
 Open access  Journal Article  DOI:10.1103/PHYSREVE.55.7771

When the telegrapher's equation furnishes a better approximation to the transport
equation than the diffusion approximation — Source link 

Josep M. Porr`a, Jaume Masoliver, George H. Weiss

Institutions: University of Barcelona, National Institutes of Health

Published on: 01 Jun 1997 - Physical Review E (American Physical Society)

Topics: Telegrapher, Diffusion equation, Fokker–Planck equation, Riccati equation and Convection–diffusion equation

Related papers:

 The physical defects of the hyperbolic heat conduction equation

 Common Misperceptions of the Hyperbolic Heat Equation

 Some applications of persistent random walks and the telegrapher's equation

 Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)]

 On Hyperbolic Heat Conduction and the Second Law of Thermodynamics

Share this paper:    

View more about this paper here: https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-
3w0ek5vyd2

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVE.55.7771
https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
https://typeset.io/authors/josep-m-porr-a-2ce7nv1fgn
https://typeset.io/authors/jaume-masoliver-5x5yu4u205
https://typeset.io/authors/george-h-weiss-4acj1sxrgq
https://typeset.io/institutions/university-of-barcelona-1a08l35y
https://typeset.io/institutions/national-institutes-of-health-3vdo448k
https://typeset.io/journals/physical-review-e-9qlkqn9m
https://typeset.io/topics/telegrapher-2o2e9l94
https://typeset.io/topics/diffusion-equation-2gt9evhq
https://typeset.io/topics/fokker-planck-equation-3883jvtd
https://typeset.io/topics/riccati-equation-2fcbjt52
https://typeset.io/topics/convection-diffusion-equation-txh3v6q3
https://typeset.io/papers/the-physical-defects-of-the-hyperbolic-heat-conduction-14kdp6593y
https://typeset.io/papers/common-misperceptions-of-the-hyperbolic-heat-equation-541ualnlfy
https://typeset.io/papers/some-applications-of-persistent-random-walks-and-the-450a4sa1ow
https://typeset.io/papers/addendum-to-the-paper-heat-waves-rev-mod-phys-61-41-1989-2f6nwq8jcn
https://typeset.io/papers/on-hyperbolic-heat-conduction-and-the-second-law-of-3h8cqtshmo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
https://twitter.com/intent/tweet?text=When%20the%20telegrapher's%20equation%20furnishes%20a%20better%20approximation%20to%20the%20transport%20equation%20than%20the%20diffusion%20approximation&url=https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
https://typeset.io/papers/when-the-telegrapher-s-equation-furnishes-a-better-3w0ek5vyd2
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It has been suggested that a solution to the transport equation which includes anisotropic scattering can be

approximated by the solution to a telegrapher’s equation @A.J. Ishimaru, Appl. Opt. 28, 2210 ~1989!#. We show

that in one dimension the telegrapher’s equation furnishes an exact solution to the transport equation. In two

dimensions, we show that, since the solution can become negative, the telegrapher’s equation will not furnish

a usable approximation. A comparison between simulated data in three dimensions indicates that the solution

to the telegrapher’s equation is a good approximation to that of the full transport equation at the times at which

the diffusion equation furnishes an equally good approximation. @S1063-651X~97!04205-0#

PACS number~s!: 05.60.1w

I. INTRODUCTION

Problems related to the transport of matter in disordered
media are common to a number of areas of science and tech-
nology, and have given rise to a considerable amount of
research aimed at delineating properties of motion in such
media @1,2#. When the medium is a continuum, a natural
starting point for any analysis is based on solving an appro-
priate transport equation. Since there are no general solutions
other than purely numerical ones for such equations it is
often difficult to fit experimental data to theory, as would be
necessary to determine physically significant parameters.
Hence a number of approximation schemes have been used
to derive more tractable mathematical models.

The simplest such model which is adequate in many ap-
plications approximates the full transport equation by a dif-
fusion equation. A related model which has recently been
applied to problems arising in tissue optics is based on the
theory of lattice random walks @3–5#. Both of these are de-
ficient in failing to properly account for anisotropic scatter-
ing, although this problem tends to vanish at increasingly
long times, which is essentially the regime in which the cen-
tral limit theorem is equivalent to the diffusion approxima-
tion. Nevertheless the diffusion equation is appealing be-
cause it is trivial to solve in unbounded spaces and easy to
specify boundary conditions associated with finite media.

