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Modeling cooperative dynamics using networks of phase oscillators is common practice for a wide spectrum of

biological and technological networks, ranging from neuronal populations to power grids. In this paper we study

the emergence of stable clusters of synchrony with complex intercluster dynamics in a three-population network

of identical Kuramoto oscillators with inertia. The populations have different sizes and can split into clusters

where the oscillators synchronize within a cluster, but notably, there is a phase shift between the dynamics

of the clusters. We extend our previous results on the bistability of synchronized clusters in a two-population

network [I. V. Belykh et al., Chaos 26, 094822 (2016)] and demonstrate that the addition of a third population

can induce chaotic intercluster dynamics. This effect can be captured by the old adage “two is company, three

is a crowd,” which suggests that the delicate dynamics of a romantic relationship may be destabilized by the

addition of a third party, leading to chaos. Through rigorous analysis and numerics, we demonstrate that the

intercluster phase shifts can stably coexist and exhibit different forms of chaotic behavior, including oscillatory,

rotatory, and mixed-mode oscillations. We also discuss the implications of our stability results for predicting the

emergence of chimeras and solitary states.
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I. INTRODUCTION

Patterns of synchronized activities are observed in many

natural and technological networks [1–3]. In biological sys-

tems, examples include synchronized cortical rhythms in the

central nervous systems of mammals which are crucial for

sensory perception, memory, and locomotion [4–6]; patholog-

ical neuronal synchronization, which causes epileptic seizures

and Parkinson’s tremors [7,8]; birds flying in formation and

maneuvering as one cohesive unit [9]; and synchronized gaits

of walkers on a wobbly footbridge [10–13]. In technological

systems, synchronization is required for an array of lasers to

reach high intensity levels [14–16] and for power generators

for the operation of electrical power grids [17].

The strongest form of synchronized activities is complete

synchronization of identical or nearly identical oscillators

whose emergence and stability are controlled by the un-

derlying network structure [18–21]. Cluster synchronization

emerges when the network splits into clusters of coherent

oscillators but the dynamics between the clusters remains

asynchronous [22–33]. The existence of clusters in networks

of identical oscillators is governed by network symmetries,

and possible cluster partitions can be identified by combinato-

rial methods [31–33]. The stability of cluster synchronization

[22–25,30,33] and its persistence against individual oscilla-

tors’ parameter mismatch [26] have been studied for several

general classes of oscillator networks. However, the emer-

gence and hysteretic transitions between clusters in multi-

stable oscillator networks have yet to be fully understood. The

celebrated Kuramoto model of first-order phase oscillators

[34,35] is such an example of a network capable of exhibiting

various transitions from complete incoherence to cluster and

complete synchronization [36–43]. These transitions are often

accompanied by the emergence of spatiotemporal structures

such as chimeras in which some oscillators synchronize

within a cluster whereas the others remain in incoherent states

[44–47]. While completely rigorous analysis of the stability

of chimera states in Kuramoto networks is often elusive and

most studies rely on numerical simulations, there are a select

few that put this analysis for large [48–50] and small [51,52]

networks on a more rigorous footing.

The original Kuramoto model of one-dimensional (1D)

oscillators was extended to a model of two-dimensional (2D)

phase oscillators with inertia [53]. This modification made the

2D oscillators capable of adjusting their natural frequencies

and allowed the Kuramoto second-order oscillator network

to become a more adequate model of real-world networks,

including neural, mechanical, and power grid systems [54].

As a result, networks of Kuramoto oscillators with inertia can

exhibit a rich array of dynamics, including complex synchro-

nization transitions [55–58], hysteresis [59] and bistability

of synchronous clusters [60], intermittent chaotic chimeras

[61], reentrant synchronous regimes [62], and solitary states

[63,64]. In particular, it was numerically demonstrated that

weak chimera states can appear in small networks composed

of only three Kuramoto oscillators with inertia [64]. These so-

called weak chimera states are characterized by the formation

of a synchronized two-oscillator cluster and one incoherent

oscillator which rotates at a different frequency and can ex-

hibit periodic or chaotic dynamics [64]. The smallest chimera

states in the three-node network can also be viewed as a

proxy of a two-cluster pattern in a three-group network of
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identical Kuramoto oscillators with inertia. In this setting,

the oscillators can synchronize within each group, and two

groups in turn can synchronize between each other while

leaving the dynamics of the third group incoherent. The

emergence of these and more complex clusters of synchrony

in multipopulation Kuramoto networks with inertia calls for

an analytical study to isolate the principal bifurcations and

stability mechanisms underpinning the coexistence of stable

clusters with complex, possibly chaotic dynamics. This paper

seeks to establish such an analytical insight.

In a recent paper [60], we derived analytical conditions for

the emergence and coexistence of stable synchronized clusters

in a two-population network of identical Kuramoto oscillators

with inertia. These populations have different sizes such that

complete synchronization of all oscillators is impossible. In-

stead, the oscillators can synchronize within each population

cluster while there is a phase shift between the dynamics of the

two clusters. Due to the presence of the inertia which makes

the oscillator dynamics two-dimensional, this phase shift can

oscillate, inducing a breathing cluster pattern which can stably

coexist with a cluster pattern with a constant phase shift. In

this paper, we aim at cluster dynamics of a three-population

Kuramoto network with inertia obtained by adding a third

population to the above two-population network setting from

[60]. The resultant network is a three-population network of

oscillators capable of synchronizing within each population,

thereby potentially forming three synchronized clusters.

We primarily focus on the intercluster phase dynamics,

which can exhibit various types of complex behavior and

multistability. Through rigorous analysis and numerics, we

demonstrate that the addition of the third population can

induce multistable chaotic dynamics, including those in which

the phase shift between the first and second populations os-

cillates chaotically with small amplitudes, whereas the phase

shift between the second and third populations makes large-

amplitude chaotic excursions. This effect may remind the

reader of the familiar expression about romantic relationships

“two is company, three is a crowd.” This conventional wisdom

suggests how events may unfold when such a relationship

becomes destabilized by the addition of a third party.

Our three-population network can be considered a phe-

nomenological model for describing cluster formation in

real-world oscillatory networks. Suitable real-world network

dynamics that can be captured by our model include (i) a mul-

ticommunity neural structure of the nematode Caenorhabditis

elegans in which neurons within each community form clus-

ters of synchronized electrical activity that control locomo-

tory rhythmogenesis [65,66] and (ii) animal grouping when

schooling fish align their swimming directions to split into

cooperative clusters of synchronized movements to improve

foraging success [67].

The layout of this paper is as follows. First, in Sec. II, we

present the oscillator network model and state the problem

under consideration. In Sec. III, we study limit sets and

bifurcations in a four-dimensional (4D) system of two coupled

pendulum equations which determines the existence of pos-

sible intercluster dynamics in the three-population network.

We develop an auxiliary system method to derive bounds

on partitions of parameters with permissible dynamics which

include combinations of coexisting constant, periodic, and

FIG. 1. Three-population network of M + 2N oscillators (1).

Oscillators within each group are all-to-all connected to each other

through uniform coupling μ. All oscillators in the second group of

size M are connected to all oscillators in the first and third groups of

sizes N through uniform coupling ν. There are no direct connections

between the first and third groups.

chaotically oscillating and rotating pairwise phase shifts. In

particular, we prove the existence of a homoclinic orbit of a

saddle-focus fixed point in the 4D system which satisfies the

Shilnikov criterion [68] and yields spiral chaos. In Sec. IV, we

analyze the variational equations for the stability of the three-

cluster pattern as well as of its embedded two-cluster regime

where the first and third populations become synchronized

between each other, making their phase shift zero. As in the

two-population case [60], we derive necessary and sufficient

conditions for the constant phase shifts and give bounds on the

stability of the cluster patterns with chaotically oscillating and

rotating phase shifts. We also discuss the implications of our

stability results for the stability of chimeras. Our analytical

study is supported by numerical examples which indicate that

the three-cluster pattern with chaotic phase shifts may have

a fairly large attraction basin and coexist with chimeras and

hybrid solitary-chimera states. Section V contains concluding

remarks and a discussion. Appendix A provides a nontrivial

analysis of the existence of the saddle-focus fixed point.

Appendix B gives the proof of the existence of the homoclinic

orbit and justifies the parameter space partition into regions

with distinct periodic and chaotic intercluster dynamics.

II. NETWORK MODEL

We consider the three-population network of 2D rotators

depicted in Fig. 1 and modeled by the following system:

mθ̈i + θ̇i = ω0 +
1

M + 2N

⎡

⎣μ

N
∑

j=1

sin(θ j − θi − α)

+ν

M
∑

j=1

sin(φ j − θi − α)

⎤

⎦,

mφ̈k + φ̇k = ω0 +
1

M + 2N

⎡

⎣ν

N
∑

j=1

sin(θ j − φk − α)

+μ

M
∑

j=1

sin(φ j − φk − α)

+ν

N
∑

j=1

sin(ψ j − φk − α)

⎤

⎦,
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mψ̈l + ψ̇l = ω0 +
1

M + 2N

⎡

⎣ν

M
∑

j=1

sin(φ j − ψl − α)

+μ

N
∑

j=1

sin(ψ j − ψl − α)

⎤

⎦, (1)

where i = 1, . . . , N , k = 1, . . . , M, and l = 1, . . . , N . The

network is composed of three oscillator populations of sizes

N, M, and N. Variables θi, φk, and ψl correspond to the

phases of 2D oscillators from the first, second, and third

populations, respectively. The undirected connections within

each population are all-to-all with a uniform intragroup cou-

pling μ. The oscillators from the second (middle) group of

size M are all-to-all connected to the oscillators from the

first and third groups via a uniform intergroup coupling ν.

