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When evaluating experimental evidence, how do people deal with the possibility that some of the
feedback is erroneous? The potential for error means that evidence evaluation must include decisions
about when to "trust the data." In this paper we present two studies that focus on subjects' responses
to erroneous feedback in a hypothesis testing situation-a variant of Wason's (1960) 2-4-6 rule dis
covery task in which some feedback was subject to system error: "hits" were reported as "misses" and
vice versa. Our results show that, in contrast to previous research, people are equally adept at identi
fying false negatives and false positives; further, successful subjects were less likely to use a positive
test strategy (Klayman & Ha, 1987) than were unsuccessful subjects, Finally, although others have
found that generating possible hypotheses prior to experimentation increases success and task effi
ciency, such a manipulation did little to mitigate the effects of system error.

Understanding our world often takes the form of hy

pothesis testing. We formulate hypotheses about why the

car will not start and about the origins of the universe.

We test these hypotheses with data from observations and

experiments. However, like the Hubble Space Telescope,

the observational instruments may be flawed, or the ex

perimental equipment may be faulty. Indeed, one of the

principle difficulties we face in both everyday and sci

entific reasoning is that ofdealing with data that are not

necessarily veridical.

Twotypes oferrors can degrade evidence: measurement

error and system error. Measurement error is usually char

acterized as random noise added to a continuous variable.

In contrast, system error is characterized as categorical

error in which a signal is changed so that it indicates a

different category than the one from which it actually

came, For example, in a nuclear reactor, measurement error

in a thermocouple reading would result in a distribution

of temperature readings around the true temperature,

whereas system error would result in a signal light indi

cating that a valve was open when it was, in fact, closed.

Although the study ofmeasurement error has long been

a source of interest to researchers (e.g., Brehmer, 1979,
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1980, 1987; Castellan, 1977; Einhorn & Hogarth, 1981;

Klayman, 1984, 1988; Slovic, Fischhoff, & Lichtenstein,

1971; York,Doherty, & Kamouri, 1987), the effects ofsys

tem error on reasoning processes have only relatively re

cently attracted attention (e.g., Doherty & Tweney, 1988;

Gorman, 1986, 1989; Kern, 1982). The possibility ofsys

tem error suggests that the evidence interpretation pro

cess includes a phase in which the veridicality of the

evidence must be evaluated. Usually, such decisions are

implicit. However, there are important circumstances when

one must make an explicit determination about whether

or not system error has occurred. Moreover, this deter

mination may interact with the consequences ofaccepting

or rejecting the evidence. In this paper, we report on two

experiments in which we investigated the cognitive strate

gies that people use to deal with the possibility of system

error. We employed a laboratory task that has been

widely used in investigations ofthe psychology ofscien

tific reasoning: the Wason (1960) rule discovery task.

In the Wason task, subjects are presented with a num

ber triple, [2-4-6], and are told that it is a positive in

stance ofa general rule which they are to discover. Subjects

generate a hypothesis and an "experiment" (a number

triple) to test their hypothesis. After each experiment, sub

jects are told whether or not their triple conforms to the

rule. Subjects continue in this manner until they are sure

they know the rule. The usual measures of interest are the

number, type, and pattern of subjects' experiments and

hypotheses.
One consistent finding from studies using the Wason

task is that people overwhelmingly prefer to use what Klay

man and Ha (1987) called a positive test strategy. Sub

jects using this strategy generate instances that are posi-
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tive exemplars ofthe currently hypothesized rule (+Htests)

rather than instances that are negative exemplars of the

hypothesized rule ( - Htests). For example, if one's cur

rent hypothesis is "even numbers," then [4-10-8] would

be a +Htest, while [3-4-11] would be a - Htest.

Nearly all previous investigations of the Wason task

(e.g., Gorman, 1986, 1989; Wason, 1960) concluded that

subjects approach this rule discovery task with a strong

"confirmation bias": a desire to select instances that con

firm rather than disconfirm the current hypothesis. The

conclusion is based on the consistent tendency for sub

jects to choose triples that are positive instances of the

current hypothesis. However, as Klayman and Ha's (1987)

analysis clearly demonstrated, there is no logical basis for

interpreting +Htests as attempts to confirm, nor - Htests

as attempts to disconfirm. Depending on the relation be

tween the hypothesized rule and the true rule, both +Htests

and - Htests can provide either conclusive falsification

or ambiguous verification ofthe current hypothesis. Con

clusive falsification occurs when a +Htest receives "no"

feedback, or a - Htest receives "yes" feedback. Ambigu

ous verification occurs when a +Htest receives "yes" feed

back, or a - Htest receives "no" feedback. Thus, it is im

possible to determine whether subjects are attempting to

confirm or disconfirm simply by noting whether or not

their triples are instances of the current hypothesis.

Klayman and Ha (1987) argued that a major problem

in testing hypotheses is deciding whether, on average,

conducting +Htests or - Htests will be most informative.

They suggested that people tend to use a simple approach:

Select the strategy that is likely to have the greatest im

pact on your belief in the current hypothesis. Moreover,

Klayman and Ha argued that in the majority ofreal-world

situations a +Htest strategy is just such a strategy. That is,

even in nondeterministic environments (which could in

clude system error) a +H strategy remains appropriate,

since, in such situations

falsifications are not conclusive but merely constitute some

evidence against the hypothesis, and verifications must

also be considered informative, despite their logical am

biguity. Ultimately, it can never be known with certainty

that any given hypothesis is or is not the best possible. One

can only form a belief about the probability that a given

hypothesis is correct, in light of the collected evidence.

(p.219)

Consequently, in the real world, where error is always

possible, scientists must decide not only how a particu

lar datum bears on their hypotheses, but also how their

hypotheses, plus all the accumulated evidence, bear on

the reliability ofthe datum. That is, they must decide when

to "trust the data."

STUDIES OF SYSTEM ERROR

The experiments reported in this paper extend earlier

work on the effects of system error during scientific rea

soning tasks (e.g., Doherty & Tweney, 1988; Gorman,

1986, 1989, 1992; Kern, 1982; O'Connor, Doherty, &

Tweney, 1989; Tweney et aI., 1980). To place our work in

context, we will briefly summarize the principal results

from this body of literature.'

Kern (1982) investigated system error by using a mi

croworld task in which subjects were told that errors

would occur on approximately 25% of the trials. Kern

found that subjects in the error condition were more likely

to challenge the validity of the feedback following falsi

fication than following verification. This lead Kern to

conclude that subjects were biased to believe that falsi

fication trials were system errors, and that they used this

bias to justify retaining their hypotheses. That is, they

used the possibility of error to immunize, or preserve,

their current hypothesis.

Gorman (1986) also explored the effects of system

error, particularly how such errors affect efforts to falsify

hypotheses. He presented three groups of subjects with

a variant of the Wason task and instructed each group to

use a different experimental strategy, one of which was

to attempt to falsify, rather than verify, the active hy

pothesis. In addition, all subjects were told that between

0% and 20% of the feedback that they received would be

erroneous. In fact, all feedback was veridical. Gorman's

results showed that strategy instructions affected neither

task success nor the number oftrials considered to be er

rors. However, subjects were more likely to consider fal

sification, rather than verification, trials to be errors,

even though they never received false feedback. These

results led Gorman to concur with Kern's (1982) conclu

sion about hypothesis preservation; people use the pos

sibility of system error to label +Htest falsification tri

als as errors, and thus retain their current hypothesis.

In a later study, Gorman (1989) replicated his earlier

work, but with the addition ofan actual error condition.

