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The impact of health, management, and microbiota on olfactory function in canines has 

not been examined in review. The most important characteristic of the detection canine 

is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates 

of the nasal cavity. The vomeronasal organ is an additional site of odor detection that 

detects chemical signals that stimulate behavioral and/or physiological changes. Recent 

advances in the genetics of olfaction suggest that genetic changes, along with the 

unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the 

species. Inflammation, alterations in blood flow and hydration, and systemic diseases 

alter olfaction and may impact working efficiency of detection canines. The scientific 

literature contains abundant information on the potential impact of pharmaceuticals on 

olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been 

studied in the canine. Physical stressors including exercise, lack of conditioning, and 

high ambient temperature impact olfaction directly or indirectly in the canine. Dietary 

fat content, amount of food per meal, and timing of meals have been demonstrated to 

impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfac-

tion via bidirectional communication between the GI tract and brain, and the microbiota 

is impacted by exercise, diet, and stress. The objective of this literature review is to 

discuss the specific effects of health, management, and microbiota shifts on olfactory 

performance in working canines.

Keywords: working canine, canine management, canine olfaction, canine performance, canine microbiota

INTRODUCTION

�e extraordinary olfactory capability of the canine has long been used by humans for odor iden-
ti�cation and discrimination (1). �e canine’s capacity for odor detection has been reported to be 
as much as 10,000–100,000 times that of the average human, and the canine lower limit of detect-
ability for volatile organic compounds is one part per trillion (ppt) (2). �is heightened sense gives 
canines the ability to detect a vast number of chemical compounds containing molecules that 
display subtle di�erences in stereoisomeric structures (3). �is sensitivity, the unique capability to 
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detect a target odor among a myriad of odors in an operational 
environment (4), and the ability of the dog to learn by operant 
conditioning (5) has made the working canine an intrinsic 
component of law enforcement, military, search and rescue, 
medical and assistance/service functions worldwide. However, 
despite the critical nature of the service that our canine partners 
provide, evidence related to olfaction health and performance 
is underrepresented in the scienti�c literature. �e objective of 
this review is to discuss the e�ects of management decisions 
related to diet and physical conditioning, medical care, and 
microbiota shi�s on olfaction performance in working canines.

HEALTH AND DISEASE

Anatomy of Olfaction
To properly manage the health of the detection dog, one must 
understand the anatomy and physiology associated with olfac-
tion. �e major components of the olfactory system are the nasal 
cavity, olfactory epithelium and receptors, the vomeronasal 
organ (VNO), and the olfactory bulb. �e nasal cavity is com-
prised of two chambers separated by the nasal septum, which are 
highly vascularized, primarily supplied by the sphenopalatine 
artery. Each nasal cavity chamber contains three turbinates 
(nasoturbinate, maxilloturbinate, and ethmoturbinate) (6) that 
contribute to increased mucosal surface area. However, total 
mucosal surface area may be heavily in�uenced by muzzle size 
and shape in the canine (7). Nasal turbinates project from the 
lateral chamber walls and contain a network of tortuous veins. 
Medial and dorsal to the turbinates is the olfactory cle�, where 
5–15% of inhaled air is diverted, and multiple cranial nerves 
terminate. As inhalation occurs, air �rst reaches the maxillo-
turbinate where there are a small number of olfactory sensory 
neurons. Air continues to �ow into the ethmoturbinates and 
paranasal sinuses and is then directed toward the pharynx 
(6). Engorgement of turbinates alters air�ow into the olfactory 
cle�, a�ecting olfaction. Turbinate engorgement is reduced by 
exercise, hypercapnia, and increased sympathetic tone, whereas 
it is increased by cold air, chemical irritants, hypocapnia, and 
increased parasympathetic tone. Some airborne odorants/
chemicals can stimulate trigeminal free nerve endings in the 
nasal mucosa, which cause sensations like warmth, coolness, 
sharpness, but not odor (8). �e detection of odor occurs only 
through the olfactory epithelium and olfactory nerves.

�e olfactory epithelium is comprised of neurepithelium 
lining the cribriform plate, dorsal septum, dorsal and middle 
turbinates, and pseudostrati�ed columnar epithelium, with mil-
lions of olfactory receptor (OR) cells (ORC). Olfactory epithe-
lium also contains supporting sustentacular cells that regulate 
the composition of nasal mucous, serve as insulators between 
ORCs, and protect the epithelium from damage from inhaled 
agents (9). �e mucous layer of the nasal mucosa is derived 
from Bowman’s glands embedded in the olfactory epithelium; 
this mucous layer maintains normal nasal humidity levels and 
traps odorants (10). Normal olfactory perception depends on 
this moist receptor area (9).

Olfactory receptor cells project directly to the olfactory bulb, 
with axons terminating in the glomeruli of the olfactory bulb 

(11). �e ORCs have cilia that have surface odor receptors; 
human ORC have approximately 25 cilia per ORC, but dogs 
have hundreds of cilia per ORC, permitting the detection of 
signi�cantly smaller concentrations of odorants in canines. 
�ere are more than 220 million ORs in the canine nasal cavity, 
which allow a vast number of odorants to bind (12). �ere is 
only one type of OR per ORC, and odor intensity is proportional 
to the number of ORC activated; ORC also have receptors for 
hormones and neurotransmitters. Olfactory neurons only live 
for 30–60  days, but unlike other mammalian sensory cells, 
ORCs constantly regenerate (13). �e number and type of ORCs 
present in an individual dog are dictated by breed, genetics and 
training (7, 14–17); this concept will be explored later in the 
manuscript.

Embedded in the membrane of ORC cilia are extracellular 
portions which bind odorant, and intracellular portions coupled 
to G-protein. When an odorant binds the extracellular portion 
of the receptor, the G-protein A-subunit breaks away, activat-
ing adenyl cyclase, which subsequently converts ATP to cAMP. 
cAMP ampli�es the incoming signal from the odorant by activat-
ing multiple sodium gated channels (11). �e two-step opening 
of gated sodium channels causes depolarization, and the resultant 
action potential is transmitted through the olfactory bulb. Each 
odorant is recognized by a unique combination of activated ORs 
(18). �e ability of the detection dog to properly recognize odors 
relies on this function.

�e VNO lies along the ventrorostral aspect of the nasal sep-
tum, is bilaterally symmetrical, and acts as an additional site of 
odor detection (19). �e VNO sensory neurons detect chemical 
signals that stimulate behavioral and/or physio logical changes 
(20), provides alternate neuronal pathway to the hypothala-
mus, and is very slow to adapt to odors. �e VNO contains both 
receptor epithelium and non-receptor epithelium, which di�er 
structurally in the types of nerve �bers and types of embedded 
cells (21). �e VNO functions in the detection of non-volatile 
odorants, especially pheromones, and is believed to play a role in 
social behavior and reproduction (21).