To isolate the effect of adding an extra population to a two-

population network, we do not directly couple the first and

third groups, thereby introducing a nonglobal structure to the

network (1). The oscillators are chosen to be identical, with

frequency ω0, phase lag α ∈ [0, π/2), and inertia m. The

model (1) is obtained from the Abrams et al. chimera model

[45,46], consisting of two groups of 1D phase oscillators

with Kuramoto-Sakaguchi coupling [36], by increasing the

dimension of the phase oscillators, adding the third group, and

making the group sizes uneven. The latter property does not

allow the network to exhibit complete synchronization, which

otherwise could have been the most dominant stable pattern.

As a result, the uneven group sizes can promote the emergence

of stable clusters.

Introducing new variables τ = μt/(M + 2N ) and β =
μm/(M + 2N ) along with a rotating frame of reference �i =
θi − ω0t + c, �k = φk − ω0t + c, and 
l = ψl − ω0t + c,

where c is a constant, we can rewrite the system (1) in a more

convenient form,

β�̈i + �̇i =
N

∑

j=1

sin(� j −�i−α) + γ

M
∑

j=1

sin(� j −�i−α),

β�̈k + �̇k = γ

N
∑

j=1

sin(� j − �k − α)

+
M

∑

j=1

sin(� j − �k − α)

+ γ

N
∑

j=1

sin(
 j − �k − α),

β
̈l + 
̇l = γ

M
∑

j=1

sin(� j − 
l − α)

+
N

∑

j=1

sin(
 j − 
l − α), (2)

where γ = ν/μ represents the ratio between the intra- and

intergroup couplings. Without loss of generality, we assume

that the intragroup coupling μ is stronger than the intergroup

coupling ν so that γ ∈ (0, 1).

While the network (2) may exhibit various clusters of

perfect synchrony induced by additional symmetries of the

network connectivity, we will mainly focus on the dynamics

and stability of three-group cluster C��
 where the oscillators

are synchronized within the three groups. The existence of this

cluster is defined by the invariant manifold (hyperplane)

C��
 = {�1 = · · · = �N = �, �̇1 = · · · = �̇N = �̇,

�1 = · · · = �M = �, �̇1 = · · · = �̇M = �̇,


1 = · · · = 
N = 
, 
̇1 = · · · = 
̇N = 
̇}.
(3)

Hereafter, we will refer to C��
 as a “manifold” or a “so-

lution” interchangeably, depending on what term is more

suitable in a particular context.

Notice that the equal node degree is a necessary condition

for oscillators to form a synchronous cluster. Therefore, the

oscillators from the second group of size M may not be syn-

chronized with the oscillators from the first and third groups

of size N, whereas the latter can form a cluster. As a result, the

three-group cluster manifold C��
 has an embedded invariant

two-cluster manifold,

C��� = {�1 = · · · = �N = �, �̇1 = · · · = �̇N = �̇,

�1 = · · · = �M = �, �̇1 = · · · = �̇M = �̇,


1 = · · · = 
N = �, 
̇1 = · · · = 
̇N = �̇},
(4)

which represents the largest possible cluster partition of the

network (2) with one synchronous cluster composed of all

oscillators from the first and third groups and the other formed

by all oscillators from the second group.

In the following, we will analyze the dynamics and stability

of synchronous clusters C��
 and C��� and reveal the role

of the intrinsic oscillator parameters, coupling strength, and

network sizes in controlling the onset of each of the two

cluster regimes.

III. POSSIBLE INTERCLUSTER DYNAMICS

We first study the existence of possible temporal dynamics

in the three-cluster manifold C��
 . These dynamics are de-

scribed by the following system obtained from system (2) by

removing the indexes i, j, k:

β�̈ + �̇ = γ M sin(� − � − α) − N sin α,

β�̈ + �̇ = γ N[sin(� − � − α) + sin(
 − � − α)]

− M sin α,

β
̈ + 
̇ = γ M sin(� − 
 − α) − N sin α. (5)

Introducing the differences between the phases x = � −
� and z = 
 − �, we obtain the equations that gov-

ern the dynamics of the phase differences between the
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clusters

β ẍ + ẋ = (M − N ) sin α − γ [N sin(x − α)

+ M sin(x + α) + N sin(z − α)],

β z̈ + ż = (M − N ) sin α − γ [N sin(x − α)

+ M sin(z + α) + N sin(z − α)]. (6)

A. Transformation to coupled pendulum equations

Like in [60], we set � = (M − N ) sin α, R =
γ
√

N2 + M2 + 2MN cos 2α, and δ0 = arctan ( M−N
M+N

tan α)

and use trigonometric formulas to turn the system (6) into

β ẍ + ẋ = � − R sin(x + δ0) − γ N sin(z − α),

β z̈ + ż = � − R sin(z + δ0) − γ N sin(x − α). (7)

Shifting the variables (x, z) → (x + δ0, z + δ0), setting

δ = α + δ0, and rescaling time τ = t

√

β

R
, we obtain

ẍ + hẋ + sin x = ω − a sin(z − δ),

z̈ + hż + sin z = ω − a sin(x − δ), (8)

where h = 1√
βR

, ω = �
R
, a = γ N

R
, ẋ = dx

dτ
, and ż = dz

dτ
. Ob-

serve that (8) is a 4D system of two coupled pendulums and

therefore can exhibit complex dynamics. In some sense, each

pendulum equation of (8) may also be viewed as a periodically

driven nonlinear pendulum which is notoriously known for its

chaotic behavior [69].

B. Fixed points

Depending on the parameters, the 4D system (8) may have

up to four fixed points such that each point (x∗, z∗) corre-

sponds to a constant phase shift x∗ (z∗) between the first (third)

and second clusters. In the following, we will show that two

out of the four fixed points may be saddle foci with a positive

saddle value which can undergo a homoclinic bifurcation and

induce Shilnikov-type chaotic intercluster dynamics.

System (8) is symmetric in x and z and has an invariant

manifold x = z which corresponds to the cluster manifold

C���. The dynamics on the manifold C��� : {x = z} is de-

scribed by the system

ẍ + hẋ + sin x + a sin(x − δ) = ω,

which can be further reduced to a pendulum equation by

combining the sine terms and using a trigonometric identity

so that

ẍ + hẋ + a1 sin(x − δ1) = ω, (9)

where a1 =
√

1 + a2 + 2a cos δ and δ1 = arctan a sin δ
1+a cos δ

.

Therefore, for ω < a1, the 4D system (8) has two fixed

points,

O1

(

xs = zs = arcsin
ω

a1

+ δ1

)

,

O2

(

xu = zu = π − arcsin
ω

a1

+ δ1

)

, (10)

which belong to C���. The type and stability of these fixed

points along the cluster manifold C��� are defined through

(9), whose dynamics are similar to the classical pendulum

equation with a constant torque ω [70]. Therefore, O1 (O2)

is a stable (saddle) fixed point with respect to the dynamics

restricted to C���. While the directions transversal to C���

may be unstable, depending on the parameters of system (8),

the fixed point O1 (O2) may become a saddle node (a sad-

dle). As in the classical pendulum equation [70], these fixed

points disappear via a saddle-node bifurcation in system (9)

at ω = a1.

System (8) also has two other fixed points that belong

to the three-cluster manifold C��
 but lie outside the man-

ifold C��� so that x �= z. These fixed points O3(x3, z3) and

O4(x4, z4) have the coordinates

x3,4 = arctan

(

1 − a cos δ

a sin δ

)

± arccos

(

ω
√

1 + a2 − 2a cos δ

1 − a2

)

,

z3,4 = arctan

(

1 − a cos δ

a sin δ

)

∓ arccos

(

ω
√

1 + a2 − 2a cos δ

1 − a2

)

. (11)

The derivation of the fixed points’ coordinates is given in

Appendix A.

The stability of fixed points O1, O2, O3, O4 of system (8)

can be evaluated through the characteristic equation

(s2 + hs + cos x∗)(s2 + hs + cos z∗)

− a2 cos(x∗ − δ) cos(z∗ − δ) = 0, (12)

where x∗ and z∗ are the coordinates of the fixed point in ques-

tion [see (10) and (11)]. The derivation of general close-form

solutions for the fourth-order polynomial equation (12) might

require the use of symbolic computations or even be out of

reach. Here, we take a different route towards placing explicit

bounds on the parameters of system (8) which guarantee that

points O3 and O4 are saddle foci with a positive saddle value.

To do so, we set

λ = s2 + hs (13)

to turn (12) into the biquadratic equation

λ2 + (cos x∗ + cos z∗)λ + cos x∗ cos z∗

− a2 cos(x∗ − δ) cos(z∗ − δ) = 0. (14)

Its roots are

λ1,2 = 1
2
[− cos x∗ − cos z∗

±
√

(cos x∗ + cos z∗)2 + 4a2 cos(x∗ − δ) cos(z∗ − δ)].