He found that actual error subjects often retained a hy

pothesis following falsification, labeling such trials as

errors. However, in both this and his earlier study, Gor

man used the traditional Wason rule "Ascending num

bers." Klayman and Ha (1987) point out that this rule is

almost always more general than subjects' initial hy

potheses. Thus, since most people prefer a +Htest strat

egy, their tests tend to be positive instances of the true

rule. Consequently, veridical falsification is rare, and

error trials are overwhelmingly false negatives.

Gorman (1989) did not report the distribution of ver

ification and falsification trials. However, given his use

of Wason's (1960) traditional rule, it is likely that most,

ifnot all, errors were in the form offalse negatives (i.e.,

reporting that a +Htest was not an exemplar of the rule

when, in fact, it was). This suggests at least one alterna

tive explanation for Kern's (1982) and Gorman's conclu

sion that subjects have an immunization bias. Subjects

might simply note the low frequency of falsified trials

and interpret them as similarly infrequent system errors.

That is, both immunization bias and a pattern-matching

heuristic would lead to +Htest falsification trials being

marked as errors. Therefore, it is possible that Gorman's

results reflect a methodological artifact, rather than a

bias toward immunization.



In summary, although the inclusion of system error

into the classic Wason (I 960) task represents an impor
tant step toward increasing the face validity of labora

tory explorations of the scientific discovery process, the

procedures used thus far confound rare errors with rare
+Htest falsification. In the studies described below, we
disentangled these two factors; further, we investigated

additional questions about the role of a +Htest strategy
in cases where system errors occur. Specifically, we ad

dressed the following questions:

I. Are people really biased to label falsification trials
as errors, or is this conclusion based on the confounding

of rare +Htest falsification feedback with rare error trials?
One way to determine the existence of an immunization
bias is to contrast performance when the rule to be dis

covered is very broad (as in the typical Wason task) with
performance when the rule is structured so as to gener

ate a balanced distribution of verifications and falsifica
tions. Gorman (I986, 1989) suggested that subjects' im

munization bias will preclude them from suspecting that
false positives (i.e., "yes" feedback when in fact the in
stance does not match the rule) are errors, since such feed

back provides support for the current hypothesis. How
ever, if subjects are equally able to identify false positives
and false negatives, the existence of an immunization

bias would be called into question.
2. Is the effectiveness ofa +Htest strategy maintained

in the context of system error, as Klayman and Ha (1987)
have argued?

3. How does system error interact with the unique qual

itiesofdifferent content domains? Klayman and Ha (1989)
found no differences in rule discovery performance in a
study in which they used both a numerical domain and a

geography domain. However,this work was based on tasks
without system error. Since different content areas sup
port different types ofrelationships between members, it
is possible that people will not find it equally easy to iden

tify errors in different domains. For example, the seed [2
4-6J encompassesmathematical relationshipssuch as "even
numbers." In contrast, the seed [mouse-teat-elephant]
entails a set of relationships, such as "alive," that do not

exist in the [2-4-6J domain. The addition of system
error may interact with the unique qualities of each do

main to differentially impair success.

EXPERIMENT t

Experiment I incorporated system error into the basic
paradigm of the Wason rule discovery task. In addition

we included a second content domain, along with a sec
ond rule that has been shown to provide subjects with a
more even distribution of verification and falsification
than does the traditional form of the Wason rule.

Method

Subjects
One hundred and twenty psychology undergraduates participated

in this study for partial course credit. The subjects were run either

singly or in groups of 2 or 3.
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Design

A domain (numerical/animal) X rule (broad/narrow) X error

(presence/absence) between-subjects design was used, with 15 sub

jects in each of the eight cells. Specific rules (broad or narrow) were

nested within domain. In the numerical domain, the broad rule was

"Numbers in ascending order," and the narrow rule was "Sequen

tial, even numbers between 2 and 100, inclusive." For both rules, the

initial instance was [2-4-6]. In the animal domain, we used rules

developed by Farris (1992): the broad rule was "Living things," and

the narrow rule was "Mammals in increasing order of size." The

initial instance for both was [mouse-cow-elephant]. In both the

numerical and the animal domains, the broad rule is likely to in

clude subjects' initial hypotheses. We expected that the preference

for +Htests would lead broad-rule subjects to receive predomi

nantly verification of their test triples, while narrow-rule subjects

would receive a more even distribution of verification and falsifi

cation (cf. Klayman & Ha, 1989).

Procedure

The subjects were presented with a pencil-and-paper task and
were told that we were interested in studying scientific reasoning.

At the top of the paper was the initial instance for their condition.

Below the initial instance were columns labeled "Hypothesis," and
"Experiment," and two response columns: "Conforms" and "Does

Not Conform." The subjects were told that the initial instance was

a positive example ofa rule that they were to discover (see the Ap

pendix for the full text of the instructions). They were told that they

were to generate and write down a hypothesis and a test of that hy

pothesis, such as [6-8-10] or [cat-dog-horse]. It was emphasized

that they must state their current hypothesis on each trial, though

they were free to repeat hypotheses and tests throughout the study.

After each test, the experimenter indicated whether or not the test

conformed to the rule for the assigned condition, by placing a check

mark in the appropriate response column. The subjects could ter

minate the study at any time by writing out their proposed rule. The

subjects' record sheets were available to them throughout the study.

In addition to receiving the basic instructions, the subjects in the

error conditions were told that in order to simulate real-world sci

ence, there might be some "noise" or random error in the feedback

they received. That is, if their experiment conformed to the rule, they

might be told that it did not conform, and vice versa. The subjects

were told that on 0%-20% of their trials they would receive false

feedback (cf. Gorman, 1989). It was emphasized that there might be
no errors, but that, if there were, the errors would occur on no more

than one in five trials, on the average. In fact, all error subjects re

ceived errors on the same 20% of their trials (e.g., Trials 5, 7, 12,

etc.), determined in advance by using a random number table to se

lect 5 trials out of 25. However, while the trials on which the sub

jects received error feedback were determined in advance, the type

of error (i.e., false positive or false negative) depended on the ex

periments that the subjects conducted on each of the error trials.

Although a 20% error rate may seem so high as to reduce the face

validity of the task as a laboratory analogue of real-world science,

there are several arguments for using such a rate. First, it is the error

rate used in earlier studies, and thus it provides continuity with pre

vious research (e.g., Gorman, 1986, 1989). Second, we wanted to

affect subjects' reasoning processes without making the task im

possible to solve. Using very low error rates would require a task

with many more trials, in order to have sufficient instances of error

to get an effect. Third, the rate is not so high as to hopelessly con

fuse subjects: Gorman's (1989) research showed that some subjects

could generate the correct rule even when 20% of the feedback was

erroneous. Finally, a 20% system error rate is not unheard of in real

world situations, such as medical diagnosis.'