�e olfactory bulb is a paired structure, which functions 
primarily as a relay station, and to �lter sensory input (6). �ere 
are approximately 1,000 ORC axons per  second-order neuron, 
resulting in signi�cant ampli�cation of the odor signal. �e 
mitral cells of the olfactory bulb project one primary dendrite to 
one glomerulus, and one axon to the olfactory cortex. �e olfac-
tory bulb is located under the frontal lobes, above the cribriform 
plate in humans, but is located more rostrally in other mammals, 
which may play a role in improved smell in lower mammals (19). 
�e olfactory cortex is located within the medial temporal lobes 
and communicates directly with cerebral cortex. �e olfactory 
cortex functions to receive sensory input from the olfactory 
bulb, permit conscious awareness of odor, identi�cation of 
odor, odor memory, and odor localization in lower mammals. 
�e olfactory bulb has both a sensory role (initial processing of 
olfactory information) and a modulatory role in the forebrain, 
hypothalamus, and limbic system (22). �e olfactory pathway of 
canines is demonstrated in Figures 1 and 2.

�e olfactory cerebral areas of the brain are divided into two 
functional categories: the neocortical (e.g., orbitofrontal complex) 
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FIGURE 1 | (A) Left sagittal plane highlighting the anatomy associated with olfaction. Photo credit: Adrien-Maxence Hespel, University of Tennessee.  

(B) Left exterior view demonstrating placement of interior structures associated with olfaction.

FIGURE 2 | Diagram of pathway demonstrating olfactory signaling process.
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FIGURE 3 | Pathways for inhalation and exhalation and airflow associated 

with olfaction (blue arrows = inhaled; red arrows = exhaled). Canines 

preferentially use the right nostril to sniff conspecific arousal odors and novel 

odors, and the left nostril to sniff familiar odors, non-aversive stimuli, and 

heterospecific arousal odors.
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which regulates conscious odor perception, and the limbic (23). 
�e limbic system is a collection of brain structures that col-
lectively regulate olfaction, memory, behavior, and motivation. 
Components of the limbic system include the olfactory bulb, 
hippocampus, amygdala, and entorhinal complex, among others. 
�e size and function of the limbic system varies across mam-
malian species, but in all species the limbic system has olfactory 
and non-olfactory components (24). �e isocortex of the brain 
regulates higher-order functions such as sensory perception and 
cognition. While primates including humans have an inverse 
relationship between isocortex and limbic system volume, ter-
restrial carnivores including canines have high relative volumes 
of both the isocortex and limbic systems (24). �ese anatomical 
di�erences in brain component volumes may be partially respon-
sible for the di�erences in olfactory capability between humans 
and canines.

Physiology of Olfaction
Compared to humans, dogs have signi�cantly larger surface area 
of olfactory epithelium, with approximately 30% more ORs that 
can recognize a much larger variety of odorants. Dogs also have 
the capability for excellent odor localization, even in presence of 
signi�cant background odor, likely due to the larger nasal cavity 
size as compared to other species (25) and the unique air�ow 
patterns created by sni�ng (26). �e ability to �nd the source of 
the scent, even in the presence of competing odors, makes the 
detection dog a critical partner in many military, law enforce-
ment, and search and rescue operations.

During inspiration, 12–13% of air �ow travels to the olfac-
tory portion of the nose, and the remaining air�ow is directed 
toward the nasopharynx where it exits the nasal cavity (26). 
Dogs have improved air�ow sampling and odorant collection via 
active sni�ng, which is the production of short, sharp breaths at 
4–7 Hz, independent of canine body size (26). �e average dog 
inhales 30 ml of air per nostril per sni� (19), and air is inhaled 
from the front and exhaled to the side as seen in Figure 3; this 
permits more e�cient sampling of odorants. When a canine is 
sni�ng, air within approximately 1  cm of the nostril is drawn 
toward the naris (26), and the high velocity air �ow is transported 
to the dorsal nasal cavity where it turns 180° and �ows back over 
the ethmoturbinates. Each nostril samples air separately, yield-
ing bilateral odor samples that assist in odor source localization 
(26). In contrast to humans and other microsmotic species, air 
does not enter or exit the olfactory recess of the dog during 
expiration, resulting in prolonged exposure of inspired air to 
the chemoreceptors of the olfactory epithelium and continued 
olfactory stimulation throughout the respiratory cycle (26). For 
the working canine, active sni�ng during “nose down, tail up” 
searching (see Figure 4) and e�cient localization of odor source 
are critical to completion of the mission.

Environmental conditions, such as relative humidity and baro-
metric pressure can have direct impacts on olfaction, in addition 
to the impacts those factors have on the generation and movement 
of odor itself. Philpott et al. (27) reported that olfactory thresh-
olds in humans were independent of room temperature, peak 
humidity and peak inspiratory nasal �ow. A subsequent, larger 
study reported by Kuehn et al. (28) subsequently determined that 

olfactory threshold level was impaired in hypobaric conditions, 
and olfactory thresholds were lower (sense of smell improved) 
in a humid environment. Search and rescue dogs perform better 
when relative humidity is high (29), potentially due to improved 
nasal humidity and odorant trapping. Humidity, but not rain, 
increased the e�ciency of dogs in tracking and searching tasks 
by increasing odor intensity (30), and improved olfactory detec-
tion of pheromones, leading to increased mating activity during 
monsoon season (31).

Sni�ng is advantageous compared to normal inhalation 
because it produces unidirectional laminar �ow to the dorsal 
meatus and sensory epithelium of the ethmoturbinates (26, 32),  
increases the sensitivity to odors (32), drives activity in the 
olfactory cortex, and a�ects odorant intensity and identi�cation 
(33). Nasal air�ow patterns as described by Craven et al. (26) 
enhance olfactory acuity in the dog, but do not fully explain 
macrosmia, the enhanced ability to smell, in the canine. Lawson 
et al. (34) described the transport of speci�c types of odorants 
and the subsequent impact on olfaction. Odorant deposition 
patterns correspond to the anatomical organization of OR neu-
rons: highly soluble odorants are deposited in the front of the 
olfactory cle� (dorsal meatus and nasal septum), whereas mod-
erately soluble or insoluble odorants are deposited throughout 
the entire olfactory cle� (34). �is combination of anatomical 
organization of OR neurons and air�ow patterns induced dur-
ing sni�ng are likely responsible for the macrosmia widely 
demonstrated in working canines. Canines move more slowly 
and the period of sni�ng lasts three times longer during the 
deciding phase of olfactory tracking (the “�nd”), as compared to 
the initial search phase and tracking phases (35). Concha et al. 
(36) demonstrated that sni�ng patterns in working canines 
can be used to di�erentiate true negative from false negative 
responses. Trained scent detection dogs spent signi�cantly less 
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FIGURE 4 | Disaster canines performing search work displaying the typical 

“nose down, tail up” posture associated with active olfaction. Photo credit to 

Tracy Darling.
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time sni�ng true negative samples (no odor; no alert response), 
with only one sni�ng episode for true negative samples (36). 
For detection dogs, these sni�ng characteristics may result in 
more e�cient detection work during a lengthy work cycle.