(15)

Towards our goal of obtaining sufficient conditions that guar-

antee that points O3 and O4 are saddle foci, we assume that the

discriminant of (15) is positive. Note that this assumption can

be realized by choosing appropriate values of γ and ω which

can change x∗ and z∗ accordingly while keeping δ intact. It

follows from this assumption that λ1 > 0 and λ2 < 0. Thus,
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substituting constants (15) into (13), we obtain a quadratic

equation whose solutions are

s11,12 = −
h

2
±

√

h2

4
+ λ1, s21,22 = −

h

2
± i

√

∣

∣

∣

∣

h2

4
+ λ2

∣

∣

∣

∣

,

(16)

where s21,22 are complex when |λ2| > h2/4. Therefore, un-

der these conditions, the fixed point O3 (O4) is a saddle

focus with the 1D unstable manifold corresponding to the

positive eigenvalue s11 = − h
2

+
√

h2

4
+ λ1 and the 3D stable

manifold composed of the 2D stable focus manifold which

is determined by the complex eigenvalues s21,22 and the 1D

stable manifold defined by the negative eigenvalue s12. These

saddle foci O3 and O4 have a positive saddle value [68] σ =
Re(s21,22) + s11 > 0 if λ1 > 3

4
h2. Therefore, the saddle foci

O3 and O4 satisfy the Shilnikov criterion for spiral chaos [68]

which emerges as a result of a Shilnikov homoclinic bifurca-

tion. In the following, we will derive sufficient conditions for

the parameters of system (8) under which fixed points O3 and

O4 can undergo homoclinic bifurcations leading to chaotic

intercluster dynamics.

C. Oscillatory, rotatory, and mixed-mode phase shifts

In addition to the fixed points which, when stable, in-

duce constant intercluster phase shifts x and z, system (8)

may have three main types of nontrivial, possibly chaotic,

dynamics such as (i) oscillatory trajectories which do not

rotate around the cylinder projection (x, ẋ) or (z, ż) and are

centered around the fixed point O1, (ii) rotatory trajectories

that encircle the cylinder projection (x, ẋ) or (z, ż), similar to

the limit cycle of a rotatory type in the classical pendulum

equation (17), and (iii) mixed-mode trajectories that make

several oscillatory turns while traveling around the cylinder.

Note that this classification distinguishes between the mo-

tions along the (x, ẋ) and (z, ż) projections so each phase

shift x or z may individually exhibit oscillatory, rotatory, or

mixed-mode dynamics. As a result, the relative evolution

of x and z may be a combination of the three dynamics,

yielding oscillating-oscillating, oscillating-rotating, rotating-

rotating, mixed-mode–oscillating, or mixed-mode–rotating

phase shifts. In this classification, the term oscillating-rotating

refers to the case where the phase shift x oscillates around the

fixed point with a small amplitude, whereas the phase shift

z rotates from 0 to 2π around the cylinder. This classifica-

tion can also be extended to incorporate the coexistence of

constant and time-varying shifts. While a complete analytical

study of possible dynamics of 4D system (8) is complicated

and may be out of reach, we adapt the auxiliary system

method [71] to derive bounds that single out regions of

parameters with possible homoclinic bifurcations of the fixed

points and oscillatory, rotatory, and mixed-mode phase shifts.

Statement 1. Sufficient conditions. Consider the partition

of the (h, ω) parameter space of system (8) shown in Fig. 2.

Let T (h) denote the Tricomi homoclinic curve [72] of the

pendulum equation

ẍ + hẋ + sin x = ω, (17)

FIG. 2. Existence diagram for possible phase shift dynamics in

system (8) (an illustration of Statement 1). Region I [ω < T (h) −
a)]: Only constant or oscillating phase shifts x(t ) and z(t ). Re-

gion II (light gray): Possible coexistence of constant, oscillating,

rotating, and mixed-mode phase shifts. Homoclinic bifurcations of

fixed points O3 and O4 take place only in this region. Region III

(blue): The coexistence of the phase shifts of all three types is

guaranteed. Region IV (1 − a < ω < 1 + a): Possible coexistence of

oscillating, rotating, and phase shifts. Region V (ω > 1 + a): Only

rotating phase shifts are possible. T (h) is the Tricomi homoclinic

curve (18) of pendulum equation (17) (pink dashed line). Damping

h = 1√
βR

, where R = γ
√

N2 + M2 + 2MN cos 2α. Fixed parameters

are M = 12, N = 5, γ = 0.4, and α = π/6.

which can be approximated as in [60] by

ω = T (h) ≈

{

4
π

h − 0.305h3 for 0 < h < h∗ ≈ 1.22,

1 for h > h∗.

(18)

Then five regions of the parameter partition correspond to the

following dynamics of system (8).

(1) Region I: ω < T (h) − a. Only oscillatory trajectories

that do not encircle the cylinder projections (x, ẋ) and (z, ż)

are permissible.

(2) Region II: {ω < 1 − a}
⋂

{ω < T (h) + a}
⋂

{ω >

T (h) − a}. Fixed points O3 and O4 of system (8) undergo ho-

moclinic bifurcations only in this region. Oscillatory, rotatory,

and mixed-mode trajectories are possible.

(3) Region III: T (h) + a < ω < 1 − a. The coexistence

of oscillatory and rotatory trajectories is guaranteed. Mixed-

mode oscillations are impossible.

(4) Region IV: 1 − a < ω < 1 + a. Trajectories of all three

types are possible, with the prevalence of rotatory and mixed-

mode phase shift trajectories.

(5) Region V: ω > 1 + a. Only rotatory trajectories that

encircle the cylinder projections (x, ẋ) and (z, ż) are possible.

Proof. The proof is given in Appendix B. �

Figure 3 relates these regions of parameters h and ω to the

original parameters of network (2). Hereafter, we choose the

phase lag α and inertia β as control parameters and fix the

group sizes N = 24 and M = 25 and the ratio between the

intra- and intergroup coupling γ = 0.4. We aim to show that

even a minimal difference between the sizes of the first (third)

group of N oscillators and the second group of M oscillators

can yield phase shift chaos. In this case, the (h, ω) diagram

of Fig. 2 typically does not contain region III as the curve

ω = T (h) + a is located above the line ω = 1 − a. Recast in
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FIG. 3. Existence diagram of Fig. 2 recast into the original

parameters α and β of system (2) for M = 25, N = 24, and γ = 0.4.

Only regions I, II, and IV are present. The red line corresponds to the

curve ω = 1 − a in Fig. 2. The inset shows the region of small values

of β where region I exists.

parameters α and β, this diagram typically maximizes the size

of regions II and IV and minimizes region I over a large range

of inertia β (see Fig. 3).

The parameter partition in Fig. 2 characterizes the regions

of parameters where different types of phase shifts are possi-

ble and where homoclinic bifurcations of O3 and O4 leading

to the emergence of chaotic dynamics take place. More specif-

ically, in region I, the phase shifts x(t ) and z(t ) may only

be constant or may periodically or chaotically oscillate with

a small amplitude. Region II corresponds to the richest dy-

namics where all three types of time-varying phase shifts are

possible, thereby allowing for oscillatory, rotatory, and mixed-

mode chaos. In this region, O3 and O4 undergo homoclinic

bifurcations, yielding Shilnikov spiral chaos. While chaotic

shift dynamics may be observed in the other regions of the

parameter partition, this spiral chaos originates from region II

due to the homoclinic bifurcations and persists beyond this

region. The dynamics in region III are similar to those in

region II, except that the coexistence of oscillating, rotating,

and mixed-mode phase shifts is guaranteed by Statement

1. Region IV represents a transition zone, where, similar

to regions II and III, all three types of time-varying phase

shifts may appear. However, the rotatory phase shifts become

more frequent as ω increases toward ω = 1 + a, finally en-

tering into region V, where only rotatory phase shifts are

possible.

To support our analytical analysis and prediction, we have

numerically studied the dynamics of phase shifts in system

(8) (see Fig. 4) and found regions of parameters which yield

chaotic mixed-mode–mixed-mode (sample point A, Fig. 5),

rotating-rotating (sample point B, Fig. 6), and rotating-

oscillating (sample point C, Fig. 7) phase shift regimes. As ex-

pected, a majority of the chaotic regions lie in region II (com-

pare Figs. 4 and 3), where homoclinic bifurcations of fixed

points O3 and O4 give birth to spiral chaos. A detailed analysis

of these homoclinic bifurcations and transitions to chaos is

beyond the scope of this paper and will be reported elsewhere.

However, we have verified the eigenvalues of fixed points O3

and O4 at sample points A, B, and C. These eigenvalues are

identical for both O3 and O4 due to the symmetries of (11)

and (12). For the parameters corresponding to sample points

FIG. 4. Regular and chaotic phase shift dynamics of system (8)

evaluated numerically as a function of parameters α and β. The

color coding corresponds to the period of a limit cycle. White

regions correspond to fixed points with a zero winding number;

light blue regions correspond to a winding number of 1 (period-1

limit cycles); dark blue regions correspond to chaotic orbits with

infinitely large winding numbers. Sample points A, with (β, α) =
(10, 397π/800); B, with (β, α) = (78.125, 437π/1600); and C,

with (β, α) = (61.5625, 27π/800), correspond to chaotic mixed-

mode–mixed-mode, rotating-rotating, and oscillating-rotating phase

shift regimes, respectively (see Figs. 5–7). The red horizontal line

corresponds to the line ω = 1 − a in Fig. 3. The region under the red

line is region II, where homoclinic bifurcations give birth to chaos.

Other parameters are as in Fig. 3.