Subjects were instructed to indicate suspect trials by placing an

"X" next to them. Subjects could change their mind about the sta

tus of a suspected trial by placing a "j" next to any "X." At the con
clusion of the study, the subjects were asked to add any final "Xs"
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Figure 1. Proportion ofsubjects discovering (strict success) the
rule for each rule type and error condition. (A) numerical do
main (broad rule, numbers in ascending order; narrow rule, se
quential, even numbers between 2 and 100, inclusive). (B) animal
domain (broad rule, living things; narrow rule, mammals in in
creasing order ofsize).
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gories: 41% were taxonomic (e.g., mammals); 17% were
idiosyncratic (e.g., number of letters, must have thick

skin); 13% were based on relative size (e.g., small to
large); 11% were based on appearance (e.g., all have
legs); 3% referred to location (e.g., found on land); 2%
referred to function (e.g., they all walk). Some hypothe

ses involved combinations of two categories: 9% com
bined taxonomic and size categories (e.g., mammals in
order of increasing size); 4% combined taxonomic and
appearance categories (e.g., mammals with four legs).
Thus, although subjects were free to generate any type of

hypothesis they wished, all subjects in the numerical do-

Results

Rule Discovery
We used both a strict and a lenient criterion for deter

mining whether or not subjects discovered the correct
rule. For the strict criterion, subjects were scored as suc
cessful only ifthey stated the complete rule for their con

dition. For the lenient criterion, subjects had to discover
the core of the rule (e.g., sequential, even numbers), but

not the boundary conditions (e.g., between 2 and 100, in
clusive). In the following analyses, success refers to the
strict criterion; near success, to the lenient criterion.

The mean success rate for no-error subjects was 48%,
whereas for error subjects it was 17% [X2(1, N = 120) =
13.71 ,p < .001]. The no-error success rates (see Figure 1)

were generally similar to those reported by previous re
searchers (e.g., Farris, 1992; Freedman, 1992a; Gorman,
1989; Klayman & Ha, 1987). A chi-square analysis re

vealed a significant difference between conditions [X2(7,

N = 120) = 26.4,p < .001]. Inspection of post hoc cell
contributions revealed that in the numerical domain more

broad-rule no-error subjects and fewer narrow-rule error
subjects were successful than expected by chance; within
the animal domain, fewer narrow-rule error subjects were
successful than expected by chance (p < .05 in all cases).

Number of Trials
As Table 1 shows, error subjects, on the average, gen

erated more than twice as many trials as did their no

error counterparts [F(1,112) = 72.3,p < .001]. These re
sults partially replicate those of previous investigations
(Kern, 1982; Gorman, 1989) with respect to the overall
effect of error on number of trials. However, the effect
comes from the numerical domain, for there is a signif

icant interaction between error and rule nested within
domain [F(3,112) = 4.38, P < .01]. Scheffe post hoc
analyses were conducted to compare error and no-error
conditions for the same rule within each domain, yield
ing four comparisons. Within the numerical domain, error

subjects conducted significantly more trials than did no
error subjects for both broad and narrow rule compar
isons (p < .05). In the animal domain, although there were
more trials by error subjects than by no-error subjects,
the difference was nonsignificant. Because subjects dif
fered in the number oftrials that they conducted, the fol

lowing analyses, except where noted, are based on pro
portions and not absolute values.

or "js" they thought necessary. This allowed us to determine both

the types oftrials subjects associated with error, and whether or not

they correctly identified the errors they received.

Hypothesis Categories
We suggested above that different domains support

categorically different types of hypotheses. In order to
investigate this premise, we categorized subjects' hy
potheses. All hypotheses in the numerical domain fell
into one category: arithmetical principles (e.g., even num
bers, numbers in increasing order, n + 2, etc.). Hypothe

ses in the animal domain belonged to five unique cate-
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Table 1

Mean Number (and Standard Deviation) of Trials

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Condition M SD M SD M SD M SD M SD

No error 9.7 5.8 12.3 9.3 8.7 3.2 I\.9 5.3 10.6 6.3

Error 27.6 10.9 26.5 8.3 15.8 5.4 18.3 7.5 22.1 9.6

M 18.6 12.5 19.4 11.3 12.3 5.7 15.1 7.2

main appear to have assumed that the rule must be arith

metically based. In contrast, subjects in the animal domain

had few a priori constraints on the types of hypotheses

that might prove useful.

+Htest Strategy

One of the motivations for this study was to evaluate

Klayman and Ha's (1987) suggestion that a +Htest strat

egy can be effective in cases where system error occurs.

Test strategy was scored by comparing the current hy

pothesis with the test triple for that trial. For example, a

trial with the hypothesis "even numbers" and the triple

[8-10-12] would be scored as a +Htest. If the triple had

been [7-9-11], the trial would be scored as a -Htest.

We found that the already high base rate of +Htests in

no-error conditions was not increased in error conditions:

In both conditions, more than 80% of the experiments

were +Htests (see Table 2). Across conditions, between

8 and 14 subjects generated +Htests on at least 75% of

their trials. There was a main effect only for rule nested

within domain [F(3,112) = 3.58,p < .05]. In the numer

ical domain, rule type did affect the proportion of+Htests:

76% of the broad-rule subjects' experiments were +Htests;

this proportion was 91% for the narrow-rule subjects (p <
.05). There was no effect of rule for the animal domain.

Experiment Feedback

The observation that subjects predominantly use a

+Htest strategy does not provide any information on the

type of feedback that they received. Gorman (1986,

1989) argued that the proportion of falsification feedback

received is positively correlated with success. However,

Klayman and Ha (1987) have claimed that verification

can be as useful as falsification: +Htest verification high

lights hypotheses for further investigation. Since feed

back is independent of test type (Klayman & Ha, 1987),

we analyzed +Htests and - Htests separately, using sub

jects' perceived data sets.!

+Htest feedback. Virtually all subjects received ver

ification on more than 50% oftheir +Htests, with broad

rule no-error subjects in both domains receiving almost

all of their feedback in this form. As noted earlier, the

narrow-rule condition was designed to increase the fre

quency with which subjects would generate triples that

were not instances of the correct rule. Table 3 lists the

ratio of+Htest verification to falsification for broad-rule

conditions and the ratio of falsification to verification

for narrow-rule conditions.

The manipulation worked: broad-rule subjects received

from 1.5 to 7.3 times as much verification as falsification.

For narrow-rule subjects, the ratio of verification to fal

sification feedback was reversed and attenuated: narrow

rule subjects received from 1.1 to 1.9 times as much fal

sification as verification to their +Htests. Analysis

revealed a main effect for rule nested within domain

[F(3,112) = 43.44,p < .001]. Scheffe post hoc compar

isons revealed that, in both domains, broad-rule subjects

had proportionally more +Htest verification (71% and

76%, for numerical and animal domains, respectively)

than did narrow-rule subjects (41% and 39%, for nu

merical and animal domains, respectively) (p < .05 for

all comparisons). There was also an effect oferror: 65%

ofno-error subjects' +Htests were verified, whereas 49%

of error subjects' +Htests were verified [F(I, 112) =

33.25, p < .001].

- Htest feedback. - Htests were much less frequent

than were +Htests. Moreover, there was considerable

disparity in the type of feedback - Htests received: be

tween 50% and 100% of the narrow-rule subjects re

ceived only - Htest verification; however, virtually all

broad-rule subjects received falsification on at least one
- Htest.

Analysis revealed a main effect only for rule nested

within domain [F(3,63) = 17.61,p < .001]. In the numer

ical domain, 36% of broad-rule subjects' -Htests were

verified, whereas 78% of narrow-rule subjects' - Htests

Table 2
Mean Proportion (and Standard Deviation) of+Htests

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Condition M SD M SD M SD M SD M SD

No error .81 .24 .86 .13 .86 .22 .90 .16 .86 .19

Error .72 .21 .96 .07 .75 .24 .85 .18 .82 .21

M .76 .22 .91 .12 .80 .23 .83 .17
--~-,.
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Table 3

Ratio of Mean Proportion of Verified +Htests to Falsified

+Htests (Bold) and Falsified +Htests to Verified +Htests

portion offalse negatives or false positives correctly iden

tified (see Table 4).