Several compromises have been suggested to incorporate
at least some aspects of anisotropic scattering into the diffu-
sion picture. A strategy used in several optical applications is
to correct the diffusion constant by using a characteristic
parameter related to the degree of anisotropic scattering @6#.
A recent suggestion has been made by Ishimaru in the con-
text of tissue optics, that anisotropy can be incorporated into
the analysis by replacing the diffusion equation by a telegra-
pher’s equation ~TE! @7#, which has the form

~]2P/]t2! 1@~1/T !~]P/]t !# 5c2¹2P , ~1!

where T is a parameter with the dimensions of time and c is
a speed. Two motivating factors for Ishimaru’s suggestion

are to be found in an observation by Goldstein that the con-
tinuum limit of a persistent random walk is a telegrapher’s
equation @8#, and from an approximation based on the trans-
port equation derived by Ishimaru @9#.

In the present paper we investigate whether the TE pro-
vides a better approximation to the solution of the full trans-
port equation over a physically relevant time span than does
the diffusion equation. We show that this is true for the
single-speed model in one dimension, but that in two dimen-
sions the TE has a solution that is negative in some region of
the plane, and therefore cannot be identified as a probability
density. In the case of three dimensions we show, by com-
paring the theoretical results to data simulated using a physi-
cally plausible model, that the solution to the TE is not a
good approximation to the simulated results except at com-
paratively long times, at which the solution of the TE essen-
tially coincides with the solution to the diffusion equation.

II. TRANSPORT EQUATION

In modeling transport we will consider the single-speed
model only @10#. Let l be the scattering rate. Absorption in
the medium will be modeled in terms of Beer’s law charac-
terized by a rate parameter m @5#. Only the case of a pulse
propagating in a translationally invariant medium will be
considered. Let the direction in which a single particle
moves be denoted by the solid angle V. In three dimensions
V5(u ,w), where u is the polar angle and w is the azimuthal
angle. Further, let b(VuV8) denote the scattering kernel,
i.e., the probability that a single scattering changes the direc-
tion of the photon path from V8 to a direction falling some-
where in the infinitesimal interval (V,V1dV) is equal to
b(VuV8)dV. The speed between collisions will be taken to
be a constant v , and the corresponding velocity, which takes
the direction into account, will be denoted by v(V). For
example, in three dimensions

v~V!5~vsinu cos w ,vsinu sin w ,vcosu !,

where u and w are the polar and azimuthal angles, respec-
tively. The object of our investigation is to find the probabil-
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ity density for the particle to be at r moving in the direction
V at time t . This function will be denoted by p(r,V,t). In
this notation the full transport equation is

]p/]t 52~l1m !p2v~V!•“p

1lE p~r,V8,t !b~VuV8!dV8. ~2!

Only the case in which the initial condition is a single pulse
will be analyzed. In three dimensions this allows us to write

p~r,V8,0!5 ~1/4p ! d~r!5 d~r !/16p2r2 . ~3!

We will assume that the kernel b(VuV8) depends only on
the deflection angle g , i.e., the angle between directions V

and V8. In this case, the deviation from isotropic scattering
will be denoted by g5^cosg&. The solution to Eq. ~2! can be
expanded in terms of spherical harmonics, although in prac-
tice the series is generally truncated. The so-called P1 ap-
proximation, commonly used in nuclear reactor analysis
@10,11#, is equivalent to the assumption that p(r,V,t) is only
weakly dependent on angle. In three dimensions this is
equivalent to writing @11#

p~r,V,t !' ~1/4p ! P~r,t !1 ~3/4pv
2! v„V)•J~r,t !.

~4!

Here P(r,t) is the angle-averaged value of p(r,V,t), i.e.,

P~r,t !5E p~r,V,t !dV,

and the flux J(r,t) is related to p(r,V,t) by

J~r,t !5E v~V!p~r,V,t !dV. ~5!

The angle variables appear linearly in Eq. ~4! as indicated.
On substituting this expansion into Eq. ~2!, we find a coupled
set of equations for P(r,t) and J(r,t), which is

]P/]t 52mP2“•J, ~6a!

]J/]t 52~l81m !J2 ~v
2/3 !“P , ~6b!

where

l85l~12g ! ~7!

is an anisotropy-corrected scattering rate. On the further as-
sumption that ]J/]t can be neglected in comparison to the
terms on the right-hand side of Eq. ~6b!, one finds a damped
diffusion equation for P(r,t),

~]P/]t ! 1mP5D“2P ,

with an effective diffusion constant

D5 v
2/@3~l81m !# .

If the time derivative of the flux is not considered negli-
gible then the function J(r,t) can be eliminated from Eq.
~6b!, and the equation satisfied by P(r,t) is the damped te-
legrapher’s equation

]2P

]t2 1~l812m !
]P

]t
1m~l81m !P5c2“2P , ~8!

where the velocity c is equal to v/A3. This equation has
been obtained by taking the divergence on both sides of Eq.
~6b!, commuting the divergence operator and ]/]t on the
left-hand side, and finally using Eq. ~6a! to write “•J in
terms of P .