Dogs have repeatedly demonstrated “hemispheric speciali-
zation,” that is hemisphere speci�c brain processing of emo-
tional, acoustic, and olfactory stimuli (37, 38). Unlike other 
senses, olfactory pathways ascend from the point of detection 
(nasal cavity) to the point of perception in the brain (olfactory 
cortex) ipsilaterally: right nostril sensory input is delivered 
to the right brain hemisphere, and le� nostril sensory input 
is delivered to the le� hemisphere (37). Canines preferentially 
use the right nostril to sni� conspeci�c arousal odors and novel 
odors, delivering sensory input to the right brain hemisphere, 
which processes threatening and alarming stimuli. Canines 
preferentially use the le� nostril to sni� familiar odors and 
non-aversive stimuli such as food, as well as heterospeci�c 
arousal odors (such as human fear-induced sweat samples) (37). 

D’Aniello et al. demonstrated that hemispheric specialization 
and chemosignaling enhances communication of emotional 
states (including stress) between dogs and humans (39). For 
detection dogs, this likely means that target odors are being 
processed through the le� nostril.

Anatomical connections between the olfactory pathways of 
the amygdala and piriform cortex and the limbic system under-
lie the interconnection between olfaction and memory (9). 
Olfaction and other forms of learning/memory are regulated 
by the same neurobiological rules (40). In working canines, 
memory of smell is of critical importance: when does odor 
memory begin? How many odors can canines remember? How 
long do canines remember trained odors? How long can a dog 
maintain olfactory performance without training? Canines 
learn odor starting in the prenatal period, due to the in�uence 
of maternal diet on the composition of the amniotic �uid (41), 
but the learned odor memory appears to dissipate by 10 weeks of 
age (42). Olfaction and cognition have both been demonstrated 
to deteriorate with age in the canine, but no speci�c age exists at 
which the dog ceases to learn (40). Williams and Johnston (43) 
determined that canines could readily learn and subsequently 
identify 10 odors in a search task. Given that domestic canines 
have demonstrated the ability to learn and remember more 
than 200 words (44) and the names of more than 2,000 toys 
(45), it is likely that working canines can remember far more 
than 10 odors. �e durability of memory on trained odors has 
not been extensively studied, but Johnston (46) demonstrated 
that in explosive detection canines there was no systematic 
deterioration in detection performance for up to 4  months. 
Training methods can impact durability of odor memory, or at 
least the signaling from canine to handler when a speci�c odor 
is detected. If alerts are not reinforced, or if the canine conducts 
several searches without detecting a trained odor, the alert or 
search behavior can be extinguished (47). It is unclear, however, 
if memory is maintained when alert or search behavior is extin-
guished or what the maximum duration of time is that a canine 
can maintain odor memory without training (47).

Genetics are increasingly recognized as a critical component 
of olfaction in canines, with a comprehensive review published 
elsewhere (7). �ere are four types of receptors involved with 
olfaction and chemosensation in the dog: OR, vomeronasal 
receptors, trace amine-associated receptors, and formyl peptide 
receptor-like proteins. Most research on the genetics canine olfac-
tion has been focused on OR genes. �e canine OR repertoire is 
composed of 1,094 genes, approximately three times more than 
a human. �is large genetic repertoire is believed to be related to 
the macrosmia evident in canines, producing an expansive array 
of ORs that permit the detection of broad ranges of odorant (48). 
In the canine, approximately 20% of OR genes are functionally 
inactive pseudogenes, but the percentage of pseudogenes varies 
by breed, and is signi�cantly lower than microsmotic species like 
humans, in which as much as 50% of olfactory genes are pseudo-
genes (49). Polymorphism of OR genes may also impact olfactory 
capability and sensitivity in breeds and individuals. Tacher et al. 
(15) reported that both the percentage of pseudogenes and the 
frequency of speci�c gene polymorphism varied by breed, and 
speculated that genetic changes may contribute to di�erences in 

https://www.frontiersin.org/Veterinary_Science
https://www.frontiersin.org
https://www.frontiersin.org/Veterinary_Science/archive


6

Jenkins et al. Impacts of Olfaction on Working Canines

Frontiers in Veterinary Science | www.frontiersin.org March 2018 | Volume 5 | Article 56

olfactory capabilities between breeds and individuals. �is may 
o�er some insight into the “working lines” within some breeds 
that tend to produce higher frequencies of successful detection 
canines than others.

�e current literature contains con�icting information about 
breed-speci�c olfactory capacity. Jezierski et  al. (50) demon-
strated that German Shepherds were signi�cantly better at  
detecting narcotics than Labradors and Terriers. In contrast, 
Hall et  al. (5) reported that Pugs consistently outperformed 
German Shepherds and Greyhounds in olfactory acquisition 
and discrimination tasks. Polgar et  al. (51) reported that 
“scent-group” dogs (e.g., basset hound, German pointer, etc.) 
performed better on a natural detection task than “non-scent” 
dogs (e.g., English greyhound, Afghan hound, etc.) and “short-
nosed” dogs (e.g., Cavalier King Charles spaniel, Boston 
terrier, etc.). Additional research is needed to determine if 
breed speci�c olfactory capabilities are correlated with genetic 
polymorphism or if olfactory performance is more a function 
of behavioral attributes like inherent motivation (i.e., drive) 
and trainability.

Hyposmia: Disease and Medication
Hyposmia, de�ned as decreased sensation of smell, is charac-
terized as type I, II, or III. Type I hyposmia is the inability to 
recognize odorants correctly. Type II hyposmia is a quantitative 
decrease in the ability to recognize odorants, recognized in 
working canines as change in threshold or persistent failure 
to alert to previously trained odorants. Type III hyposmia is a 
decrease in estimation of the magnitude of odors; this type of 
hyposmia is only recognizable in humans. �e causes of hypos-
mia can be broadly categorized as conductive disorders, sensory 
losses, or neural causes (52). Conductive hyposmia results from 
the failure of odorants to reach the olfactory mucosa, e.g., nasal 
in�ammation, excess mucous production, and physical obstruc-
tion by space-occupying masses (polyps, neoplasia, etc.) (53). 
Sensory hyposmia is caused by damage to the olfactory mucosa, 
e.g., viruses, toxic chemical or industrial agent exposure, and 
neoplasia (54–56). Neural hyposmia is caused by lesions of the 
central or peripheral nervous system, speci�cally the olfactory 
cortex, olfactory bulb, and cranial nerves I (olfactory) and  
V (trigeminal), e.g., head injury (57).

Disease
�e impact of disease on olfaction has been widely documen-
ted in human medicine. In fact, “degradation in the sense of 
smell is a sentinel condition, particularly for neurodegenerative 
diseases such as Alzheimer’s” (58). Conditions associated with 
hyposmia or anosmia in humans include congenital disorders 
(e.g., Kallaman’s syndrome), endocrine or metabolic disorders, 
infections, in�ammation, neurologic disorders including head 
trauma, local processes, occupational exposure to dust and 
toxic chemicals and materials, advanced age, and uremia (8, 57, 
59–61). Hyposmia and anosmia are frequently self-reported in 
human medicine, but self-reporting may overrepresent the actual 
prevalence of hyposmia in humans. �e prevalence of hyposmia 
in canines is unknown, but hyposmia in detection canines could 
be catastrophic.