Numerical Animal

Condition Broad Rule Narrow Rule Broad Rule Narrow Rule

were verified; the results were similar in the animal do

main (25% and 91% for the two rule conditions). Scheffe

post hoc comparisons within both domains were signif

icant (p < .05 for both comparisons).

Hypothesis Change
An immunization bias predicts that subjects in error

conditions should be less likely to change their hypoth

esis after receiving falsification than no-error subjects,

since they can treat such feedback as a system error. Over

all, from 13 to 15 subjects in each condition changed a

hypothesis at least once following falsification. Error

subjects changed their hypothesis following falsification

on 60% of such trials, whereas the no-error subjects did

so on 73% [F(1,107) = 7.06,p < .01].

Response to Error Trials

If subjects have an immunization bias, they should be

more likely to attribute errors to falsified rather than ver

ified trials. However, as noted above, previous studies of

system error utilized a rule that may have lead to the ma

jority oferror trials occurring as false negatives (i.e., "no"

feedback); our inclusion ofa narrow rule was designed to

counter this potential problem.
Collapsing over rule and domain, subjects marked 44%

of their verification trials and 56% of their falsification

trials as errors. The difference was nonsignificant. How

ever, given the qualitative differences between narrow

and broad rule, separate analyses were conducted to see

the effect of rule type on error ascription.

Broad-rule subjects labeled significantly more falsi

fication trials, 64%, than verification trials, 36%, as er

rors [t(30) = 2.49,p < .05]. This result is consistent with

Gorman's (1986, 1989) results. In contrast, narrow-rule

subjects were almost evenly split in labeling verification,

52%, and falsification, 48%, trials as errors.

Virtually all error subjects identified at least one of

the false negative errors they received. All numerical, but

only 50% of the animal, subjects identified at least one

false positive. Overall, subjects did not differ in the pro-

Experiment Replication

Replicating an experiment-that is, using a test triple

identical to one used earlier-can be a useful strategy for

identifying error. If the replication feedback is discrepant

from the original feedback, one of the two must have

been an error trial. In contrast, replication is of no bene

fit in the absence oferrors. Consequently, it is not surpris

ing that only 2 no-error subjects ever replicated an ex

periment. Error subjects varied widely in their use of a

replication strategy. Fifty percent of the error subjects

never replicated a trial; the remaining subjects replicated

between 1 and 15 trials. Overall, error subjects replicated

an average of 8% of their trials. There was no effect of

rule nested within domain on the proportion of trials

replicated.

A replication strategy is most useful when subjects

correctly identify error trials as the ones to replicate. Of

those subjects replicating a trial, approximately 50%-75%

replicated at least one error trial.

Overall, 48% of the subjects' replications involved tri

als on which they had received false feedback. Testing the

proportion oferror trial replications against the actual error

rate of 20% showed that the subjects who did replicate

were more likely to replicate an error trial than would be

expected by chance alone [t(29) = 3.73,p < .001].

Task Success

Strict success. As discussed above, strict success re

quired subjects to state the complete rule for their con

dition. The following reports the dependent measures

with respect to this criterion.
As stated above, error subjects changed their current

hypothesis following falsification less often than did no

error subjects. However, there was no association be

tween rule discovery and this measure: both successful

and unsuccessful subjects changed their hypothesis

following falsification on approximately 70% of such

trials.

In order to investigate the efficacy of a +Htest strat

egy, we analyzed the proportion of +Htests conducted

with respect to success. Successful subjects had lower

proportions of +Htests (76%) than did unsuccessful sub

jects (88%) [F(1,118) = 1O.36,p < .01].

While successful subjects had lower proportions of

+Htests, they received more verification (65%) than did

unsuccessful subjects (53%) to such tests [F(1,118) = 6.28,

1.2

1.9

7.3

1.8

1.1

1.8

4.9

1.5

No error

Error

Table 4

Mean Proportion (and Standard Deviation) of Errors Correctly Identified by Condition

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Errors M SD N M SD N M SD N M SD N M SD

False positives

False negatives

.83 .27

.62 .31
9 .60 .38

15 .64 .42

15 .50 .55

14 .68 .42
6 .44 .43

15 .60 .46
15 .58 .41

10 .64 .39



p < .05]. Successful and unsuccessful subjects received

verification on approximately half of their - Htests.

Klayman and Ha (1987) argued for the importance of

conclusive falsification, and show how it can result from

either +Htests or - Htests. In the present study, conclusive

falsification played an important role in task success. Al

though successful and unsuccessful subjects received

about the same proportions of conclusive falsification

(39% and 46%, respectively; see Table 5), the two groups

differed in the source ofthat feedback. Ofthe conclusive

falsifications received by successful subjects, 30% were

in the form of falsified - Htests, while for unsuccessfuls,

only II % of the conclusive falsification came from fal

sified - Htests. This pattern was generally maintained

for individual rule X domain X error conditions: in six of

eight conditions, - Htest falsifications were between 2

and 10 times more frequent for successful than for un

successful subjects.

Task success was also associated with the correct iden

tification of false negative errors; successful subjects

identified 100% oftheir false negative errors and 78% of

their false positives. In contrast, unsuccessful subjects

identified only 56% of their false negatives and 53% of

their false positives. The difference between successful

and unsuccessful subjects was significant for only false

negatives [F(I ,52) = 11.15,p < .01]. Thus, although sub

jects exhibited no bias toward ignoring false positives,

only the correct identification of false negatives was as

sociated with successful rule discovery.

Although replication potentially provides a powerful

tool for identifying error trials, our results show that suc

cessful subjects replicated approximately as often as did

unsuccessful subjects (12% and 7%, respectively). More

over, there was no difference in proportion of error trial

replications by successful (57%) and unsuccessful (46%)

subjects.

Near success. Traditionally, success on the Wason

task has been defined as a complete statement of the rule.

This perspective was used in the analyses above. How

ever, the narrow rule can be considered as a two-part rule:

a core (e.g., sequential even numbers), plus a range con

dition (e.g., between 2 and 100, inclusive). Thus failure

can occur in two qualitatively distinct manners. For ex

ample, a subject may have no idea about either the core

or the range condition, and consequently be classified as

unsuccessful. However, under the traditional paradigm,

a subject would also be classified as incorrect even if

he/she discovered the core rule (e.g., sequential even num-

Table 5

Proportion of Ambiguous Verification (AV) and Conclusive

Falsification (CF) for Successful and Unsuccessful Subjects

Feedback

Outcome Test Type "Yes" "No"

Successful +H 49%AV 27%CF

-H 12%CF 12%AV

Unsuccessful +H 47%AV 41%CF

-H 5% CF 7%AV
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bers), but missed the range condition (e.g., between 2

and 100, inclusive).

The qualitative difference between the two forms of

incorrectness suggests that it might be worthwhile to

look at the dependent measures with respect to a more lib

eral measure ofsuccess. Consequently, we scored narrow

rule subjects as near-successful if they stated, at a mini

mum, the core condition (see Figure 2). The following

analysis summarizes the most important dependent mea

sures with respect to near success. Collapsing the results

over rule and domain revealed that the near-success rate

for no-error subjects was 71%, while for error subjects it

was 28% [X2(l, N = 120) = 19.22, p < .0001]. A chi

square analysis showed a significant difference between

conditions for rule discovery [X2(7, N = 120) = 35.64,

p < .0001]. Inspection of the post hoc cell contributions

revealed that within the numerical domain, more narrow

rule no-error subjects and fewer broad-rule error sub

jects were successful than expected by chance alone (p <

.05 for both cases). Within the animal domain, both

broad- and narrow-rule error subjects were less success

ful than expected (p < .05 for both comparisons).