B and C, the eigenvalues satisfy the assumption that λ1 > 0

and λ2 < 0 [see (15)] and therefore can be calculated analyt-

ically through (16). This yields the eigenvalues s11 = 0.7499,

s12 = −0.7815, and s21,22 = −0.0158 ± 0.8609i (for sam-

ple point B) and s11 = 0.9184, s21 = −0.9472, and s21,22 =
−0.0144 ± 0.9330i (for sample point C). Thus, fixed points

O3 and O4 are saddle foci with a positive saddle value σ

and have 1D unstable and 3D stable manifolds. As a result,

O3 and O4 satisfy the Shilnikov criterion [73] and offer a

possible mechanism for the emergence of different forms

of spiral chaos in system (8) and, ultimately, in the three-

group network (2). In particular, Fig. 7, corresponding to

sample point C, demonstrates the existence of a representative

spiral chaotic regime where the phase shift x(t ) between the

first and second groups of synchronized oscillators in net-

work (2) rotates chaotically between −π and π , whereas the

phase shift z(t ) oscillates chaotically within a smaller range

of z(t ) ∈ (−1.0, 1.0).

FIG. 5. Mixed-mode–mixed-mode phase shift regime corre-

sponding to point A in Fig. 4. Both x and z phase shifts are of

mixed-mode type with the prevalence of chaotic rotatory motions.

The values of x and z are projected onto a flattened cylinder where

x → (x − π ) mod (2π ) − π and z → (z − π ) mod (2π ) − π .
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FIG. 6. Rotating-rotating phase shift regime corresponding to

point B in Fig. 4. Both x and z phase shifts chaotically rotate around

the cylinder.

IV. STABILITY ANALYSIS

Having studied the existence of possible phase shift

regimes between the synchronized groups defined by the

cluster manifold C��
 , we proceed with a stability analysis

which indicates what phase shifts can stably emerge in the

network.

A. Stability of the three-cluster manifold C���

To determine the conditions under which the synchronous

three-group cluster with constant, periodic, or chaotic shifts

x(t ) and z(t ) can stably emerge in the network, we lin-

earize system (2) about the synchronous cluster solution

FIG. 7. (a). Rotating-oscillating phase shift regime correspond-

ing to point C in Fig. 4. The x and z phase shifts exhibit rotatory

and oscillatory chaos, respectively. (b) Snapshot of the corresponding

three-cluster pattern in network (2) of M + 2N oscillators with

M = 25 and N = 24. The initial states are chosen on the manifold

C��
 to form the corresponding three clusters where the colored

dot indicates the instantaneous phase of oscillator with index i. The

initial conditions for x(t ) and z(t ) are chosen randomly from (0,1).

The rotating phase shift between the first (red dots) and second

(green dots) clusters is governed by x(t ) and makes large chaotic

excursions between −π and π . The oscillating phase shift between

the second (green dots) and third (blue dots) clusters is driven by z(t )

and therefore oscillates between −1 and 1.

C��
 : {�, �̇, �, �̇,
, 
̇}. This yields

βξ̈i + ξ̇i = − q1 + cos α

N
∑

j=1

ξ j + γ cos(x + α)

M
∑

j=1

η j,

βη̈k + η̇k = − q2ηk + cos α

M
∑

j=1

η j + γ cos(x − α)

N
∑

j=1

ξ j

+ γ cos(z − α)

N
∑

j=1

ξ j,

βζ̈l + ζ̇l = − q3ζℓ + cos α

N
∑

j=1

ζ j + γ cos(z + α)

M
∑

j=1

η j,

(19)

where ξi, i = 1, . . . , N ; ηk, k = 1, . . . , M; and ζl , l =
1, . . . , N are infinitesimal perturbations of the ith oscillator’s

synchronous solution �, �, 
, respectively, and

q1 = N cos α + γ M cos(x + α), (20a)

q2 = M cos α + γ N[cos(x − α) + cos(z − α)], (20b)

q3 = N cos α + γ M cos(z + α). (20c)

Hereafter, we go back to the original notations x = � − �

and z = 
 − �, which differ from the shifted variables x and

z, used in system (8) and in the remainder of Sec. III, by the

constant δ0. This abuse of notation simplifies the exposition

as x and z always denote the phase shifts between the cluster

groups. At the same time, the use of the original notations

makes the stability analysis more manageable and leads to

stability conditions which are easier to express in terms of the

original parameters of network model (2).

In a manner similar to [60], we study the transversal

stability of C��
 by introducing the difference variables

si = ξi − ξi+1, i = 1, . . . , N − 1,

uk = ηk − ηk+1, k = 1, . . . , M − 1,

wℓ = ζℓ − ζℓ+1, ℓ = 1, . . . , N − 1 (21)

and subtracting the corresponding equations in (19) to obtain

β s̈i + ṡi + q1si = 0, i = 1, . . . , N, (22a)

βük + u̇k + q2uk = 0, k = 1, . . . , M, (22b)

βẅl + ẇl + q3wl = 0, l = 1, . . . , N. (22c)

Here, the sum terms from (19) have collapsed into q1, q2,

and q3 due to the symmetry of the global intra- and intercluster

coupling, thereby decoupling Eqs. (22a)–(22c) and signifi-

cantly simplifying their stability analysis.

The linearized equations (22a)–(22c) are governed by the

phase shifts x and z through (7). Therefore, in the simple

case where xe = xs − δ0 and ze = zs − δ0 are constant and

determined by fixed point O1(xs, zs) when it exists and is

stable, the analysis of (22a)–(22c) amounts to evaluating the

signs of q1, q2, and q3 at xe, ze. Hence, the stability of (22a)–

(22c) is guaranteed iff

q1,2,3|xe,ze
> 0. (23)
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This claim can be easily checked by looking at the character-

istic equations βp2 + p + q1,2,3 = 0 for the linear differential

equations (22a)–(22c) with constant coefficients. Here, q1,2,3

must be positive for the real parts of the characteristic equa-

tions to be negative.

The criterion (23) represents the necessary and sufficient

condition for the stability of the synchronous cluster solution

C��
 with constant phase shifts xe and ze and can be easily

applied as long as the fixed point O1 exists for ω < a1.

In the more complex case where the phase shifts xs and

zs are time-varying, the linear equations (22a)–(22c) contain

time-dependent coefficients q1, q2, q3. Therefore, the exact

stability conditions of (22a)–(22c) can be obtained numeri-

cally only by calculating the Lyapunov exponents. However,

we manage to analytically derive sufficient conditions which

guarantee that the cluster solution C��
 with even chaotic

phase shifts x(t ) and z(t ) is locally stable. This leads to the

following assertion.

Statement 2. Sufficient conditions. The cluster solution

C��
 with oscillating or rotating phase shifts x(t ) and z(t )

is locally stable in the transversal direction if

√
2γ < cos α < min

{

1 − 4βγ M

4βN
,

1 − 8βγ N

4βM

}

. (24)

Proof. Since the coefficients q1(t ), q2(t ), and q3(t ) become

time-dependent when the phase shifts x(t ) and z(t ) vary in

time, the stability condition (23) for the variational equations

(22a)–(22c) is no longer sufficient. To derive such a sufficient

condition, we use the stability criterion [74] which guarantees

that a linear second-order equation with a time-varying coef-

ficient q(t )

βv̈ + v̇ + q(t )v = 0 (25)

is stable if

q(t ) > 0, (26a)

D(t ) = 1 − 4βq(t ) > 0 ∀ t, (26b)

where D(t ) is the discriminant of the characteristic equation

βp2 + p + q(t ) = 0 with the frozen time t . In other words,

this conservative criterion guarantees that the linear equation

(25) with time-varying coefficient q(t ) is stable as long as the

fixed point v = 0 is a stable node for any t > 0 and never

becomes a stable focus or a degenerate node.

Applying the criterion (26a) and (26b) to the variational

equations (20a)–(20c), we first verify the condition (26a) for

q1(t ), q2(t ), and q3(t ). To impose that conservative conditions

on q1,2,3 are positive, we consider the worst-case bounds

which minimize q1,2,3 in (20a)–(20c):

cos[x(t ) + α] = −1, cos[x(t ) − α] = −1,

cos[z(t ) − α] = −1, cos[z(t ) + α] = −1. (27)

This implies that

q1,3(t ) > 0 ∀ t if cos α > γ M/N, (28a)

q2(t ) > 0 ∀ t if cos α > 2γ N/M. (28b)

Solving the inequality in (28a) for N/M and then substitut-

ing N/M = γ / cos α into (28b), we obtain the condition that

guarantees that q1,2,3 > 0 for any t if

cos α >
√

2γ . (29)

This bound yields the left-hand side part of inequality (24).

Finally, to verify the condition (26b) for discriminants

D1,2,3(t ) to be positive for (20a)–(20c), we consider the worst-

case scenario bounds which maximize q1,2,3. These are the

conditions (27) with −1 replaced with +1. Thus, the condition

(26b) is satisfied for (20a)–(20c) for any time t > 0 if

4β(N cos α + γ M ) < 1, 4β(M cos α + 2γ N ) < 1. (30)

Solving (30) for cos α and choosing the lowest of the two

bounds yields the right-hand side part of the inequality (24).�

Remark 1. If the sizes of the cluster groups are such that

2N > M (as in the numerical examples of Figs. 3–7), then the

condition (24) becomes

√
2γ < cos α <

1 − 8βγ N

4βM
, (31)

as this right-hand side bound is always the minimum of the

two in (24).

Remark 2. The bound (24) is very conservative due to the

use of the worst-case stability conditions. Therefore, it should

be considered a proof of concept that analytically demon-

strates that the cluster solution C��
 with time-varying, possi-

bly chaotic, phase shifts x(t ) and z(t ) can be stable. Moreover,

this stability condition clearly reveals a destabilizing role of

the inertia β in the stability of C��
 . Indeed, increasing β

reduces the right-hand side of inequality (24) and therefore

diminishes the range of α in which the cluster solution is

stable, thereby eventually making the cluster solution unstable

for higher β [see Fig. 8 for the actual stability regions revealed

via numerical simulations and Fig. 9 for the comparison with

the conservative bound (24)].