When a canine is exposed to prolonged, increased body  
temperatures due to environmental or exertional extremes with-
out the ability to acclimate properly, thermal injury may occur 
(62). �ermoregulation is compromised during heat stress; the 
canine increases respiratory rate (i.e., panting) and heart rate 
to compensate and cool the body. Panting decreases olfac-
tory e�ciency in canines and may lead to relevant hyposmia. 
Exogenous factors that may contribute to thermal stress and 
increase the likelihood of compromising olfaction include lack 
of acclimation to a novel environment, elevated humidity, lack 
of access to water, and poor ventilation (63). Heat injury likely 
leads to olfactory compromise, but the magnitude and duration 
of altered olfaction is unknown; further study is indicated.

As in humans, disease may impair olfaction in canines. 
Although there is limited canine research available, viral 
infection with canine distemper (64) and canine parainflu-
enza virus infections (65) have caused alterations in olfaction. 
Canine parainfluenza virus increased nasal inflammation and 
mucous secretions, causing a conductive hyposmia by reduc-
ing the contact between odorants and olfactory or trigeminal 
receptors in the nasal cavity. In addition, nasal inflammation, 
like that caused by canine distemper or parainfluenza viruses 
lead to vascular congestion in the respiratory mucosa, altering 
air flow patterns in the nasal cavity (65). Endocrine disease 
(e.g., hyperadrenocorticism, diabetes mellitus, and hypothy-
roidism) and neurologic disease (e.g., granulomatous menin-
goencephalitis and nasal tumors) have also been reported 
to cause hyposmia in canines (55); the exact mechanism of 
hyposmia in these disease states is not known but is likely neu-
ral. Recently, vomeronasalitis was associated with intraspecific 
aggression in cats (66). Asproni theorized that the inflamma-
tion present in the VNO and nasal cavity impaired sensory 
epithelium function and intraspecific communication but did 
not examine olfactory function in the studied cats. Given our 
understanding of the VNO and nasal physiology, it is likely 
that vomeronasalitis causes both sensory hyposmia and dis-
rupted intraspecific communication in cats, and possibly in 
dogs. Trauma is a well-documented cause of neural hyposmia 
in people, but the impact of head trauma on olfaction in dogs 
has not yet been studied. If a detection canine experiences 
head trauma associated with lack of consciousness, evaluation 
of olfaction is indicated (67). Olfactory function diminishes 
with age in humans through a variety of mechanisms including 
altered nasal engorgement, cumulative damage to the olfactory 
epithelium, decreased mucosal enzymes, loss of selectivity of 
ORCs and neurodegenerative disease (68). Similar age-related 
changes were found in the olfactory system of dogs older than 
14 years and were prominent in dogs over the age of 17 years 
(69). The older dogs had a decrease in number of ORCs and 
the number of cilia on ORCs. Interestingly, the older dogs 
demonstrated senile brain changes such as cerebrovascular 
amyloidosis in the olfactory bulb, but not in the olfactory 
mucosa. Disease-induced, but not age-induced, hyposmia 
in humans is generally reversible, possibly because olfactory 
neurons regenerate readily, but the duration of hyposmia and 
normalization of function cannot be predicted (54, 68); this is 
also likely true in canines.
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TABLE 1 | Categories of working canines and typical disciplines associated with 

each.

Sport Detection Service

Nose worka Explosivesa Guide

Field trial/hunt testa Narcoticsa Hearing

Agility Search and rescuea Mobility assistance

Flyball Medicala (cancer, research) Emotional support

Rally Pesta PTSD

Barn hunta Arsona Allergen detectiona

Sled dogs Conservationa Medicala (diabetes, seizure)

Obediencea Invasive speciesa Therapy

Conformation Agriculturea

Dock jumping Patrol/apprehensiona

Lure coursing Currencya

Protection sportsa Prison (mobile phone)a

Rally Tracking/trailinga

Herding sports Firearma

Trackinga

Weight pulling

Factors to consider in the management of working canines

Duration Length of work cycle—# of hours spent performing 

work Example: agility course takes minutes to 

complete vs.  guide dog working during all waking 

hours

Frequency Incidence of work—# of times called to perform work 

Example: daily missions (law enforcement) vs. “on call  

as needed” (disaster)

Intensity Energy exerted performing work—this should include 

physical as well as mental energy needed complete 

assigned task Example: patrol dog released to 

apprehend suspect vs. border patrol dog screening 

vehicles as they move through checkpoint

aAn olfactory component associated with job function.
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Pharmaceuticals
Type II hyposmia is common in humans during or a�er phar-
maceutical therapy (70); the hyposmia is usually bilateral and 
temporary. �e list of pharmaceuticals known to induce hypos-
mia in humans is long, including: anesthetics, antiarrhythmics, 
antihistamines, antimicrobials, antiproliferative and immuno-
suppressive drugs, endocrine drugs, gastrointestinal (GI) drugs, 
neurologic drugs, and NSAIDs (8, 57, 59). Pharmaceuticals 
frequently cause hyposmia through impairment of odorant bind-
ing to the OR or injury to the OR (sensory hyposmia), or through 
neurologic impairment (neural hyposmia).

Most relevant information on pharmaceuticals impacting 
canine olfaction is extrapolated from human medicine. Zinc 
metabolism is directly related to olfaction function in both 
humans and laboratory animals. Zinc nanoparticles, when added 
to explosives, enhanced the odorant response in trained cani-
nes in a dose-dependent manner (70). Zinc chelation, however, 
causes sensory hyposmia at the OR level. Some cardiovascular 
drugs such as angiotensin-converting enzyme inhibitors (ACE-I) 
(e.g., captopril) chelate zinc and cause hyposmia in humans (8); 
this e�ect has not been studied in canines. Anesthetics are docu-
mented to cause hyposmia in humans; the impact on olfaction in 
canines is presently being researched at Auburn University.

Antimicrobials such as metronidazole and doxycycline are 
commonly prescribed to working canines to treat diarrhea and 
vector-borne diseases, respectively. Metronidazole has been 
reported to cause hyposmia in humans (8) and to decrease olfac-
tion performance in detection canines (71). Doxycycline has been 
reported to cause hyposmia in humans (60) but does not cause 
hyposmia in detection canines (71). Jenkins et al. noted that 50% 
of trained explosive detection dogs demonstrated an elevation in 
olfaction threshold when administered high-dose metronidazole 
for 10  days, but doxycycline administration at standard doses 
for 10  days did not impact olfaction. Metronidazole-induced 
hyposmia could not be predicted based on male or female sex, 
neuter status, or age but hyposmia was temporary, as olfaction 
threshold returned to normal within 10 days of discontinuation 
of metronidazole. Alternative medical interventions should be 
considered when appropriate prior to the use of metronidazole 
for detection dogs; if metronidazole must be used, it should 
be used at the lowest e�cacious dose for the shortest duration 
possible.