A series ofanalyses ofvariance revealed no difference

between near-successful and unsuccessful subjects with

respect to proportion of new hypotheses generated fol

lowing falsification, proportion of +Htests generated,

proportion of verified +Htests and - Htests, proportion

of trials replicated, or proportion of error trials repli

cated. Moreover, the near-success criterion did little to

change the pattern ofconclusive falsification found with

the strict-success criterion.

Near-success subjects correctly identified 79% oftheir

false positives and 88% of their false negative errors.

Unsuccessful subjects correctly identified 46% of their

false positives and 52% of their false negatives. The dif

ference between near-successful and unsuccessful sub

jects was significant for the identification offalse positives

[F(l,52) = 7.66,p < .01] and false negatives [F(l,52) =
11.84,p < .01].

Discussion

The results of Experiment I show that in the classic nu

merical domain, successful rule discovery on the Wason

task is affected by system error and rule type. However,

in the animal domain, there was an effect only for system

error.

The inclusion of the animal domain was motivated by

a desire to see how system error interacted with the unique

aspects of qualitatively different content domains. The

oretically, any number of possible rules could be con

structed to describe either domain. However, while sub

jects generated different hypotheses for the two domains,

they also differed in the number ofcategories from which

they drew their hypotheses. The subjects' record sheets

reflect these differences: within the numerical domain,

subjects focused exclusively on arithmetical relation

ships (e.g., even numbers, even numbers increasing by

two, etc.); in contrast, animal domain hypotheses were



Figure 2. Proportion ofsubjects discovering (near success) the
rule for each rule type and error condition. (A) Numerical do
main (broad rule, numbers in ascending order; narrow rule, se
quential, even numbers between 2 and 100, inclusive). (B) Animal
domain (broad rule, living things; narrow rule, mammals in in
creasing order of size).

narrow-rule subjects often failed to include the boundary

conditions as part of their final rules. In contrast, within

the animal domain, many subjects proposed a version of

the narrow rule in both the narrow- and broad-rule con

ditions. This interaction of rule type and domain raises

questions about analyzing the dependent measures with

respect to task success. This issue will be addressed below.

While the inclusion of system error does affect the

amount oftime people spend in trying to find the correct

rule, there is little effect on people's test strategies. All

subjects relied primarily on a +Htest strategy. In con

trast, however, to Klayman and Ha's (1987) argument for

the efficacy of a +Htest strategy when there is a possi

bility of error, we found that the successful subjects in

both error and no-error conditions were those who gen

erated fewer +Htests. But, in order to fully understand

the relationship between a +Htest strategy and task suc

cess, the type offeedback subjects received must also be

considered.

Klayman and Ha (1987) argued that when the hypoth

esis space is large, and errors are possible, high frequen

cies of+Htest verification provide support for the current

hypothesis and indicate which region of the hypothesis

space to further explore. In contrast, Gorman (1986, 1989)

suggested that higher proportions of falsification are as

sociated with success. These positions are not mutually

exclusive, and indeed, Experiment 1 supported both:

higher proportions of+Htest verification and higher pro

portions of - Htest falsification were associated with

task success.

One of the major difficulties facing error subjects is

that of trying to isolate system error trials. One strategy

is to replicate suspect trials. As our results show, people

varied widely in their decision to replicate. However,

when people did replicate, they replicated error trials

more often than would be expected by chance.

As discussed above, many subjects were able to iden

tify the core portion of the narrow rule, but failed to dis

cover its boundary conditions. This suggests that the

conventionally used strict-success criterion may under

estimate the progress people make toward rule discovery.

Subsequent analyses using near success revealed two main

differences from the results found using strict success.

The original analyses showed that successful subjects

generated fewer +Htests, and received less +Htest falsi

fication; the near-success analyses revealed no differ

ences on these measures. Thus, over-reliance on a +Htest

strategy appears to hinder discovery, not of the core rule,

but of the boundary conditions.

The use of the near-success criterion does raise some

issues about determining success. First, the liberal crite

rion only affects the narrow-rule conditions. Since the

broad rules only have a single proposition, there is no

possibility for partial success. Second, the criterion has

a differential affect on the two domains. Comparison of

Figures I and 2 shows that the near-success criterion in

creased success for both narrow-rule conditions in the

numerical domain, but only for the no-error condition in

the animal domain. In the numerical domain, virtually
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drawn from a wide range of qualitatively different cate

gories (e.g., size, appearance, taxonomy, etc.). Thus, the

two domains differ in the number, and types, of plausi

ble hypotheses they support.

These results suggest that the effects of rule on task

success are mediated by the specific properties of the do

main: The inclusion of the narrow-rule condition low

ered the proportion of successful subjects only in the

numerical domain. A detailed examination of subjects'

proposed rules revealed that in the numerical domain,



all narrow-rule subjects, regardless of error condition,

generated the core portion of the rule. However, in the

animal domain system, error severely affected people's

ability to form the core portion of the rule; error subjects

generated idiosyncratic rules that bore no resemblance

to the true rule. The impact of system error on the types

of hypotheses generated in different domains is an area

that needs further investigation.

A major motivation for Experiment 1 was to investi

gate Kern's (1982) and Gorman's (1986, 1989) contention

that people are biased to consider only falsification tri

als as possible errors. In order to investigate this claim,

we needed to unconfound error trials and false negatives

by making false positives about as likely as false nega

tives. The inclusion of the narrow rule led to a more bal

anced distribution of verification and falsification trials

and to the presence ofboth false positives and false neg

atives. While there was a trend for people to prefer falsi

fication trials as errors, this result needs to be considered

with respect to rule type: broad- but not narrow-rule sub

jects labeled proportionally more falsification than ver

ification trials as errors.

A more liberal interpretation of an immunization bias

is that, given the possibility of system error, people are

reluctant to give up a hypothesis following falsification.

Inclusion of a narrow rule allowed us to investigate this

possibility. Our results show that virtually all subjects

changed their current hypothesis following disconfirma

tion at least once, although error subjects were less likely

to do so than no-error subjects. Thus, our results do not

support a strict interpretation of an immunization bias;

they do, however, provide some support for a more lib

eral interpretation.

Obviously, there is a difference between labeling and

correctly identifying a trial as an error. Success was as

sociated with the identification of higher proportions of

system error. Yet, while successful subjects correctly iden

tified all of their false negatives, they did not identify all

of their false positives even though they had sufficient

information to do so. Why, then, did successful subjects

not identify all of their false positives?

One explanation is that since subjects have already

concluded that they know the rule, there is little incentive

for them to spend time looking for errors that they might

have missed. Consequently, they fail to identify some of

the false positives that they have received. However, this

explanation fails to account for the fact that successful

subjects did identify all of their false negatives, some of

which were identified at the conclusion ofexperimenta

tion. This may reflect people's preference for reasoning

from exemplars rather than nonexemplars of a concept

(see, e.g., Bruner, Goodnow, & Austin, 1956). Identifying

false negatives as errors allows one to recast nonexem

plars as exemplars. This recasting may facilitate the in

duction of a viable hypothesis by increasing the number

of positive exemplars.
Experiment I raised a number of issues for further ex

ploration. Our procedure required subjects to have a hy

pothesis for each test. However, during the course of the
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study some subjects commented on their difficulty in

generating a hypothesis to test. This may have had an un

expected effect: subjects may have occasionally listed

hypotheses that they were not explicitly testing. As Klahr

and Dunbar (1988) have shown, some subjects prefer to

use experimentation as a means ofgenerating, rather than

evaluating, a hypothesis during experimentation. That is,

they conduct experiments without explicit hypotheses,

using the resulting feedback to eventually generate a hy

pothesis. Since we required explicit hypotheses for every

trial, it is impossible to tell whether subjects were using

such a strategy. One alternative to this procedure is to allow

subjects to run experiments without explicit hypotheses.