Figure 8 demonstrates stability diagrams for synchroniza-

tion of the oscillators within each of the three groups, eval-

uated via the Kuramoto order parameter r = 1
n

∑n
j=1〈eiϕ j 〉,

calculated separately for the phases within the first (ϕ j =
� j, j = 1, . . . , N), second (ϕ j = � j, j = 1, . . . , M), and

third (ϕ j = 
 j, j = 1, . . . , N) groups, where 〈· · · 〉 denotes a

time average. Notice that the three-cluster solution C��
 with

the mixed-mode–mixed-mode chaotic shifts depicted in Fig. 5

and corresponding to point A in the existence (Fig. 4) and

stability (Fig. 8) diagrams is unstable. This is in qualitative

agreement with the sufficient condition of Statement 2, which

predicts a general tendency of an increased phase lag param-

eter α ∈ [0, π/2) to hinder the stability of the cluster solution

via decreasing cos α in (24). In fact, point A is located in a

region of α close to π/2, where cos α is close to zero, thereby

making the stability conditions (26a) and (26b) impossible

to satisfy. At the same time, lower values of α yield the

stability of the three-cluster solution with the rotating-rotating

and rotating-oscillating chaotic phase shifts, corresponding to

points B and C, respectively.

Recall that the analytical stability conditions (26a) and

(26b) are applied to each of q1(t ), q2(t ), and q3(t ) to guaran-

tee the stability of the uncoupled variational equations (22a),

(22b), and (22c), respectively. Therefore, when the conditions

(26a) and (26b) are violated for q2 while remaining valid for

q1 and q3, the trivial fixed point of the variational equations
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FIG. 8. Numerical stability diagrams for synchronization within the (a) first, (b) second, and (c) third groups of oscillators. The color

bar indicates the Kuramoto order parameter r calculated for the oscillators’ phases within each group. The blue regions with r = 1 indicate

synchronization within the corresponding group. Points A, B,C correspond to sample points A, B,C from the existence diagram of Fig. 4.

Point A lies in the instability (red) zones of all three diagrams, rendering the cluster manifold C��
 unstable. Points B and C correspond to a

stable C��
 . Notice point D with α = 49π/100 and β = 475/4, which lies in the stability (blue) regions of diagrams (a) and (c) and in the

instability (red) region of diagram (b), thereby corresponding to a one-headed chimera (see Fig. 10). Initial conditions are chosen close to the

cluster manifold C��
 (see the text for the details). Parameters are as in Fig. 4.

(22a)–(22c) can become a saddle. In this case, this saddle

fixed point can yield a chimera state, in which the oscilla-

tors within the first and third groups of size N may remain

synchronized [as the conditions (26a) and (26b) for q1 and

q3 are satisfied], while the oscillators from the second group

of size M form an incoherent state. The numerical stability

diagrams of Fig. 8 indicate that the instability region is the

largest for the second cluster [see Fig. 8(b)] and therefore

confirm our analytical prediction that the stability conditions

(24) are typically violated first through q2(t ) when β increases

and 2N > M, rendering the second cluster unstable. A repre-

sentative example is the point D, which lies in the stability

regions of Figs. 8(a) and 8(c) and in the instability region

of Fig. 8(b). This point corresponds to a one-headed chimera

with the “head” being an incoherent state represented by the

unstable second cluster and the “shoulders” determined by the

first and third stable clusters (see Fig. 10).

FIG. 9. Complete diagram for the stability of the three-cluster

manifold C��
 from the combination of the three stability diagrams

in Fig. 8. Blue indicates regions where all three clusters are stable,

and red indicates regions where at least one cluster is unstable. The

inset demonstrates the conservative analytical condition (24), with

its left-hand side bound α = arccos
√

2γ and right-hand side bound

α = arccos
1−8βγ N

4βM
plotted by the black dashed and red solid lines,

respectively.

B. Coexisting clusters and solitary-chimera states

The initial conditions for calculating the stability diagrams

in Fig. 8 were chosen close to the three-cluster solution C��


by perturbing the initial cluster state

�(0) = 0, �(0) = 0, 
(0) = 2,

�̇(0) = −1, �̇(0) = 0, 
̇(0) = −2, (32)

with an offset εl , l = 1, 2N + M of phases �i (i = 1, . . . , N),

� j (i = 1, . . . , M), and 
k (k = 1, . . . , N). This offset is

spread across the network, linearly increasing from the first

oscillator in the first group with ε1 = 0.000014 to the last

oscillator in the third group with ε2N+M = � = 0.001.

To study the nonlocal stability of synchronization within

each of the three cluster groups, we numerically investigate

the corresponding basins of attraction. This is performed by

calculating the order parameter r for each cluster group, �,�,

and 
, as a function of the initial phase difference � (see

Fig. 11). The basins of attraction can be highly irregular

and depend on the choice of the initial cluster state. More

specifically, our simulations indicate that the rotating-rotating

chaotic phase shift regime from point B in Fig. 8 is fragile

FIG. 10. Snapshot of a one-headed chimera corresponding to

point D in Fig. 8. The oscillators from the second cluster form an

incoherent state representing the “head” of the chimera. The phases

of oscillators from the first and third clusters are synchronized and

rotate around the cylinder in unity, with y = � − 
 = 0.
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FIG. 11. Stability of synchronization within each of three cluster

groups, �,�, 
, as a function of maximum initial phase difference

�. Order parameter r is calculated separately for phases �1 · · · �N

(red dotted line), �1 · · · �M (green solid line), and 
1 · · · 
N (blue

dashed line). (a) The attraction basin of the three-cluster solution

C��
 from point B in Fig. 8 is highly irregular. The left subplot

presents a snapshot of a chimera with only oscillators within the third

group (blue) remaining fully synchronized with r = 1. The right

subplot represents a chimera with the first group (red) being the co-

herent state with r = 1. (b) Wide attraction basin of the three-cluster

solution C��
 from point B. A significant increase of � up to 3π/8

yields three different chimera states (three subplots). (c) Coexistence

of two chimeras corresponding to point D from Fig. 8, at which the

cluster solution C��
 is unstable. The one-headed chimera of Fig. 10

(left subplot) remains stable up to π/190. Note the emergence of

solitary states in a region of � between π/80 and 3π/160, where the

red dotted curve approaches r = 1. The initial cluster state is chosen

and perturbed as in (32). The plots are displayed after a transient time

T = 104.

and disintegrates as the initial phase difference � is ini-

tially increased, giving rise to solitary states and chimeras

[Fig. 11(a)], when the initial cluster state (32) is chosen.

Remarkably, this cluster pattern regains its stability with a

further increase in � and stays stable in a fairly large interval

starting from about � = π/8. The rotating-oscillating chaotic

phase shift regime from point C in Fig. 8 is robust and remains

stable up to the initial phase difference � = 3π/8. A further

increase of � yields three different solitary states where

only very few oscillators within one or two oscillator groups

become incoherent [Fig. 11(b)]. Figure 11(c) demonstrates

the coexistence of the one-headed chimera corresponding to

point D in Fig. 8 with a hybrid solitary-chimera state (right

subplot) where (i) the first group (red) with 3 out of 24

oscillators being out of synchrony represents a solitary state,

(ii) the second group (green) corresponds to an incoherent

state, and (iii) the third group represents a fully coherent state.

It is important to emphasize that a different choice of the

initial cluster state �(0) = 0, �(0) = 0, 
(0) = π, �̇(0) =
0, 
̇(0) = 0, �̇(0) = 0 significantly enlarges the attraction

basin of C��
 at points B and C. That is, the cluster pattern

C��
 remains stable across the full range of initial phase

difference �, varying from 0 to π/2. In terms of Fig. 11,

this would imply that the order parameter r for each of the

three cluster groups would remain equal to 1 for � ∈ [0, π/2],

yielding a trivial diagram with three (red, green, and blue)

horizontal lines r = 1 that is therefore not shown.

C. Stability of the embedded two-cluster manifold

The diagrams in Figs. 8 and 9 provide plenty of insight

into the stability of synchronization within the three cluster

groups and therefore indicate when the three-cluster manifold

C��
 is locally stable. However, the stability of C��
 does

not necessarily imply the emergence of the corresponding

three-cluster pattern with distinct phase shifts x and z. This

is due to the fact that the cluster manifold C��
 contains

the submanifold C��� [see (4)] which represents the largest

possible cluster partition of network (2) into two clusters

where the first and third groups of synchronized oscillators

form one cluster, making the phase shifts x and z equal.

In the following, we will analyze the conditions under

which the two-cluster solution C��� is stable and therefore

determine which of the two cluster patterns defined by C��


and C��� can stably appear in the network.

Like for phase shifts x and z, we introduce the phase

difference y = � − 
 between the phases of the synchro-

nized oscillators in the first and third cluster groups. Note

that y = z − x. As � = 
 on the cluster manifold C���, the

stability of solution y = 0 : {x = z} implies the stability of

C��� within the larger cluster manifold C��
 .

The dynamics on the cluster manifold C��� is governed

by the equation

β ẍ + ẋ = � − γ [2N sin(x − α) + M sin(x + α)], (33)

obtained from (6) by replacing z with x. Combining the sine

terms, we obtain

β ẍ + ẋ + R1 sin(x + δ2) = �, (34)
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where R1 = γ
√

4N2 + M2 + 4MN cos 2α and δ2 =
arctan ( M−2N

M+2N
tan α); the derivation of this equation is similar

to that in [60]. Equation (34) is a 2D pendulum equation

which cannot exhibit complex dynamics, so that the phase

shift x = z can only be constant or can periodically rotate

from −π to π as in the classical pendulum equation with a

constant torque [70].