We note that the substitution P(r,t)5Q(r,t)e2mt trans-
forms Eq. ~8! into the standard form of the TE in Eq. ~1! with
the time parameter T51/l8. We also observe that the solu-
tion to the telegrapher’s equation at very long times reduces
to a Gaussian @12#, which is the solution to the diffusion
equation in free space. The question to be addressed is
whether the solution of the telegrapher’s equation more
faithfully reproduces the solution of the full transport equa-
tion than does the diffusion equation. We consider this prob-
lem in one, two, and three dimensions.

A. One dimension

In one dimension a particle can move in only two direc-
tions, the coordinate of its location at any time t either in-
creasing or decreasing with a constant speed. Thus a descrip-
tion of the system requires consideration of the evolution of
two probability densities, p i(x ,t), i561, where i561 re-
fers to a particle having a speed 6v . If P(x ,t) and J(x ,t)
are defined by

P~x ,t !5p1~x ,t !1p21~x ,t !,

J~x ,t !5v@p1~x ,t !2p21~x ,t !# , ~9!

then the full transport equation coincides exactly with the
P1 approximation. Hence it follows from our earlier remark
that the equation satisfied by P(x ,t) is the damped telegra-
pher’s equation, Eq. ~8!, with c5v . Hence in one dimension
the TE provides an exact, rather than approximate, solution
to the full transport equation. This is also implied in the work
of Goldstein @8#.

B. Two dimensions

The problem of the appropriateness of the TE as a model
accounting for anisotropy is much more interesting in dimen-
sions greater than one, since the P1 approximation is not
equivalent to the full transport equation. In two dimensions
the angular coordinate V consists of a single polar angle u .
The P1 approximation is found by retaining only the terms
n521, 0, and 1 in the Fourier expansion of p(r,u ,t),

p~r,u ,t !5 (
n52`

`

bn~r,t !e inu, ~10!

and the telegrapher’s equation is given by Eq. ~8! with

c5v/A2. We have shown that a simple transformation of the
dependent variable serves to eliminate the parameter m , al-
lowing us to simplify the analysis by neglecting absorption.
The solution to the TE in two dimensions for the set of
isotropic initial conditions

p~r,0!5d~r!, ]p/]t u t5050, ~11!

can be obtained by Laplace-Fourier transform, and is written
in terms of the dimensionless combination

a5 ~l8/vA2 !Av
2t2/22r2 ~12!

7772 55BRIEF REPORTS



as

P~r ,t !5

l8e2l8t/2

23/2pvAv
2t2/22r2 S cosha1

l8tsinh a

2a D
3H~vt/A22r !1

e2l8t/2

pA2v

cosha

3

]

]t FH~vt/A22r !

Av
2t2/22r2 G . ~13!

In this equation H(z) is the Heaviside step function,

H(z)51, z.0, and H(z)50 for z,0.

Figure 1 compares profiles of the angular density

2prP(r ,t) for the isotropic model where g50. The three

values of P(r ,t) that are plotted are Pexact(r ,t), the exact

solution, PTE(r ,t), the solution obtained from Eq. ~13!; and

Pdiffusion(r ,t), the solution obtained from the diffusion ap-

proximation. The exact solution was obtained in @13# and

reads

Pexact~r,t !5e2ltFd~r2vt !

2pr
1

l

2pvAv
2t2

2r2

3expS lAv
2t2

2r2

v
D H~vt2r !G . ~14!

Note that the exact result, Eq. ~14!, and the solution to TE,
Eq. ~13!, both converge when t→` to the diffusion approxi-
mation given by

Pdiffusion~r,t !5~l/2v
2pt ! exp~2 lr2/2v

2t !. ~15!

We note that the divergence of P(r ,t) at r5vt/A2 @c.f. Eq.
~13! is due to the time propagation of the singular initial
condition Eq. ~11!. The same happens to Pexact(r ,t) at the
boundary r5vt . We also observe that the divergence is in-
tegrable, and both P(r ,t) and Pexact(r ,t) are normalized
to 1.

It is evident that the solution for PTE(r ,t) becomes nega-

tive somewhere in the interval (0,vt/A2), and therefore can-
not be a probability density. Such behavior is a characteristic
of solutions found in even-dimensional spaces @12#. In con-
sequence, the TE cannot furnish an accurate approximation
to the solution of the full transport equation in even dimen-
sions, except in the limit of times so large that the solution of
the TE is essentially equal to the solution provided by the
diffusion equation. In addition, even in the regions where the
solution of the TE is positive, numerical data indicate that
the diffusion approximation is better than the TE solution
~see Fig. 1!.