The separate roles of hypothesis generation and eval

uation raise a second point. Tweney et al. (1980) conducted

a modified version of the Wason task which illustrates

how competing hypotheses might help task success. In this

study, subjects were told that the experimenter would

classify each test as being one of two mutually exclusive

rules. That is, all tests were positive exemplars of one

rule or the other. The manipulation boosted the success

rate to 85%; it was approximately 30% in the traditional

Wason task.

However, this research has two drawbacks. First, com

peting hypotheses in real-world tasks are unlikely to be

either mutually exclusive or exhaustive. Second, the ma

nipulation does not really investigate how multiple hy

potheses affect task performance; rather, it shows how

receiving only confirmatory feedback affects the dis

covery of two mutually exclusive rules.

A number ofresearchers (e.g., Freedman, 1992b; Klahr

& Dunbar, 1988; Tweney, Doherty, & Mynatt, 1981) have

investigated the effects ofgenerating alternative hypothe

ses prior to experimentation. This work suggests that peo

ple can generate a correct hypothesis without conducting

any experiments; moreover, the manipulation improves

the efficiency with which the correct hypothesis is sub

sequently discovered. However, the effects ofsystem error

on such a strategy have not been investigated in any of

these studies.

In order to explore these issues, we designed a second

experiment in order to investigate the following questions:

(1) Does initially listing multiple hypotheses increase the

proportion of error subjects who discover the rule, and

does it improve the efficiency of their experimentation?

(2) Do subjects choose to conduct experiments without

stated hypotheses, and if so, is this an effective strategy

for rule discovery, given the possibility of system error?

EXPERIMENT 2

Method

Subjects
The subjects were 59 college undergraduates. They were run sep

arately, and they received course credit for participating in the study.

Design
A prior hypotheses (presence/absence) X error (presence/

absence) between-subjects design was used. In order to provide a

balance of "yes" and "no" feedback, all subjects were required to
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discover the narrow rule, "Sequential, even, numbers between 2 and

100, inclusive." The seed trial was [2-4-6).

Procedure

The procedure was identical to that of Experiment I, with the fol

lowing differences. Prior to experimentation, subjects in the prior

hypotheses conditions were shown the set [2-4-6) and were in

structed to list as many rules as they could that described this set of

numbers. The subjects' hypotheses were available to them through

out the remainder ofthe study.
All subjects were told that some people found it useful to some

times conduct experiments without hypotheses. Thus, if they chose

to, subjects could conduct nil hypothesis trials.

Results

Prior Hypotheses
In order to ensure that the error and no-error subjects

did not differ in the number and quality of their prior hy
potheses, we compared them on both of these measures.
While no-error subjects generated slightly fewer prior

hypotheses than did error subjects (3.8 vs. 5.3), the dif

ference was nonsignificant.
The quality of the prior hypotheses was judged by 10

psychology graduate students. Each proposed hypothe
sis was rated against the correct rule on a scale from 0

(no match) to 1 (perfect match). A Kendall coefficient of
concordance was calculated in order to measure the de
gree of agreement between the judges. Although the

judges did not completely agree in their rankings, they
did agree more than would be expected by chance (W =
.46,p < .001).

No subject generated the correct rule prior to experi
mentation. In order to estimate subjects' best guess as to
the correct rule, we compared subjects' highest rated hy
pothesis. Mean ratings for these "best prior" hypotheses
ranged from .33 to .78, with overall mean ratings of .51

for error subjects and .52 for no-error subjects.

Rule Discovery
In the no-error condition, 53% and 29% of the subjects

discovered the rule in the no-prior and prior-hypotheses
conditions, respectively, though the difference was non
significant. In the error condition, only 7% of the sub

jects in either hypothesis condition were successful. A
chi-square analysis revealed an overall difference be
tween conditions [X2(3, N = 59) = 12.27, p < .01]. In
spection of the post hoc cell contributions revealed that
more no-error no-prior subjects were successful than

would be expected by chance (p < .05). Collapsing hy
potheses revealed an overall effect for the presence ~ f

system error [X2(1, N = 59) = 9.82,p < .01]. Analysis

of the post hoc cell contributions showed that fewer error
subjects were successful than would be expected by

chance (p < .05).

Number of Trials
One possible effect ofgenerating prior hypotheses may

be to increase subjects' search efficiency. In particular,
given the confusion that system error evokes, a source of
prior hypotheses may be especially beneficial for error

subjects. If so, there should be a decrease in the number

oftrials that these subjects generate. However, as Table 6
shows, there was no effect ofprior hypotheses on the num
ber of trials conducted. As in Experiment 1, error sub

jects generated approximately twice as many trials as did
no-error subjects [17.2 vs. 9.0; F(l,55) = 22.4,p < .01].

Nil Hypothesis Trials
During Experiment 1, error subjects' comments sug

gested that they had difficulty generating new hypothe

ses to test. Since prior-hypotheses subjects have a set of
hypotheses to fall back on, we expected that they would
produce fewer nil trials than would no-prior-hypotheses

subjects. In the no-prior-hypotheses condition, 10% of
no-error subjects' trials and 3% ofthe error subjects' tri

als were conducted without hypotheses; however, all of
the no-error nil trials were by a single subject. None of
the prior-hypotheses subjects conducted a nil hypothesis

trial. Thus, contrary to our expectations, subjects rarely
conducted experiments without an explicit hypothesis.

+Htest Strategy
Regardlessofwhen hypothesesare generated, they must

still be evaluated by generating experimental trials. As in

Experiment 1, approximately 80% of subjects' trials in
volved--Htests." There wasno effectoferror or ofprior hy

potheses on the proportion of +Htests proposed.

Experiment Feedback
As in Experiment 1, we analyzed feedback to +Htests

and - Htests separately.
+Htest feedback. Virtually all subjects received ver

ification on approximately 50% of their +Htests. Across

conditions, the proportion of verified +Htests ranged
from 39% to 50%; there was no effect of error or hy

potheses.
- Htest feedback. Approximately 75% of the error

subjects received only - Htest verification, as did 50%
ofthe no-error subjects. Both error and no-error subjects
received verification on roughly 75% of their - Htests.

Hypothesis Change
As discussed in Experiment 1, if people have an im

munization bias, error subjects should be less likely to
change their hypothesis followingfalsification than should

no-error subjects. No-error subjects changed their cur
rent hypothesis following 66% of their falsification tri
als, whereas 73% of the error subjects did so; the differ

ence was nonsignificant.

Table 6
Mean Number (and Standard Deviation) of Trials (Experiment 2)

No Prior Prior
Hypotheses Hypotheses Combined

Condition M SD M SD M SD

No errors 10.0 4.0 7.9 3.5 9.0 3.9
Errors 17.7 10.0 16.6 6.8 17.2 8.4

M 13.9 8.5 12.4 7.0



Response to Error Trials

The prior-hypotheses condition was designed to de

termine the extent to which the effects of system error

could be mitigated. However, we have already shown that

this manipulation did not improve task success; this sug

gests that a pool of hypotheses does not aid in the iden

tification of error trials.