The stable constant phase shift

xe = arcsin
�

R1

− δ2 (35)

is defined by a stable fixed point E1(xe) of 2D pendulum

equation (34), which corresponds to the fixed point O1(xs =
xe + δ0) of 4D system (8). Equation (34) also has a saddle

point E2(xsd ) corresponding to the phase shift

xsd = π − arcsin
�

R1

+ δ2. (36)

The rotating phase shift xc(t ) is determined by a stable limit

cycle which is born as a result of a homoclinic bifurcation

of saddle E2 (see [60] for more details on the analysis of the

phase shift dynamics in this 2D case).

To analyze the stability of cluster manifold C��� within

C��
 , we derive the following equation for the difference y =
z − x:

ÿ + ẏ = γ M[sin(x + α) − sin(z + α)], (37)

obtained by subtracting the x equation from the z equation in

(6). Using a simple trigonometric identity, we obtain

ÿ + ẏ = −2γ M sin(y/2) cos(y/2 + x + α). (38)

In the limit of infinitesimal y when sin(y/2) ≈ y/2 and

cos(y/2 + x + α) ≈ cos(x + α), we turn (38) into the equa-

tion

ÿ + ẏ + γ M cos(x + α)y = 0, (39)

which determines the local stability of the origin correspond-

ing to phase shift y = 0. Note that (39) is a linear equation

with a coefficient which is governed by phase shift x that may

be constant or vary in time.

Case I: Constant phase shift xe. In this simple case, Eq. (39)

becomes a linear equation with a constant coefficient. As a

result, it is stable at fixed point E1(xe) iff

cos(xe + α) > 0, (40)

yielding the condition α < π/2 − xe. Thus, we obtain the

following necessary and sufficient condition for the local

stability of cluster solution C��� with a constant phase

shift xe:

α < αcr = π/2 − arcsin
�

R1

+ δ2, (41)

provided that � = (M − N ) sin α � R1, ensuring the exis-

tence of fixed point E1(xe).

Checking the stability condition (40) for the saddle point

E2(xsd ) with xsd defined in (36), we obtain the inequality

α < π/2 − xsd which guarantees that saddle E2(xsd ) is locally

stable in the transversal direction to C���. Substituting (36)

FIG. 12. (a) Stability diagram of the two-cluster solution C���

with y = z − x = 0. Green indicates stability regions where C���

with a constant phase shift xc = zc is stable (y = 0 is stable). Yellow

depicts regions where C��� is unstable for the chosen initial con-

ditions but the three-cluster solution C��
 with time-varying shifts

x(t ) and z(t ) is stable. Brown indicates regions where both C���

and C��
 are unstable. White depicts the regions where one-headed

chimeras with stable y = � − 
 = 0 emerge (the chimera of Fig. 10

is an example). Sample points A, B, C, and D are as in Figs. 8

and 9. Points B and C lie in the instability (yellow) regions of

y = 0. The region under the horizontal dashed line α = αcr = 1.0335

corresponds to the stability condition (41). Sample point E lies in the

stability region. The blue solid line indicates the Tricomi homoclinic

curve �/R1 = T (h1) in system (34). Initial conditions and other

parameters are as in Figs. 8 and 9. (b). Snapshot of the two-cluster

pattern with constant phase shift xe, corresponding to point E .

into this inequality yields α < xe − π/2, which becomes the

following transversal stability condition for saddle E2(xsd ):

α < α∗ = −π/2 + arcsin
�

R1

− δ2 = −αcr . (42)

Comparing (41) and (42), we conclude that two fixed points

E1(xe) and E2(xsd ) cannot be stable simultaneously, so that the

transversal stability of point E1(xe) guarantees the transversal

instability of saddle E2(xsd ) on cluster manifold C���. This

property provides an escape mechanism by which trajectories

close to saddle E2(xsd ) can leave C���, while staying on the

larger-dimensional manifold C��
 when the latter is stable.

This leads to the bistability of two cluster patterns which

is indeed observed in the network [see Fig. 12(a)]. Notice

that the initial conditions used for generating the stability

diagrams in Figs. 8 and 9 yield the instability of the two-

cluster solution C��� with a time-varying phase shift at points

B and C [Fig. 12(a)]. However, the analytical condition (41)

(red horizontal dashed line) guarantees that the two-cluster

solution C��� with a constant phase shift xe = ze is locally
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stable at points B and C. This is in perfect agreement with the

above stability argument and indicates the bistability of the

coexisting three-cluster solution C��
 with the chaotic shifts

(see Figs. 6 and 7) and the two-cluster pattern C��� with the

constant phase shift xe = ze. We have numerically verified that

the attraction basin of this two-cluster solution is significantly

smaller than that of the three-cluster solution with the chaotic

phase shifts (not shown). This bistability is present in a large

region of parameters (the yellow region under the red dashed

line) and ceases to exist for smaller values of parameter α (the

green region). Sample point E corresponds to the two-cluster

solution C��� with a constant phase shift [Fig. 12(b)] which

remains stable as guaranteed by the stability condition (41),

whereas the three-cluster solution becomes unstable.

A comparison of the stability diagram in Fig. 12(a) with

the existence diagram in Fig. 3 suggests that the three-cluster

pattern defined by C��
 with constant phase shifts x(t ) �= z(t )

does not stably appear in the network, at least for the chosen

initial conditions. To verify this claim, one should notice that

the existence region of C��
 with constant phase shifts x(t ) �=
z(t ) (the highly irregular white region in Fig. 3) coincides with

the stability region for the two-cluster pattern C��� with a

constant shift xe = ze [the green region in Fig. 12(a)]. As a

result, this three-cluster pattern becomes transient and even-

tually transforms into the two-cluster pattern with a constant

shift.

Case II: Rotating phase shift xc(t ). A stable limit cycle

xc(t ) exists in the pendulum system (34) when �/R1 > T (h1),

where T (h1) is the Tricomi homoclinic curve (18) with h1 =
1/

√
βR1. Since xc(t ) periodically varies from −π to π , the

factor cos(x + α) in (39) oscillates between positive and neg-

ative numbers. Therefore, the stability condition cos[xc(t ) +
α] > 0 may be satisfied only on average, thereby preventing

a general analytical analysis and requiring the use of nu-

merical simulations. However, we manage to approximately

estimate the stability of cos[xc(t ) + α] > 0 in a particular

case where parameters β and α are chosen to be slightly

above the Tricomi homoclinic curve �/R1 = T (h1) [the blue

solid line in Fig. 12(a)]. Here, the stable limit cycle xc(t )

inherits the shape of the homoclinic orbit of E2(xsd ) from

which it was born. Therefore, the limit cycle spends most of

the time in the vicinity of saddle E2(xsd ) with the exception

of a comparably short time of switching from xsd to xsd + 2π ,

so that xc(t ) ≈ xsd . Therefore, the condition for its transversal

stability can be approximated as follows:

cos[xc(t ) + α] ≈ cos(xsd + α) > 0, (43)

which coincides with condition (42) for the transversal stabil-

ity of saddle E2(xsd ). This implies that the stability condition

(43) cannot be satisfied as long as the two-cluster solution

C��� with a constant phase shift xe is stable [see (41) and

(42)]. Hence, we can conclude that the two-cluster pattern

C��� with a rotating phase shift xc(t ) = zc(t ) is unstable

in a parameter region slightly above the Tricomi homoclinic

curve �/R1 = T (h1) and below the stability line α = αcr (red

dashed line). Sample point B is located in this parameter

region; our numerical simulations confirm that the two-cluster

pattern C��� with a time-varying shift xc(t ) is unstable at

point B, thereby preserving the bistability of the three-cluster

pattern C��
 with a chaotic rotating-rotating phase shift and

the two-cluster pattern C��
 with a constant phase shift.

V. CONCLUSIONS AND DISCUSSION

The classical Kuramoto model of coupled first-order phase

oscillators is known to exhibit various forms of spatiotempo-

ral chaotic behavior, including phase chaos [43], mean-field

chaotic dynamics in infinite [38] and finite-size networks

[75,76], chaotic weak chimeras [64,77], and chaotic transients

[78]. The emergence of chaos in the macroscopic dynamics of

the Kuramoto model is traditionally attributed to oscillators’

heterogeneity (see [38,79] and references therein). However,

it was also shown that even symmetric systems of identical os-

cillators can induce chaotic dynamics in small-size Kuramoto

networks of two populations [75,76].

In this paper, we have revealed and carefully analyzed a

different form of chaotic behavior such as chaotic intercluster

phase dynamics in a three-group network of identical second-

order Kuramoto oscillators with inertia. The groups have

different sizes and can split into clusters where the oscilla-

tors synchronize within a cluster while there is a pairwise

phase shift between the dynamics of the clusters. Due to the

presence of inertia, which increases the dimensionality of the

oscillator dynamics, these phase shifts can exhibit different

forms of chaotic behavior, including oscillatory, rotatory, and

mixed-mode oscillations. We demonstrated that the phase

shift dynamics is governed by a 4D system of two nonlinearly

coupled driven pendulums. We have applied an auxiliary

system approach to analyzing possible solutions of the 4D

system and derived bounds on parameter partitions that sup-

port the coexistence of different chaotic intercluster dynamics.