Steroids can cause hyposmia in humans (8) and in canines 
(72). Ezeh administered high doses of dexamethasone or hydro-
cortisone combined with deoxycorticosterone to laboratory dogs 
and noted hyposmia without apparent clinical signs a�er 7 and 
18  days of treatment, respectively. �e noted steroid-induced 
hyposmia in dogs was attributed to elevation in the olfactory 
detection threshold. However, studies of humans with nasal 
in�ammation demonstrated that the administration of oral and/
or intranasal steroids sometimes improved olfaction, likely due to 
the resolution of nasal in�ammation (73–75). �us, veterinarians 
and canine handlers should carefully weigh the clinical need for 
steroids against the potential e�ects on olfaction. �e mecha-
nisms of pharmaceutical-induced hyposmia include impairment 
of odorant binding through altered mucus quantity or quality  
(e.g., antihistamines), inhibition of normal turnover/regeneration  

of olfactory neurons (e.g., steroids and chemotherapeutics), nasal 
vasoconstriction (e.g., decongestants), enzyme-associated e�ects 
of drugs (ACE-I), altered levels of cyclic GMP (phosphodiesterase 
blockers), and zinc chelation (cardiac medications) (76).

Given the paucity of research on pharmaceutical-induced 
hyposmia in canines, handlers, trainers and veterinarians caring 
for detection dogs should exercise caution with pharma ceuticals 
known to cause hyposmia in humans. It is also important to 
consider which medications may be biotransformed by the GI 
microbiota when discussing medical care for working canines. 
Information on reduction, hydrolytic and other che mical reac-
tions for commonly prescribed medications and their associated 
impacts on microbiota and olfaction should be considered. 
Olfaction threshold and discrimination ability should be tested in 
any detection dog that has been treated with hyposmia-inducing 
pharmaceuticals prior to return to work.

MANAGEMENT

�ere is a myriad of factors that can improve or compromise 
the performance of working canines. Frequency, intensity, and 
duration of work cycles should be considered prior to making 
management decisions particularly as pertains to olfactory acuity. 
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TABLE 2 | Summary of selected studies reporting effects on olfaction/performance associated with management or medical care.

Citation Treatment Classi�cation Duration Olfaction response

(77) Exercise and fat supplement n = 18

Hunting

12 weeks Coconut oil decreased olfactory acuity in non-conditioned dogs

Exercise decreased olfactory acuity in non-conditioned dogs

(78) Exercise and fat supplement n = 17

Explosive detection 

12 weeks Corn oil increased olfactory acuity

Exercise decreased olfactory acuity

(79) Quail hunting and dietary protein n = 23

Hunting

11 months Animal-based protein increased olfactory acuity

(80) Hunting and dietary fatty acids n = 23

Hunting

12 months EPA, DPA, DHA increased olfactory acuity

(72) Steroids n = 24; companion 28 days Dexamethasone or hydrocortisone + DOCA decreased  

olfactory acuity

(32) Exercise and panting n = 6

Explosive detection

20 min treadmill Olfaction and panting display inverse relationship

(47) Conditioned odorant n = 10

Companion 

Odor condition

7 days

Conditioned odorant increased olfaction sensitivity

(81) Handler–canine interaction n = 60

Companion

3 months No handler influence

(71) Metronidazole n = 18

Explosive detection

10 days Degradation of detection threshold for 9 canines

(50) Odor detection scenarios;  

novel environment; training

n = 164

Narcotics detection

Unknown Final stage of training decrease olfactory acuity

Known and novel environment similar olfactory acuity

(82) Scent detection (live find  

and human remains)

n = 11 live find

n = 12 cross-trained

Unknown Cross trained canines compromised on alerting live  

scent when cadaver scent present

(1) High intensity training n = 13

Shepherd breeds

5 days per week; 

18–20 months

High olfaction sensitivity and specificity

(65) Canine parainfluenza  

virus (CPI virus)

n = 10

Companion 

3 weeks CPI virus prevented contact of odoriferous substances  

with olfactory receptors

(83) Helicopter travel n = 9

FEMA search and rescue

30 min helicopter travel No effect on search performance or gut microbiota

(84) Novel and known odorants n = 21

Explosive detection

6 weeks Decreased target performance with no exposure  

prior to scenario

(85) Commercial air travel n = 6

FEMA search and rescue

2.5 h air travel No effect on search performance in spite of change to  

gut microbiota and fecal scores

(86) Handler–canine interaction n = 5

Military

10 days Elevated handler anxiety improved canine  

target detection
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Detection dogs (explosives, narcotics, search, and rescue) are dif-
ferent than sport dogs (agility, hunting, sled) and are measured 
with very di�erent performance criteria (see Table 1).

Conditions that can alter a dog’s working potential include 
breeding and selection, regular �tness and conditioning, and the 
development of a dietary regimen that meets the nutrient require-
ments and utilizes quality ingredients. Maximizing olfactory 
function should be paramount in decisions regarding detection 
dogs. A summary of selected publications associated with work-
ing canine performance is presented in Table 2.

Conditioning and Training
As one might expect, training and physiological conditioning 
signi�cantly impact olfactory performance. Decreased �nd rates 
using certi�ed detection dogs on scent wheels have been reported 
following exercise (78); this is likely explained by the increased 
panting that typically occurs following exercise. Canines that 
were physically conditioned maintained greater olfactory acuity  

compared to canines that were not physically conditioned when 
both groups were challenged with exercise. Non-conditioned cani-
nes displayed a 63.6% decrease in olfactory sensitivity following 
exercise (78). Physically conditioned canines have a lower exer-
cising heart rate compared to their non-conditioned counterparts 
and this improved cardiovascular condition may contribute to 
better thermoregulatory performance and subsequently decrease 
the need for panting (32). Other supporting work has shown that 
a rigorous training program leads to high frequencies of cor-
rect target  alerts (32). Immediately following extreme physical 
exercise, there is a reduction in the sni�ng rate and increased 
panting rate which result in reduced olfaction performance (32). 
�is may be explained by the fact that non-conditioned canines 
pant harder during intense exercise instead of breathing through 
their nose, which decreases the quantity of odorants passing over 
olfactory epithelium in the nasal cavity (77). It seems clear that 
physical conditioning (speci�cally as pertains to minimizing 
panting) may support improved olfaction in the detection dog.
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Scent detection training techniques can also directly impact 
olfaction. Wang et al. (16) and Youngentob and Kent (17) dem-
onstrated that dogs develop more ORs for odorants on which they 
are regularly trained. Gerritsen and Hank (14) also reported that 
ORC cell turnover is not static: new replacement ORC type is trig-
gered by familiar scents. Simple odorants and complex odorants 
induce di�erent neural responses in scent detection dogs. Wilson 
and Stevenson (87) theorized that cortical synaptic plasticity is 
enhanced by experience with odorants (simple or complex) in a 
variety of conditions. Gerritsen and Hank (14) further suggested 
that dogs will learn complex odors more rapidly if they are �rst 
trained on individual components of the odor, but results vary 
across studies. Fischer-Tenhagen et al. (88) found that detection 
dogs trained with mixtures of odor containing the target odor had 
more correct indications when the target odor was tested in a new 
context, than dogs trained on a pure reference odor. �ese data 
provide scienti�c evidence for the traditional training concept 
of “proo�ng” detection dogs with the use of distraction items. 
Functional MRI of the olfactory system in trained scent dogs indi-
cated that odor concentration impacts brain activation: low odor 
concentration resulted in unilateral brain activation, whereas high 
odor concentration resulted in bilateral brain activation (58). In 
addition to odor type and frequency, training techniques impact 
olfaction sensitivity and discrimination. Pavlovian condition-
ing signi�cantly improved odor acquisition (89) and improved 
resistance to disruptors (90). Continuous reward systems worked 
best for acquiring a behavior such as learning to discriminate a 
speci�c odor, and intermittent rewards worked best for maintain-
ing a learned behavior (40). More research is needed to determine 
the impact of training simple versus complex odor, the impact of 
odor concentration on learning, and the interaction of genetics 
and training on performance in detection dogs.