There was no effect of prior hypotheses on the pro

portion offalse positives or false negatives identified (see

Table 7). Collapsing over conditions, 34% of the trials

that subjects marked as errors were verification trials; 66%

were falsification trials [paired t(25) = 2.15, p < .05].

Virtually all of the error subjects marked at least one

falsification trial as being an error; however, only about

50% of the subjects, in either error condition, labeled at

least one verification trial as an error.

The proportions of correct error identification in Ex

periment 2 were similar to those for the corresponding

condition in Experiment 1: The subjects in both hypothe

ses conditions identified approximately 50% oftheir false

positives; similarly, the subjects identified approximately

62% of their false negatives.

Experiment Replication

As in Experiment 1, error subjects varied widely in their

use of a replication strategy; 52% of the subjects never

replicated any oftheir test triples. The remaining subjects

replicated between one and nine trials. On the average,

error subjects replicated 13% of their trials. There was

no effect of the hypothesis manipulation on the propor

tion of trials replicated.

Power of replication. As discussed in Experiment I,
replication is most useful if subjects choose error trials

to replicate: Overall, 48% of subjects' replications in

volved false feedback trials. Testing the proportion oferror

trial replications against the actual error rate of 20%

showed that error trials were more likely to be replicated

than would be expected by chance [t(l3) = 2.84,p < .05].

Task Success

Strict success. As in the first experiment, successful

and unsuccessful subjects did not differ with respect to the

proportion ofnew hypotheses generated following falsi

fication (approximately 65% in each case).

Success in Experiment 1 was associated with lower

proportions of +Htests. This result was replicated in Ex

periment 2. Sixty-nine percent ofsuccessful subjects' tests

were +Htests; 86% of unsuccessful subjects' tests were

+Htests [F(l,57) = 8.17, P < .01].

Table 7

Mean Proportion (and Standard Deviation) of

Errors Identified by Condition (Experiment 2)

No Prior Prior

Hypotheses Hypotheses Combined

Errors M SD N M SD N M SD

False positives .59 .39 14 .46 .50 14 .53 .44

False negatives .71 .49 7 .55 .48 11 .61 .48
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We also assessed the association between success and

proportion of verified +Htests in no-error and error con

ditions. Successful and unsuccessful subjects received

verification on approximately 50% of their +Htests. Al

though there was a difference on this measure in Exper

iment 1, both results support our argument that successful

rule discovery is not associated with a higher proportion

of verified +Htests. As in Experiment 1, successful and

unsuccessful subjects did not differ on the proportion of

verified - Htests (approximately 74% for both).

As in Experiment 1, conclusive falsification played an

important role in task success. Successful and unsuccess

ful subjects received about the same proportions of con

clusive falsification (42% and 49%, respectively). How

ever, the two groups differed in the source ofthat feedback:

for successful subjects, 19% were in the form of falsified

- Htests; for unsuccessfuls, only 6% of their conclusive

falsification was in this form.

Since only two error subjects successfully discovered the

rule, analyses oferror identification and experiment rep

lication with respect to strict success were not conducted.

Near success. We analyzed the dependent measures

with respect to the near-success criterion described in

Experiment 1. In the no-prior condition, 93% of the no

error subjects and 40% of the error subjects were classi

fied as near successful; in the prior-hypotheses condition,

86% of the no-error and 60% of the error subjects met

the near-success criterion. A chi-square analysis showed

a significant difference between conditions for rule dis

covery [X2(3, N = 59) = 12.55, P < .01]. Inspection of

the post hoc cell contributions revealed that in the no

prior condition, no-error subjects were more successful,

whereas error subjects were less successful, than would

be expected by chance alone (p < .05 for both cases).

Collapsing the hypotheses conditions revealed a main

effect for error [X2(l, N = 59) = 10.94, p < .001]. Ex

amination ofthe post hoc cell contributions revealed that

more error subjects were successful than would be ex

pected by chance (p < .05).

A series ofanalyses ofvariance revealed no difference

between near-successful and unsuccessful subjects with

respect to proportion of nil hypothesis trials, proportion

ofhypothesis changes following falsification, proportion

of+Htests generated, proportion of verified +Htests and

- Htests, proportion offalse positive errors identified, and

proportion of trials, error and correct, replicated. Use of

the near-success criterion had little effect on the pattern

ofconclusive falsification found using the strict-success

criterion.

Analysis did reveal that near-successful subjects cor

rectly identified 88% oftheir false negative errors, whereas

40% ofthe unsuccessful subjects did so [F(l ,16) = 5.67,

p < .05].

Discussion

The results were generally consistent with those of Ex

periment 1, with one important difference. The subjects

in Experiment I identified an approximately equal pro-
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portion of verifications and falsifications as errors. This

led us to conclude that previous attributions of an im

munization bias in subjects' responses to system error de

rive from a methodological artifact that disappears when

the task promotes a more balanced proportion of both

types offeedback. In Experiment 2, however, subjects' be

havior was consistent with an immunization bias: they

identified proportionally fewer verification trials than

falsification trials as errors. The difference in the two re

sults suggests that people vary widely in their error at

tribution strategies. That is, error attribution appears to

be much more complicated than is suggested by a sim

ple immunization bias. We will discuss this issue below.

There were two principal motivations for Experi

ment 2: (1) to investigate whether generating hypotheses

prior to experimentation improved success in the error

condition; and (2) to see whether subjects would choose

to use a nil-hypothesis strategy, and if so, whether such

a strategy would be effective.

We had expected subjects to conduct nil-hypothesis

trials in order to establish a base of experimental results

that could then be used to induce a hypothesis. However,

the results suggest-contrary to our expectations-that

people prefer to test, rather than induce, hypotheses, even

when they lack specific information to initially guide their

search. That is, people prefer to use their content knowl

edge to guide experimentation right from the start, even

if they have no idea which aspects of that knowledge are

applicable.

Freedman (1992a) suggested that considering multi

ple hypotheses mitigated the effects of system error. In

contrast, our results showed no effect of prior hypothe

ses on task success. However, there are important differ

ences between the two studies. Freedman instructed sub

jects to test either one or two hypotheses at a time. This

produced a situation similar to that ofTweney et al. (1980).

Subjects could construct two exclusive hypotheses and a

test sufficient to eliminate one or the other of the two. In

contrast, we did not instruct subjects in how they should

go about testing their hypotheses.

Second, Freedman (1992a) did not actually introduce

system errors; he only suggested that such errors might

occur. As Gorman (1989) showed, there are differences

in how people respond to actual and implied system error

manipulations. These differences make it difficult to

compare our results with those of Freedman.

Our procedure is closer to that of Klahr and Dunbar

(1988), with the addition of system error. In contrast to

that study, in the present work we did not find that prior

generation of hypotheses facilitated task success, im

proved the efficiency of the discovery process, or miti

gated the effects of system error. Thus, simply listing hy

potheses before experimentation does not necessarily

mitigate the effects of system error. However, this con

clusion must be considered with respect to the size of the

hypothesis space that subjects explore.

A priori hypotheses will be useful to the degree that

they encompass the area of the hypothesis space within

which the correct hypothesis lies. For example, in Klahr

and Dunbar's (1988) task, most people correctly assumed

that the name of the "mystery" computer key-RPT

was representative ofthe key's function. That is, although

the key could have an infinite number of arbitrary func

tions, people used its name to constrain the range ofhy

potheses they proposed. In contrast, the seed [2-4-6] was

purposely designed to suggest a wide range of plausible

hypotheses (Wason, 1960). Consequently, people have

little a priori information on how to constrain their set of

possible hypotheses. As our judges' ratings reflect, sub

jects' a priori hypotheses varied considerably in their re

semblance to the correct rule.