A representative example of these dynamics is a regime in

which the phase shift between the first and second groups of

oscillators chaotically oscillates within a small phase range,

while the phase shift between the second and third groups

chaotically rotates from −π to π . The bounds that separate

the parameter regions of oscillatory and rotatory dynamics are

explicit in the parameters of the network model. Therefore,

they clearly highlight possible routes of transitions between

the chaotic dynamics which can be induced by varying only

one control parameter such as phase lag α or inertia β. To

identify a primary cause of chaotic dynamics in the 4D sys-

tem, we have proved the existence of a Shilnikov homoclinic

orbit to a saddle focus which leads to the emergence of spiral

chaos [68].

Remarkably, the addition of only one oscillator to the three-

group network with equal group sizes M = N , which yields

asymmetry and the existence of the three-cluster pattern, is

sufficient to induce large-amplitude chaotic oscillations of the

phase shifts. Our extensive numerical analysis not reported in

this paper also suggests that, in contrast to one’s expectations,

smaller differences in the group sizes are more effective in

promoting phase shift chaos. Ultimately, the smallest network

which can exhibit chaotic phase shifts consists of four second-

order oscillators, with two oscillators forming the second

group (M = 2) and one oscillator in each of the first and

third groups (N = 1). The chosen network setup with no

direct connections between the first and third groups could

be viewed as an optimal configuration which minimizes the
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complexity of the governing 4D system. Connecting the two

groups could make the phase shift dynamics even richer,

but it would introduce additional terms and make the 4D

system less tractable analytically. Extending our analysis of

intercluster phase dynamics to finer cluster partitions within

each group, including solitary cluster states, is possible. How-

ever, the governing system will have a high dimension and

might not necessarily be represented by a system of well

separated coupled pendulums. Again, rigorous analysis of its

possible chaotic states and transitions between them becomes

more challenging. These problems are a subject of future

study.

We have also analyzed the stability of the three-cluster

pattern and its embedding, a two-cluster pattern, in which the

first and third groups of oscillators become synchronized. Our

analysis has explicitly demonstrated that the phase shift dy-

namics can be multistable, including the case where the three-

cluster pattern with a chaotically oscillating phase shift stably

coexists with the two-cluster pattern with a constant shift. Our

stability conditions also have implications for the emergence

of chimera states. Due to the simple network structure, these

conditions are uncoupled and are applied to each group of

oscillators separately. Thus, the simultaneous fulfillment of

the stability condition for synchronization within one group

and its failure for synchronization within the others can offer

a key to predicting the emergence of a chimera state. These

observations are in good agreement with our numerical results

that confirmed the emergence of a plethora of coexisting

chimera states in the network.

Our analysis can also be extended to networks with evolv-

ing [80], stochastically switching [81], or adaptive connec-

tions [82]. These networks exhibit highly nontrivial dynamics,

including the emergence of macroscopic chaos [83,84], ghost

attractors [85], and windows of opportunity [86,87] due to

time-varying coupling. The role of time-varying connections

in the emergence of stable or metastable clusters and ghost

patterns in Kuramoto networks with inertia should be ex-

plored.

Although our analysis provides an unprecedented under-

standing of the emergence and coexistence of stable clus-

ters with chaotic intercluster phase dynamics, we have only

scratched the surface of the complex interplay between the ex-

istence of possible clusters, intrinsic oscillator dynamics, and

nonlinear interactions of phases. The richness of the dynamics

in our fairly simple and analytically tractable network model

opens the door to further discovering new types of dynamical

effects and cooperative structures in multipopulation networks

of phase oscillators with inertia.

ACKNOWLEDGMENTS

This work was supported by the US National Science

Foundation under Grant No. DMS-1909924 (to B.N.B. and

I.V.B.), the RSF under Grant No. 19-12-00367 (qualitative

analysis; to V.N.B.), and the Ministry of Science and Higher

Education of the Russian Federation under Grant No. 0729-

2020-0036 (to I.V.B. and V.N.B.). B.N.B. also acknowledges

support through a Georgia State University Brains and Behav-

ior Program Student Fellowship.

APPENDIX A: FIXED POINTS O3 AND O4

In this Appendix, we provide detailed calculations of co-

ordinates x3,4 and z3,4 in (11) that correspond to fixed points

O3 and O4 in 4D system (8), which governs the dynamics of

intercluster phase shifts x and z.

To find the coordinates of O3 and O4 in 4D system (8), we

need to analyze the following system:

sin x + a sin(z − δ) = ω,

a sin(x − δ) + sin z = ω.
(A1)

However, this analysis is not straightforward as one has to

deal with a system of two nonlinear equations. A way to solve

the system (A1) is to use its symmetry under the involution

(x, z) → (z, x). This symmetry implies that O3 and O4 are

symmetric relative to z = x and lie on the line

z = κ − x, (A2)

where κ is a constant to be determined. Thus, the coordinates

of O3 and O4 can be written in the form

x3 = z4 = κ/2 + x0, x4 = z3 = κ/2 − x0 (A3)

for some x0. Substitution of (A2) into (A1) gives

sin x + a sin(−x + κ − δ) = ω. (A4)

Our goal is to find κ and x0 in order to identify coordinates

x3 = z4 and x4 = z3, the coordinates in (11). Using a trigono-

metric identity, we turn Eq. (A4) into

C1 cos x + [1 − a cos(κ − δ)] sin x = ω, (A5)

where C1 = a sin(κ − δ). Using another trigonometric iden-

tity, we solve Eq. (A5) for x to obtain

x3,4 = g ± arccos
ω

C2

, (A6)

C2 =
√

1 + a2 − 2a cos(κ − δ), (A7)

g = arctan

(

1 − a cos(κ − δ)

C1

)

. (A8)

From (A3) and (A6), we obtain g = κ/2, from which we

calculate

κ/2 = arctan

(

1 − a cos δ

a sin δ

)

(A9)

and then

cos(κ − δ) =
2a − (a2 + 1) cos δ

a2 + 1 − 2a cos δ
. (A10)

Thus, (A7) yields

C2 =
1 − a2

√
1 + a2 − 2a cos δ

, (A11)

so x0 in (A3) becomes

x0 = arccos

(

ω
√

1 + a2 − 2a cos δ

1 − a2

)

. (A12)

Substituting (A9) and (A12) into (A3), we finally obtain

the explicit expressions (11) for x3, z3, x4, z4.
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APPENDIX B: PROOF OF STATEMENT 1

In this Appendix, we derive the proof of Statement 1 and

justify the parameter partition shown in Fig. 2. Adapting the

auxiliary system method [71], we introduce two 2D auxiliary

systems A±
x obtained from the x equation of system (8) by

replacing sin(z − δ) with ∓1:

A+
x : ẍ + hẋ + sin x = ω + a,

A−
x : ẍ + hẋ + sin x = ω − a. (B1)

Similarly, we introduce the systems A±
z :

A+
z : z̈ + hż + sin z = ω + a,

A−
z : z̈ + hż + sin z = ω − a. (B2)

Our goal is to demonstrate that the trajectories of auxiliary

systems (B1) and (B2) bound trajectories of system (8) and

govern their flow, thereby determining possible types of phase

shift dynamics of x(t ) and z(t ) and predicting qualitative

changes in the vector flow that are accompanied by homo-

clinic bifurcations. Our approach is based on the property

that the vector flows of auxiliary systems (B1) and (B2) are

transversal to any nontrivial trajectory of system (8) at each

point on the cylinders (x, ẋ), x �= 0, and (z, ż), z �= 0. More

specifically, the vertical component of vector fields (x, ẋ) and

(z, ż) of systems A+
x and A+

z is larger than that of system (8),

except for the points where sin(z − δ) = −1 and sin(x − δ) =
−1 and systems (B1) and (B2) coincide with (8). As a result,

the trajectories of system (8) cross the trajectories of systems

A+
x and A+

z in the downward direction, and vice versa, the

trajectories of system (8) cross the trajectories of systems A−
x

and A−
z in the upward direction (see Fig. 13). Therefore, these

properties allow for controlling the flow of system (8) with

the help of separatrices and limit cycles of systems A±
x and

A±
z . Recall that the 4D system (8) turns into two uncoupled

2D pendulum equations for x and z with a = 0. The dynamics

of pendulum equation (17) in the parameter space (h, ω) is

controlled by the so-called Tricomi curve T (h), Eq. (18) (see

Fig. 2), which corresponds to a homoclinic bifurcation of a

saddle fixed point for h < h∗ and a saddle-node bifurcation

for h > h∗ [70] (see Fig. 2).

In terms of the bifurcation diagram (h, ω) of Fig. 2,

the Tricomi homoclinic curve T (h) (pink dashed line)

and the saddle-node curve ω = 1 (green dash-dotted line) sep-

arate the bifurcation diagram into three regions with distinct

dynamics of 2D pendulum equation (8) with a = 0 for x or z.

These dynamics are (i) a stable fixed point which coexists with

a saddle fixed point [region under the Tricomi curve T (h)],

(ii) the coexistence of the stable fixed point and a limit cycle

(region bounded by the Tricomi and saddle-node curves), and

(iii) a globally stable limit cycle.