Hydration
Management of the detection dog in the �eld may o�en involve 
mitigation of dehydration and fatigue. Dehydration of the nasal 
mucosal membrane results in decreased enzyme activity and 
decreased membrane �uidity, altering neurosignal transduction 
and odorant receptor function. A combination of decreased 
air�ow and dehydration of the mucosal layer can signi�cantly 
decrease odor detection capabilities in the working canine (77). 
Dehydration in search-and-rescue canines was reported to occur 
in dogs working a�er the terrorist attacks on 9/11 (91, 92), the 
Haiti earthquake (93), and the Washington landslide (94). One 
recent study examined three intervention strategies for hydration 
of canines (95). Border patrol vehicle inspection canines were 
utilized (high frequency, low intensity searches) to investigate 
the bene�ts of water, oral electrolyte solution, or subcutaneous 
�uids for rehydration of canines working in hot conditions. �e 
authors reported no clear bene�ts for any of the strategies exam-
ined but did note that voluntary consumption of the �avored 
oral electrolyte solution was higher as compared to water alone. 
Increased voluntary �uid consumption contributed to improved 
hydration. No bene�ts associated with the use of subcutaneous 
�uids were noted. On the contrary, hydration with subcutaneous 
�uids was associated with an increase in creatinine that was noted 
to indicate either dehydration or potential muscle damage. No 

information on dietary regimens was provided by the authors 
and behaviors recorded were not a�ected by hydration strategy. 
Olfaction as a measure of performance could not be quanti�ed; 
standardized olfaction testing was not possible because of the 
operational nature of the �eld study. �is study demonstrates 
that dehydration in the �eld is a concern which warrants more 
investigation especially when considered in relation to potential 
olfactory challenges.

�ermal recovery was enhanced when using a low protein diet 
top dressed with corn oil in Labradors exercised on treadmills 
(96). �e authors reported lower core body temperatures 10 and 
20 min following exercise and lower rectal temperatures in dogs 
fed a maintenance diet topped with corn oil as compared to dogs 
consuming the performance ration without corn oil. Olfaction 
acuity was not measured in this study. Conversely, hunting �nd 
rates in English Pointers improved in dogs fed a higher protein, 
higher fat (31:21%) diet, as compared to a diet containing 
lower protein and fat (26:17%) (79). �ermal recovery was not 
investigated. Factors associated with fatigue were not reported in 
either study. Extrapolation across studies is challenging due to the 
di�erence in methods, ingredients and parameters measured but 
thermal recovery and olfactory impact should be weighed heavily 
in decisions regarding diets for detection dogs.

Nutrient Content
�e nutritional requirements for canine athletes have previously 
been examined in review (97). Mullis et  al. (98) examined the 
maintenance energy requirements speci�c to detection dogs and 
reported that they were approximately twice the known resting 
energy requirement (RER  =  70  kcal  ×  BW0.75 kg). �e authors 
noted no di�erences in energy requirements across breed, age, or 
gender, but did report a signi�cant e�ect associated with number 
of searches performed. �is is particularly interesting because the 
work performed by these dogs simply required that they be active 
and alert; it was not reported as physically strenuous. Findings 
in these dogs suggest that there may be an unexplained energy 
requirement associated with the mental focus/attention required 
by working canines. Duration, frequency, and intensity of work 
likely all impact energy requirements for the working canine. �e 
impact of surgical sterilization on olfaction is unknown, but spay-
ing of racing Greyhound bitches produced no change in overall 
performance, motivation, or racing speed (99).

Exercise and diet seem to be inextricably linked to canine 
performance, but there are few studies examining the relationship 
between these elements of detection dog management. English 
Pointers withheld from exercise and fed a diet supplemented 
with coconut oil appeared to experience compromised olfaction, 
but exercised dogs maintained olfactory acuity (77). �e authors 
reported greater olfactory sensitivity for all exercised dogs regard-
less of dietary fat source (beef tallow; beef tallow + corn oil; beef 
tallow + coconut oil). Angle et al. (78) demonstrated bene�ts to 
olfaction when using corn oil supplemented diets and exercise.

�e improved olfaction observed with increased polyunsatu-
rated fatty acid (PUFA) content in the diet has also been reported 
in rodent studies (100). Rodent studies have also been used to 
measure olfactory sensitivity associated with nutritional status 
and have reported improved olfaction associated with fasting 
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(101, 102) and compromised olfaction as a result of satiety  
(101, 103). �ese �ndings are believed to be linked to the appetite 
inducing hormone ghrelin, which contributes to exploratory and 
sni�ng behavior and improves olfactory sensitivity (104). �is 
critically important work demonstrates a potential link between 
fasting and improved performance in the detection dogs. 
Anecdotal reports from seasoned trainers have o�en included 
recommendations for letting the dogs work hungry; these data 
may provide evidence for this long-standing canine training 
technique. Food has been documented to be a more e�ective 
reward than praise or petting but has not been compared for 
e�ectiveness against toys (105). Hall et al. (90) reported incon-
sistent responses for dogs o�ered presession feeding when odor 
discrimination tests were conducted. For detection disciplines 
requiring dogs to work independent of the handler (disaster, 
explosives), use of fasting to improve exploratory and sni�ng 
behavior may be a useful training tool to examine. Further study 
is needed to determine the appropriate diet titration to maximize 
olfaction, the length of fasting time necessary, and the potential 
impacts on olfaction performance.

Diet and Behavior
�e relationship between diet and behavior has been well studied 
in other species, but few studies have examined the relationship 
between diet and behavior in canines (106). Docosahexaenoic 
acid (DHA) is necessary for optimal neurological development 
in puppies, and lower concentrations of DHA have been associ-
ated with aggression in German Shepherd dogs (40). PUFAs are 
essential to membrane function and control of oxidative stress, 
especially in the hippocampus of the brain, the area responsible 
for associative learning (40). Hennessy et  al. (107) reported 
a reduction in adrenocorticotropic hormone upon exposure 
to novel stimulus for those fed a premium (44% animal-based 
protein) diet as compared to those fed a maintenance diet (17% 
animal-based protein). Other studies have shown a reduction in 
territorial aggression in client-owned dogs fed a lower protein 
diet (106–109). DeNapoli et al. (110) reported that low protein 
diets with supplementary tryptophan reduced aggression in 
dogs. Sechi et al. (111) utilized a dietary intervention strategy of 
nutraceutical supplementation (including tryptophan) in dogs 
with behavior disorders. �ey reported a subsequent increase 
in serotonin, dopamine, and β-endorphins indicating reduced 
aggression, and reduced plasma cortisol and noradrenaline indi-
cating reduced markers of stress. �ese studies o�er a glimpse 
into the potential application of dietary manipulation for stress 
and aggression management. �e need for working canines to 
operate without aggression in stressful environments warrants 
further research in this area. However, reduction of dietary 
protein could be a dangerous undertaking and this topic would 
require extensive research prior to the use of this mitigation 
strategy for dogs in the �eld.