C. Three dimensions

An expression is known for the Fourier-Laplace transform
of the solution of the isotropic transport equation in Eq. ~2!
for the fully isotropic case @13#,

b~VuV8!5 1/4p . ~16!

Since the transform cannot be inverted except numerically,
we conducted a simulation study to test the quality of the
approximation furnished by the TE. Our simulations were
only for particles moving in an unbounded space. The time
between two successive scattering events were random vari-
ables whose properties were described by a negative expo-
nential probability density

c~ t !5le2lt. ~17!

In our choice of the form of the kernel b(VuV8), we as-
sumed that this depended only on the deflection angle g ,
while the azimuthal angle w was assumed to be uniformly
distributed in the interval (2p ,p). Between scatterings the
particles were assumed to move in straight lines. The effect
of anisotropic scattering was mimicked by choosing the scat-
tering angle according to the widely used Henyey-Greenstein
phase function @14#

F~g !5

12g2

2g F 1

12g
2

1

A11g2
22gcos g

G , 0<g<p .

~18!

FIG. 1. The two-dimensional radial probability densities

2prPexact(r ,t) ~solid line!, 2prPTE(r ,t) ~dashed line!, and

2prPdiffusion(r ,t) ~dot-dashed line! plotted as a function of r for ~a! t51 and

~b! t510. Both sets of curves were generated using the parameter values

l5v51.
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Other phase functions may have been used, because the only
requirement is that the anisotropic factor g5^cosg&Þ0 is
different than zero.

The data generated in this way were compared with re-
sults generated from the solution to the three-dimensional TE
in free space. Analogously to the two-dimensional case, this
solution is expressed in terms of the variable

j5 ~l8/2v !Av
2t2

23r2 ~19!

as

P~r,t !5

e2l8t/2

2pr
FA3l8

4v
S 11

l8t

4
D d~r2vt/A3 !

2

1

2

]

]r
d~r2vt/A3 !G1

3l82e2l8t/2

16pv
2Av

2t2/32r2

3F I1~j !1

l8t

2j
I2~j !GH~vt/A32r !, ~20!

where In(z) are modified Bessel functions. At long times the
solution given in Eq. ~20! tends toward the Gaussian solution
of the diffusion equation, i.e.,

P~r,t !→~3l8/4pv
2t !3/2exp~2 3l8r2/4v

2t !. ~21!

Figure 2 shows the results of 10 5 simulated runs as described
above and carried out for the parameter values g50.5,

v51, and l51. Two sets of data are shown that correspond
to times t55 and 25, which is in the regime in which the
Gaussian form in Eq. ~21! is expected to be valid. The agree-
ment with the asymptotic Gaussian form of P(r,t) at the
larger time is seen to be quite good, while the agreement
with the TE at shorter times is not.

The solution given in Eq. ~20! is non-negative, but the
fact that the rescaled speed of propagation cannot correspond
to the true speed of the scattered particles prevents finding a
more accurate approximation, at least in terms of the TE.
This is apparently due to the contributions to P(r,t) from
particles which have never been scattered. It is possible that
this shortcoming can be overcome by explicitly decomposing
the solution of the transport equation into a contribution from
the unscattered particles, and one from those that were scat-
tered at least once, as is sometimes done in other problems
related to photon diffusion in turbid media @7#. A study of
this type of approximation is presently under consideration.

III. A FINAL COMMENT

Both simulations and analytical considerations
suggest that, except in one dimension, there are significant
difficulties in basing an approximate solution to the full
transport equation on an ‘‘equivalent’’ telegrapher’s equa-
tion. In two dimensions this occurs because the solution to
the telegrapher’s equation has regions in which the solution
is negative. In three dimensions the difficulty can be traced
to an inaccurate accounting for particles that remain unscat-
tered at time t . At very long times, when the number of such
particles is considerably reduced, the solution to the telegra-
pher’s equation is quite accurately approximated by the so-
lution to a diffusion equation. Our simulations suggest that in
this regime the solution to the full transport equation can also
be modeled quite accurately.
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FIG. 2. A comparison of simulation results ~square symbols!, the solu-

tion to the three-dimensional TE ~dashed line!, and the diffusion approxi-

mation ~solid line! plotted as a function of r for ~a! t55 and ~b! t525. The

curves and data points in these curves were generated using parameter val-

ues l5v51 and the asymmetry factor g50.5. The curves at the earlier

time agree poorly with solutions to both the TE and diffusion equations,

while those at the later time agree reasonably well with the solution to the

TE, but that agrees well with the solution to the diffusion equation.
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