetry of routing
paths means that noti�cation must be done by the sender,
not the receiver, of the bad packet.

We believe the correct approach is to use monitoring tools at
the edge of the network such as those developed by Paxson.
The nice feature of these tools is that they are designed to
track paths in detail and can therefore can rapidly pinpoint
errors. Furthermore, as Paxson[10] has shown, an edge mon-
itoring tool deployed at a fairly small number of sites can
e�ectively test a wide range of paths. One issue of concern,
however, is the volume of traÆc (tens of thousands of pack-
ets) that needs to be sent over a path to e�ectively test it
for errors.

5.4 Protect Truly Valuable Data
In the �nal analysis, errors are occurring frequently enough
that if the consequences of data corruption are large, for
instance, for �nancial data, the application should add a
stronger application-level checksum.

Note that many encryption solutions such as IPsec do not
provide additional protection. The encryption is applied

too late in the transmission process, often after the data has
passed through a DMA engine. Rather the application must
add the checksum before handing its data to TCP (ala SSL).

6. CONCLUSIONS
It is a well-known irony that the very robustness of fault-
tolerant systems can conceal a large number of correctable
errors.

In the Internet, that means we are sending large volumes
of incorrect data without anyone noticing. Our trace data
shows that the TCP and UDP checksums are catching a sig-
ni�cant number of persistent errors. In practice, the check-
sum is being asked to detect an error every few thousand
packets. After eliminating those errors that the checksum
always catches, the data suggests that, on average, between
one packet in 10 billion and one packet in a few millions
will have an error that goes undetected. The exact range
depends on the type of data transferred and the path being
traversed.

While these odds seem large, they do not encourage compla-
cency. In every trace, one or two `bad apple' hosts or paths
are responsible for a huge proportion of the errors. For ap-
plications which stumble across one of the `bad-apple' hosts,
the expected time until a corrupted data is accepted could
be as low as a few minutes. When compared to undetected
error rates for local I/O (e.g., disk drives), these rates are
disturbing.

Our conclusion is that vital applications should strongly con-
sider augmenting the TCP checksum with an application
sum.

7. ACKNOWLEDGMENTS
Thanks to Vern Paxson for reporting the observed error rate,
for access to traces and for comments on our work as it
progressed.

Thanks to Stanford Networking Services for kind permis-
sion and assistance in running the experiments at Stanford.
Thanks to Stuart Cheshire of Apple Computer and Tony
Hain of Microsoft for their kind assistance in tracking pos-
sible software bugs. Thanks also to Kim (KC) Cla�y, Steve
Deering, and David Cheriton for their comments on earlier
presentations of this work.

8. REFERENCES
[1] Blahut, R. Theory and Practice of Error Control

Codes. Addison-Wesley, 1994.

[2] Braden, R., Borman, D., and Partridge, C.

Computing the Internet Checksum. Intenet Request
For Comments RFC 1071, ISI, September 1988.
(Updated by RFCs 1141 and 1624).

[3] C. Partridge. Gigabit Networking. Addison-Wesley,
1993.

[4] Jacobson, V. Compressing TCP/IP headers for
low-speed serial links. Internet RFC 1144, Information
Sciencies Institute, Feb 1990.

318

[5] Joseph L. Hammond, J., and et. al. Development
of a Transmission Error Model and an Error Control
Model. Tech. rep., Georgia Institute of Technology,
May 1975. Prepared for Rome Air Development
Center.

[6] Katz, D. IP Router Alert Option. Internet RFC 2113,
Information Sciences Institute, February 1997.

[7] McCanne, S., and Jacobson, V. The BSD Packet
�lter: a new architecture for user level packet capture.
In Proc. USENIX '93 Winter Conference (January
1993), pp. 259{269.

[8] Partridge, C., and Jackson, A. IPv6 Router Alert
Option. Internet RFC 2711, Information Sciences
Institute, October 1999.

[9] Paxson, V. Social Forces and TraÆc Behavior.
End-to-End Research Group Meeting, Berkely, CA.

[10] Paxson, V. End-to-end internet packet dynamics.
IEEE Transactions on Networking 7, 3 (June 1999),
277{292.

[11] Plummer, W. W. TCP Checksum Function Design.
Internet Engineering Note 45, BBN, 1978. Reprinted
in [2].

[12] Postel, J. Transmission Control Protocol. Internet
Request for Comments RFC 793, ISI, September 1981.
3.

[13] Rijsinghani, A. Computation of the internet
checksum via incremental update. Internet Request
For Comments RFC 1624, Information Sciencies
Institute, May 1994.

[14] Stone, J., Greenwald, M., Hughes, J., and

Partridge, C. Performance of checksums and CRCs
over real data. IEEE Trans. on Networks (October
1998).

[15] Wang, Z., and Crowcroft, J. SEAL Detects Cell
Misordering. IEEE Network Magazine 6(4) (July
1992), 8{19.

319