MICROBIOTA

Understanding the Microbes
�e GI microbial community is a complex ecosystem containing 
bacteria, fungi, archea, and protozoa. Improvements in molecular 

techniques such as next generation sequencing have increased  
our study and subsequently our understanding of both the 
composition and function of the GI micro�ora. However, there 
remains a great many unanswered questions regarding the 
impacts associated with changes in the microbiota on the overall 
health and performance of the working canine.

As more studies are published highlighting changes in the GI 
microbiota, it is increasingly important to understand how those 
changes are measured and how that data is presented (112–115). 
Micro�ora, microbiota, and microbiome are all words that seem 
to permeate the discussion in many scienti�c communities. 
Micro�ora is a term that refers to the collective community (fungi, 
archaea, protozoa, bacteria) in question. Bacteria are referred to 
as the “microbiota.” Studies referencing the term microbiome are 
generally describing the genome of the microbiota and typically 
include information about by-products of fermentation (VFA’s, 
pH, etc.) as well as genetic information about the community 
constituents (116).

Microbiota studies are typically visually presented to answer 
taxonomy-related questions such as (1) How many and which 
microbial communities are present? (2) What is the diversity of 
the population? Taxonomic diversity is generally represented 
using alpha and beta diversity. Alpha diversity (diversity within a 
given sample) is typically represented as a rarefaction curve and 
describes evenness and richness of a given sample (117). Rare 
microbial species are more likely to be missing from small samples, 
therefore, richness is an important factor to consider for small 
data sets. Alternatively, beta diversity (diversity between samples) 
is used to measure taxonomic similarity based on phylogenetic 
distance (118). Beta diversity also provides a visual assessment 
of the abundance (weighted) or presence (unweighted) of given 
taxa and is represented using a PCoA plot. Other techniques for 
visual depiction of data include heat maps or hierarchical cluster 
analysis.

Although a comprehensive discussion on the procedures 
associated with microbial sequencing is beyond the scope of 
this work, it is important to understand that primer selection 
and target region of the 16s RNA gene are critical (119, 120) 
and can cause signi�cant variation in the results and subse-
quent interpretation of data generated. �ese techniques are 
culture-independent and have allowed researchers to greatly 
improve our understanding of GI microbiology. Data are highly 
impacted by several factors including sequencing techniques, 
primers, selection of correct hypervariable region and others. 
Inconsistent approaches used in many studies published have 
made it extremely di�cult to make comparisons across data sets 
and continue to challenge interpretation.

Traditional culture-dependent techniques (i.e., Sanger sequen-
cing) have allowed researchers to investigate the presence of  
speci�c pathogens and are useful to identify species commonly 
associated with GI disease such as Salmonella, Campylobacter 
jejuni, or Clostridium perfringens. However, these techniques are 
limited in their applicability as compared to currently molecular 
methods (i.e., next generation sequencing) that make taxonomic 
identi�cation and metagenomics applications easier (121). �e 
comprehensive characterization and community identi�cation 
required for microbial pro�ling of the GI tract requires the more 
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sensitive techniques associated with next generation sequencing 
and has become the accepted standard for microbial studies.

Microbial Balance
�e GI microbial ecosystem harbors signi�cantly di�erent com-
munities within each compartment (122, 123). Predominant 
phyla in working canines are similar to other monogastric species 
and are typically dominated by Firmicutes and Bacteroidetes. 
�e characterization of the collective GI microbial community 
and associated function is beyond the scope of this work and 
has been previously reported elsewhere (114, 122, 123). Resident 
bacterial groups within the GI tract play an intrinsic part in  
the regulation of homeostasis; their role in the regulation of the 
host innate immunity has been well described (124–126). �e 
microbiota comprises part of the intestinal lumen barrier, con-
tributing to the protection of the GI ecosystem via competition 
for nutrients and adhesion sites and by secreting compounds 
thought to inhibit the colonization of non-resident microbes 
(127). �is may explain why puppies are generally more at risk 
for GI disease associated with pathogens such as C. jejuni as their 
bacterial pro�le may not yet be fully mature enough to provide 
su�cient protection or deterrence (128).

Microbial community structure variation between individu-
als is consistently present (129). Age, breed, and gender have all 
been shown to a�ect the microbial pro�le across multiple species 
(130–132). Cohabitation of humans and dogs has also been 
shown to impact the microbial community (133). �e authors 
concluded that the factors a�ecting microbial homeostasis are not 
the same for the oral and GI communities as compared to the 
skin community. �ese data suggest that GI changes are related 
to other, heretofore, unknown factors. �ese reported variations 
must be considered when evaluating published microbial data. 
Studies including dogs across several age groups, breeds, and with 
both genders should be analyzed accordingly to account for the 
variation associated with those factors.

Microbial Imbalance
While it is relatively easy to predict the factors that will a�ect 
the microbiota (age, gender, breed, antibiotic use, travel), it is 
slightly more di�cult to predict the associated impacts to the dog. 
Current evidence suggests that alterations in the GI microbial 
community can fundamentally alter the structure and function 
of the GI lumen; this has been termed “leaky gut syndrome” with 
prior review elsewhere (134). �is condition describes the physi-
cal changes to the intestinal lumen associated with changes in the 
microbial pro�le and is particularly concerning because of the 
potential for immunological disruption and bacterial transloca-
tion resulting in endotoxemia. By-products of healthy microbial 
fermentation, speci�cally short chain fatty acids (SCFA’s), are 
thought to provide energy for the host and contribute to the 
mediation between the microbial ecosystem and activation of the 
immune system (135).

High levels of bacterial diversity are generally associated 
with good health; diminishing diversity has consistently been 
reported with negative health outcomes in humans such as 
obesity, diabetes, and GI disease (136). Reductions in the phyla 
Firmicutes and Bacteroidetes, which are typically dominant, 

along with concomitant increases in Proteobacteria have been 
reported in dogs diagnosed with chronic GI in�ammatory dis-
ease (137). Minamoto et al. (138) demonstrated slightly di�erent 
microbial impacts but that may be due to the variation inherent 
with di�erent techniques, breeds and ages of dogs sampled. 
Development of a dysbiosis index (DI) has o�ered a diagnostic 
tool to categorize microbial data into a simple ratio re�ecting 
normal microbiota (DI < 0) or microbiota indicative of chronic 
enteropathies (DI > 0) (139). Unfortunately, the use of this index 
requires laboratory testing and is limited by its very small initial 
data set. However, the concept provides an important step in the 
direction of assessing fecal samples diagnostically with recom-
mendations for treatment and dietary interventions.