GENERAL DISCUSSION

This research was motivated by four main issues: ( 1) to

investigate Kern's (1982) and Gorman's (1986, 1989)

contention that people are biased to consider only falsi

fication trials as possible errors; (2) to see whether, given

the possibility ofsystem error, a +Htest strategy is a useful

search strategy, as Klayman and Ha (1987) have claimed;

(3) to investigate whether or not generating hypotheses

prior to experimentation mitigated the effects of system

error; and (4) the interaction of system error and domain

knowledge.

By using both broad and narrow rules, we were able to

contrast situations with unbalanced and balanced pro

portions of verification and falsification trials. Our re

sults show that, in contrast to the claim that people are

biased to label falsification trials as errors in order to

preserve their current hypothesis, people are equally able

to detect false positives and false negatives.

Our results also show that, with respect to the efficacy

of +Htests, successful subjects in both error and no-error

conditions conducted proportionally fewer +Htests than

did unsuccessful subjects. This suggests that although a

+H strategy may be useful in establishing a viable hy

pothesis for further exploration, over-reliance on +Htests

negatively affects task success (Tweney et aI., 1981).

Previous research suggests that generation ofprior hy

potheses can be a useful discovery strategy (Klahr & Dun

bar, 1988). However, the current research shows that with

out some constraints on their search, people are unlikely

to generate hypotheses that cover the appropriate region

of the hypothesis space.

When we used a strict criterion for success, we found

similar search strategies and success rates in the two do

mains. However, the near-success analysis highlighted

the effect of system error on domain: subjects in the

narrow-rule animal domain were severely affected by the

inclusion of system error, unlike their counterparts in the

numerical domain.

The near-success analysis raises questions about the

determination of success in studies of scientific reason

ing, and in real-world scientific endeavors. In such con

texts, success is not an all-or-none affair. Moreover, the

form ofthe rule, the domain, and the type offeedback all

affect assessments of task success. That is, although using

a strict-success criterion does not always adequately rep-



resent people's ability, it is not clear how rule, domain,

and feedback interact to affect the discovery process. Fu

ture work needs to address this issue.

Our analysis of successful and unsuccessful subjects'

error identification patterns did produce one unexpected

result. In both studies, successful subjects identified all

oftheir false negatives, but not all of their false positives.

Since knowing the rule provides sufficient information

for identifying all errors, why then did successful sub

jects not identify all of their false positives? One expla

nation would be that they simply did not care to go back

at the end of the study and isolate such errors. However,

all subjects were encouraged to, and did, check over their

record sheets at the conclusion of the study. Thus, it is

unlikely that subjects cared about identifying their false

negatives, but not their false positives.

One difficulty in understanding the link between error

identification and the discovery process is to know how

the two interact: establishing a viable hypothesis is nec

essary for identifying error trials; but identifying error

trials is necessary for deciding on a viable hypothesis. It

is unsurprising that the identification of error trials is

critical to task success. However,it is less clear what strate

gies people use to identify possible errors. One strategy is

to replicate suspect trials. Our results show that people

varied widely in their use of this strategy. However, the

subjects who did replicate tended to replicate error trials,

rather than no-error trials, more often than would be ex

pected by chance. What is not clear from the current work

is how they made this decision.

One possible answer to this question is suggested by

recent work on the treatment of anomalous data. Chinn

and Brewer (1993) found that the strongest influence on

how such data were treated was a person's theoretical com

mitment. Strong theoretical commitments lead people to

discount data that do not fit with their position; that is,

theory drives the determination of data validity.

However, Chinn and Brewer's (1993) methodology is

considerably different than ours. They provided subjects

with a theoretical position in a domain where most lay peo

ple have little knowledge (i.e., the mass extinction of di

nosaurs at the end ofthe Cretaceous period). Subjects were

then asked to assess data that did or did not fit with their

assigned theoretical stance. Thus, subjects were immedi

ately aware whether or not the presented data was consis

tent with their assigned theory. In contrast, we presented

subjects with a task in which they had considerable domain

knowledge, but little insight into the specific structure of

the rule they were to discover. This produced a situation in

which subjects had first to generate a hypothesis and then

to evaluate the feedback with respect to that hypothesis.

So, when do people trust the data? It appears that the

default is to trust the data when you do not distrust it.

That is, if people are not sure whether or not feedback is

erroneous, they initially accept it as veridical and use this

information to develop their initial hypotheses. Increas

ing confidence in one's hypothesis leads to the flagging

of suspect trials. Flagged trials are often replicated, be

cause, as we teach our students from their very first re-
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search methods course, replication can be a powerful tool

for error detection and correction.
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NOTES

1. SeeGorman (1992) fora comprehensive review ofhis(andother's)
workon the Wason task,and relatedscientific discovery tasks.

2. For example, following surgery, coloncancerpatients are moni
toredfor increased levels of a biological marker for colorectal cancer.
A6-yearstudy hasshown thatthetestusedproduced false negatives for
41%ofthecases, andfalse positives for 16% ofthecases (Moertel et aI.,
1993). Ortociteanother example, a recently developed andwidely used
test forearlydetection of prostate cancerhasa 20%false negative rate
and a 25%falsepositive rate ("Whether Positive or Negative," 1993).

3. The error subjects' feedback pattern is partially determined by
which trialsaremarked aserrors.Thatis, theperceived pattern of "yes"
and "no" responses depends in part on which trialsare marked as pos
sibleerrors. Analyses basedonsubjects'perceived datapatterns willbe
notedas theyarise.

4. Because +Htest classification is definedwithrespect to subjects'
statedhypotheses, nil trialsare excluded from thisanalysis.

APPENDIX
Experiment Instructions

You will be given a set of three observations that conform to

a simple rule. The rule is concerned with a relation between

sets of three observations. Your task is to discover this rule by

generating a possible rule (a hypothesis) and testing it with your

own set of three observations. After you have written down

your set of observations, I will indicate whether or not your test

conforms to the rule by placing a check under either the "Con

form" or "Does Not Conform" column on your paper.

Consider this procedure as similar to performing a number of

mini-experiments: You propose a hypothesis, test it with an ex

periment, and evaluate the outcome ofthe experiment (i.e., feed

back from the experimenter). Treat the feedback from the ex

perimenter as evidence, and use it to evaluate your hypothesis.

You may propose as many rules and tests as you wish. You

are free to refer to previous trials at any time during the study.

If you wish, you may retain a hypothesis, and/or a test, from a

previous trial. Remember, your aim is to discover the rule that

describes the relationship between the objects in the set. Con

tinue until you are sure that you know what the rule is. ONLY

THEN, AND NOT BEFORE, ARE YOU TO WRITE THIS RULE DOWN ON

THE BACK OF YOUR RECORD SHEET. Do you have any questions at

this time?
Instructions for the error conditions included the following:

To make this more like real science, there may be some "noise"

or random error in the feedback you receive, i.e., if the triad ac

tually DOES match the rule, it may be labeled as Does Not Con

form, and vice versa. On anywhere from 0%-25% of the trials,

the feedback you receive will be incorrect. For example, your

7th trial may be classified incorrectly, as may your 17th trial.

The amount oferror can never exceed an average of one trial in

five, and there may be NO error at all.

To indicate where you think random error has occurred, please

mark the trials you think have been classified incorrectly with

an X. If you change your mind, place a check mark next to the

X. This will indicate that you no longer believe you received in

correct feedback on that trial.
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