We adapt these baseline boundaries for auxiliary systems

(B1) and (B2) with a �= 0 to derive sufficient conditions

on permissible dynamics of 4D system (8), which in turn

determines the existence of phase shift dynamics in the three-

group network (2). The dynamics of auxiliary systems A+
x and

A+
z (A−

x and A−
z ) are symmetric. Therefore, it is sufficient to

characterize possible trajectories of systems A+
x and A−

x in the

(x, ẋ) projection which also yields the symmetrical trajecto-

ries in the (z, ż) projection. A combination of two (identical

FIG. 13. Schematic diagrams for (x, ẋ) and (z, ż) projections of

vector flow (8), bounded by the trajectories of 2D auxiliary systems

A+
x and A+

z (A−
x and A−

z ) depicted in red (blue). (a). Typical arrange-

ment of vector flow (8) corresponding to region I (see Fig. 2). The

unstable manifolds of the auxiliary systems’ saddles form trapping

regions (“rivers”) that attract the trajectories of system (8) and guide

them into trapping disks gs
x and gs

z (green). (b) Arrangement of

vector flow (8) from region II which allows the formation of the

homoclinic orbit hx (hz) of saddle focus O3 (O4). Note that the saddle

focus O3 lies inside saddle cell gsd
x (pink diamond-shaped region) in

the (x, ẋ) projection and inside stable region gs
z (green disk) in the

(z, ż) projection, representing its focus part. Saddle-focus point O4 is

symmetric to O3, with its x (z) coordinate inside gs
x (gsd

z ). (c) Region

III. The auxiliary systems are bistable, each having a stable fixed

point and a stable limit cycle. These limit cycles x+
c and x−

c (z+
c and

z−
c ) form a trapping river (the upper horizontal strip) which contains

rotatory trajectories of (8). Trapping disks gs
x and gs

z (green) contain

oscillatory trajectories of (8).

or different) dynamics in the (x, ẋ) and (z, ż) projections will

represent the behavior of 4D system (8).
Notice that the presence of the +a (−a) term in auxiliary

system A+
x (A−

x ) shifts the bifurcation diagrams and yields the
new Tricomi homoclinic curve ω = T (h) − a (ω = T (h) + a)
and the saddle-node curve ω = 1 − a (ω = 1 + a) in system
(B1). These curves formally partition the bifurcation diagram
of Fig. 2 into five regions which correspond to the following
dynamics.

Region I: ω < T (h) − a. In this region both auxiliary sys-
tems A+

x and A−
x may have only trivial dynamics in the form

of the stable fixed point coexisting with the saddle fixed point.
Figure 13 shows the arrangement of typical trajectories of
auxiliary systems A+

x (A+
z ) (red lines) and A−

x (A−
z ) (blue lines).

The auxiliary system A+
x has the stable fixed point E+

x [x =
arcsin(ω + a)] and the saddle S+

x [x = π − arcsin(ω + a)]
(not shown in Fig. 13). Similarly, the auxiliary system A−

x has
the stable fixed point E−

x [x = arcsin(ω − a)] and the saddle
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S−
x [x = π − arcsin(ω − a)]. As a result, the trajectories of

the two auxiliary systems which approach the corresponding
stable fixed points E−

x and E+
x form a “river” which traps

trajectories of system (8) in the (x, ẋ) projection of the 4D
phase space. Therefore, these trajectories of system (8) even-
tually reach the stable trapping region gs

x bounded in x by E−
x

and E+
x [the green disk in Fig. 13(a), left] and stay inside

it. The dynamics of system (8) in the (z, ż) projection is
identical, so that there also exists a stable trapping region gs

x

[the green disk in Fig. 13(a), right]. These two disks form a
topological ball gs

x × gs
z in the 4D phase space of system (8)

which contains the fixed point O1 (not shown). The dynamics
inside the ball may be periodic or even chaotic; however, the
trajectories confined inside the ball may not rotate around the
cylinders (x, ẋ) and (z, ż), so that only oscillatory motions
with small amplitudes in x and z are allowed. Similarly, the
stable manifolds of saddles S+

x and S−
x form a river which

contains the saddle O2 of (8) (not shown) and the (x, ẋ)
projection of its stable manifold. However, due to the flow
arrangement, other trajectories of (8) leave this river and the
saddle “cell” gsd

x formed by the stable and unstable manifolds
of saddles S+

x and S−
x [the pink diamond-shaped region in

Fig. 13(a), left] and approach the stable trapping zone. In the
full 4D phase space of (8), the fixed point O2 lies in a region
represented by a topological product of saddle cells gsd

x and
gsd

z . At the same time, the fixed point O3 (O4) of (8) lies in the

region gsd
x × gs

z (gs
x × gsd

z ).
Region II: H1 : {ω < 1 − a}

⋂

H2 : {ω < T (h) + a}
⋂

H3 : {ω > T (h) − a}. The lower border of region II (the
gray region in Fig. 2) is determined by the part of the Tricomi
curve ω = T (h) − a which corresponds to a homoclinic
bifurcation of saddle E−

x (E−
z ) in auxiliary system A−

x (A−
z ). In

terms of Fig. 13(a) (left panel), this bifurcation occurs when
the red curve emanating from the left saddle cell gsd

x (the
pink diamond-shaped region) would no longer go towards the
green disk but rather merge with the red curve going into the
right saddle cell to form a homoclinic orbit which connects
the left and right saddle cells gsd

x (not shown). This homoclinic
connection reroutes the vector flows so that the trajectories
of system (8) can travel from the left to the right saddle cell.
Entering the region II, via, for example, increasing ω leads to
the rearrangement of the rivers, as shown in Fig. 13(b) where
the unstable manifold of saddle focus (or saddle) O3 returns
to O3 and forms the homoclinic orbit hx. Notice that due to
the cyclic structure of the equations, the left and right saddle
cells represent the same cell and contain the same fixed point
O3, so that the black curve connecting the fixed points in
the two saddle cells is a homoclinic (not heteroclinic) orbit.
The mutual arrangement of the rivers in the region ẋ > 0
allows the trajectories to either rotate around the cylinder as
in the case of the homoclinic loop or reach the green disk
to exhibit oscillatory dynamics. As the dynamics of systems
A+

z and A−
z are symmetric to those of systems A+

x and A−
x ,

the overall dynamics of 4D system (8) is a combination
of the trajectories depicted in the left and right diagrams of
Fig. 13(b). Therefore, all combinations of rotating, oscillating,
and mixed-mode phases shifts are possible.

While this qualitative analysis does not allow for determin-

ing the exact values of parameters at which the homoclinic

loop hx is formed, it proves that system (8) has to undergo

this homoclinic bifurcation in region II where the rivers form

a passage from one saddle cell to the other. This passage does

not exist for the parameters from region I [see Fig. 13(a)]

and ceases to exist when the system reaches the border of

region III at which auxiliary systems A+
x and A+

z undergo

a homoclinic bifurcation at ω = T (h) + a (see Fig. 2). In

terms of Fig. 13(b), this happens when the unstable and stable

manifolds of saddle S+
x in system A+

x (the blue curves) merge

together at the x = 0 coordinate axis for ẋ > 0 (not shown).

Therefore, the rivers formed by the stable and unstable man-

ifolds of the saddle in auxiliary systems A+
x and A−

x (A+
z

and A−
z ) exchange their mutual arrangement when changing

the parameters brings the system from region I to region III

[see Figs. 13(a) and Fig. 13(c)]. Hence, there always exist

bifurcation points in Region II at which the stable and unstable

manifolds of O3 (O4), confined inside the rivers, form the

homoclinic loop hx (hz). Each of these bifurcation points lies

on any path from region I to region III in parameter space

(h, ω), which lies entirely inside region II. Since the passage

from one saddle cell to the other exists only in region II, other

multiloop homoclinic bifurcations of O3 and O4 may also be

possible only in region II.

Region III: T (h) + a < ω < 1 − a. Entering this region

(the blue region in Fig. 2) from region II disconnects the

rivers centered around the stable and unstable manifolds, as

shown in Fig. 13(c). In region III, each system A−
x and A+

x is

bistable and has a stable fixed point (inside the green disk)

and a limit cycle of rotatory type, born as a result of the

homoclinic bifurcations at ω = T (h) − a and ω = T (h) + a,

respectively. Therefore, the trajectories of 4D system (8)

eventually reach and remain trapped either inside the green

disk or inside the river formed by two stable limit cycles x−
c

and x+
c [the horizontal river in the upper part of Fig. 13(c),

left]. As a result, this arrangement guarantees (i) the bistability

of oscillatory and rotatory trajectories which may be periodic

or chaotic and (ii) the absence of mixed-mode oscillations

since the trajectories cannot switch between the two trapping

regions. Again, combining the dynamics of the left and right

diagrams of Fig. 13(c) guarantees the existence of rotating-

rotating, rotating-oscillating, and oscillating-oscillating phase

shift regimes in the network.

Region IV: 1 − a < ω < 1 + a. System A+
x has only a

stable limit as the stable and saddle fixed points E+
x and S+

x

have disappeared via a saddle-node bifurcation at ω = 1 − a.

At the same time, system A−
x has the same structure as in

region III. In terms of Fig. 13(c), this amounts to

the disappearance of all red curves (not shown), ex-

cept for the upper border of the horizontal river repre-

senting the stable limit cycle x+
c . As the trapping disk

has partly disintegrated, the trajectories of the 4D sys-

tem (8) may escape it and reach the trapping river

with rotatory trajectories. Hence, all possible dynamics of

phase shifts are possible, with the prevalence of rotatory

trajectories.

Region V: ω > 1 + a. Similar to system A+
x at the border

between region III and region IV, system A−
x undergoes a

saddle-node bifurcation at ω = 1 + a. Thus, in region V both

systems A−
x and A+

x have only globally stable limit cycles x−
c

and x+
c , which form a unique trapping region (river) for all the

system’s trajectories, yielding the existence of only rotatory

trajectories in the system (8). �
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