�e bidirectional communication that occurs between the 
brain and gut (microbiota–gut–brain axis) provides some 
insight into the dysbiosis that has been reported as a result 
of environmental stress (140). Stress associated with travel, 
change in environment, and physical exertion are common in 
the working canine. Changes in the fecal microbiota of working 
canines following in-cabin transport via commercial airline 
resulted in an impact on both abundance and type of bacteria 
and were accompanied by a poorer fecal score (85). Conversely, 
when researchers examined the e�ects of helicopter travel 
stress in working canines the relatively short nature of the 
stressor (hot-loading and 30 min of �ight) did not result in any 
e�ect on the microbiota (83). Notably, both studies reported no 
e�ect on performance as determined by total search time or 
previously identi�ed stress behaviors. �e duration and type 
of travel required to induce microbial dysbiosis has not been 
examined in working canines.

Dietary Modi�cation of the Microbiota
While studies in dogs are limited, some data have shown 
promising results for microbial manipulation through the use 
of di�erent �ber supplements on microbial community and 
resulting SCFA production (112, 113, 132, 141–144).

Researchers examining the use of fructooligosaccharides 
reported improved production of butyrate, a volatile fatty acid 
bene�cial to colonocyte and epithelial cell repair, as well as reduc-
tions in C. perfringens, a potentially pathogenic microbe. A sec-
ond study yielded similar results along with increased numbers 
of bi�dobacteria, a potentially bene�cial microbe (144). Other 
work in sled dogs fed a synbiotic (combined pre- and probiotic) 
reported decreasing incidences of diarrhea (141). If researchers 
can develop dietary mitigation strategies that consistently reduce 
or prevent GI distress, this may bene�t dogs working in �eld 
scenarios with limited access to veterinary intervention. �e use 
of dietary supplements that may mitigate or prevent the onset of 
GI distress warrants further study.

Diet has long been identi�ed as the dominant factor impact-
ing microbial community structure (112, 113, 144–148). What 
we don’t know is what impact meal size and frequency has on 
the GI microbiota. Handlers frequently must adjust meal times 
and sizes for detection dogs throughout the course of a mission. 
Data in horses has demonstrated an e�ect on the GI microbiota 
associated with meal frequency and size (148); it is not known if 
a similar impact would be observed in the monogastric canine. 
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Information elucidating potential impacts on the microbiota 
would be helpful in managing concerns associated with diarrhea 
in the �eld.

Micro�ora and Olfaction
�e densely populated microbial niche in the GI tract has 
been reported to play a key role in the regulation of behavior 
and brain function. �e microbiota–gut–brain axis in�uences 
neurotransmission and behavior. It therefore might be the key 
in nutritional interventions for maintaining brain and olfac-
tion health (149), with early microbial modulation resulting in 
long-term impacts on stress-related physiology and behavior 
(150). Given the relatively unexplored nature of the commu-
nication occurring between the gut microbiota and the stress 
response system of the brain, it seems reasonable to question 
whether alterations of the gut microbiota could play a role in 
stress reduction as evidenced by the display of stress behaviors  
in the dog.

�e olfactory epithelium has been generally overlooked regar-
ding the potential role of microorganisms on the development  
and e�ciency of odorant transduction. ORs are formed by 
many G-protein coupled receptor proteins that identify volatile 
odorant molecules (151). Originally it was thought ORs were 
only located in the olfactory epithelium. In the GI tract, ORs 
have been identi�ed in enterochroma�n cells; these receptors 
can a�ect the secretion of serotonin in response to fragrant mol-
ecules with subsequent e�ects on GI motility (152). Serotonin 
also plays a critical role for olfactory information processing 
as the olfactory bulb is comprised of serotonergic �bers and 
was recently shown to e�ectively regulate the �ow of olfactory 
processing in mice (153). Given the link between GI microbiota 
and serotonin regulation, it seems likely that a relationship exists 
between the GI microbiota and odorant detection although as 
yet it is unknown (154).

Nasal microbiota community structure has been linked to 
olfactory function (155). Human subjects demonstrated di�er-
ences in microbiota of people assessed for olfactory function 
with de�ciencies related to the presence of butyric-acid produc-
ing microbes (155). �ese �ndings suggest that the microbial 
composition of the nasal passage can potentially shape or alter 
olfactory performance. �e implications of altered olfactory 
performance associated with bacterial �uctuations in the nose 
are signi�cant. �e nasal microbiota of dogs with chronic rhi-
nitis and nasal neoplasia was reported to di�er in community 
structure when compared to healthy dogs (156). Isaiah et  al. 
(157) identi�ed an e�ect associated with job type on canine nasal 
microbiota. Even though all dogs were housed in a single facility 
and fed a single diet, researchers reported di�erences in alpha 
diversity for canines that was related to job type (vapor wake, 
patrol and narcotics, explosives). No di�erences were reported in 
beta diversity suggesting that species richness but not bacterial 
community structure was a�ected by the work done by dogs in 
each group (157).

One speci�c OR (OR51E1) has been detected in pigs along 
the entire GI tract from the gastric cardia to the rectum (152). 
OR51E1 colocalizes with an enteroendocrine cell marker all along 

the GI tract and was expressed in the greatest density in the duo-
denum. Duodenal enteroendocrine cells are the pri mary source 
of gastric inhibitory peptide and cholecystokinin. Duodenal 
enteroendocrine cells are equipped with multiple receptors 
connected to sweet and bitter tastes. OR51E1 gene expression 
in olfactory bulbs has demonstrated feedback mecha nisms, 
di�erential activation of transcription factors, and epigenetic  
regulation. Circulating hormones that control food intake and 
energy balance modulate olfactory epithelium, and the abla-
tion of olfactory sensory neurons in mice protected them from  
diet-induced obesity (158). �ere are several factors like age  
and diet that impact gut luminal microenvironment and the 
intestinal microbiota modulate OR51E1 gene expression in GI 
tract tissues (152).

FUTURE DIRECTIONS AND 

UNANSWERED QUESTIONS

We lack evidence-based data conducted in working canines 
that will allow us to fully investigate the links between micro-
biota shi�s and any possible performance (i.e., olfaction 
related) or health sequalae. We know that diet can both change 
the microbiota and impact olfaction in other species. What we 
do not yet know is what mechanism (if any) exists that links 
olfaction with the microbiota. When one considers the unique 
microbial community harbored by the individual dog, does 
that explain why olfaction was only compromised in 50% of 
the dogs who were received metronidazole (71)? Is it possible 
that the reduction in Firmicutes experienced by dogs receiv-
ing metronidazole provides the key to the olfactory challenge 
they experienced (114)? If olfaction is enhanced as a result 
of fasting (102) and satiety reduces olfactory performance  
(103), should we be rethinking the timing of our feeding pro-
grams? What impacts will that fasting have on the microbiota of 
the working canine? �e critical impact of the work conducted 
by these canines requires much deeper understanding of all 
things that could hinder their job performance. A more thor-
ough investigation of factors associated with microbial changes 
and associated impacts on job performance (i.e., olfaction)  
is vital.
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