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ABSTRACT
Modern handheld computers are certainly capable of running gen-
eral purpose applications, such as Java virtual machines. However,
short battery life rather than computational capability often limits
the usefulness of handheld computers. This paper considers how to
reduce the energy consumption of Java applications.

Broadly speaking, there are three interleaved steps in running
Java programs in a compiled environment: downloading the byte-
codes, compiling and possibly optimizing the bytecodes, and run-
ning the compiled code. Optimized code typically runs faster than
non-optimized code but the optimization process itself may con-
sume significant energy. We consider the possibility of moving
compilation (optimizing or non-optimizing) to a tethered server.
We demonstrate that there is a significant benefit to moving com-
pilation to a server (up to 67% reduction in energy for a realistic
handheld configuration). We also demonstrate that there is no sin-
gle best compilation strategy for all methods.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors–Compilers, Opti-
mization

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Distributed compilation, Java, Energy efficient compilation

1. INTRODUCTION
Modern handheld computers are capable computing devices with

fast processors and large memories. They are extensible, and run
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general purpose operating systems such as Linux and WinCE. For
example, the relatively new Compaq iPAQ 3835 has a 206MHz
StrongArm processor, 64MB of RAM, an expansion slot (which
can take PCMCIA cards) [7] and runs WinCE and Linux. In con-
trast, the older Palm Vx has a 20MHz processor, 8MB of RAM,
limited expandability [9], and runs Palm OS, a special purpose op-
erating system. While the increased capability of modern hand-
helds allows them to run powerful and general applications (such
as the Java virtual machine), their short battery life severely re-
stricts their usefulness. In this paper we examine how to reduce the
energy consumption of Java applications. Our Java infrastructure
uses compilation only, and does not support interpretation. We de-
fer study of systems that use interpretation (perhaps in addition to
compilation) to future work.

Broadly speaking, there are three interleaved steps in running
Java programs in a compiled environment: downloading the byte-
codes, compiling and possibly optimizing the bytecodes, and run-
ning the compiled code. These steps are demand driven. When
a program references a class for the first time, the Java system
downloads the class. When a program calls a method for the first
time the Java system compiles the method, possibly with optimiza-
tion. For this research we extend the Java model by assuming that
a handheld can download not only Java bytecodes but also com-
piled or optimized versions of the bytecodes. There are therefore
four main possibilities: (i) download bytecodes and compile them
locally without optimizations; (ii) download bytecodes and com-
pile them locally with optimizations; (iii) download compiled but
unoptimized code; and (iv) download optimized code. For options
(iii) and (iv) the handheld may have to wait in idle mode for code
to be compiled or optimized on a server. These configurations of-
fer different tradeoffs between compilation time, download effort,
and execution time. Bytecodes will probably be more compact than
compiled code and will thus incur lower download energy costs and
download time. Optimized code will probably run faster than com-
piled code but it will take more energy to optimize the code or to
wait for the code to be optimized.

This paper evaluates the above-mentioned configurations with
respect to their energy costs. We conducted these experiments in
the Jikes RVM Java System [1] using the SPECjvm98 benchmarks.
We use an analytical model of energy with parameters drawn from
real hardware (such as the Itsy [13] or Compaq WL100 wireless
card [8]). We also vary our parameters and input sizes to increase
the generality of our results.

Our results demonstrate that, at least for the optimizations in
Jikes RVM, optimizing methods on a handheld is extremely costly
with respect to energy. Even with relatively long benchmark runs,
we are unable to recover the optimization cost. However, using a
server to optimize code is beneficial, reducing end-to-end energy
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consumption by up to 67%. We find that it is important to avoid
waiting for the server to optimize; the wait is often so long that it
negates the benefit of using a server, particularly for the shorter-
running methods and benchmarks.

The remainder of this paper is organized as follows. Section 2
presents background and motivation for the paper. Section 3 de-
scribes and discusses our experimental methodology. Section 4
presents the results. Sections 5 and 6 review prior work in the area
and suggest directions for future work. Finally, Section 7 concludes
the paper.

2. BACKGROUND
Users may download, compile, and run Java applications by sim-

ply clicking on links in their web browser. In the traditional Java
model, the web browser downloads applications in bytecode format
[2], and a local Java Virtual Machine (JVM) interprets the byte-
codes or compiles them and runs them. As the program runs, it
may download more bytecodes. For security, the JVM checks (vali-
dates) the bytecodes to ensure that they do not violate certain safety
properties.1

Most high-performance JVMs today, such as HotSpot [18] or
Jikes RVM [1], employ compilation rather than or in addition to
interpretation, since compilation (and its corresponding optimiza-
tions) leads to faster code. Compilation and optimizations, how-
ever, consume both time and energy. In this work we consider
how to reduce the energy overhead of compilation and optimiza-
tion while retaining their benefits.

We consider an alternate model of Java execution where one can
download either bytecodes or compiled (and possibly optimized)
code. By downloading compiled code, our model borrows from
that of Sirer et al. [22]. In that model, each organization has one or
a few local proxy servers that satisfy all web accesses for the orga-
nization. These proxy servers provide many services (such as opti-
mizations) and transform or translate the code as it passes through
them to the local client. Using a server to do expensive compilation
and optimization is an example of “cyber-foraging” [21].

We now define two terms that we use throughout the paper. A
server is a machine that is connected to a power outlet (i.e., it does
not rely on batteries for power) and can provide services such as
code optimization. A client is a handheld computer running on
batteries and has wireless capability with which it can communicate
with servers.

3. METHODOLOGY
We now describe our measurement infrastructure, the different

configurations that we evaluate, measurement techniques, and the
assumptions that we make.

3.1 Infrastructure
We conduct our experiments in the Jikes RVM infrastructure

from IBM Research [5]. Jikes RVM contains an aggressively op-
timizing compiler that performs many leading-edge optimizations
for object-oriented programs, including method inlining, method
resolution, and many scalar optimizations. Jikes RVM compiles
code on demand: it loads classes when the program uses them for
the first time and compiles methods when the program calls them
for the first time. One can build the system so that it always uses the
baseline (non-optimizing) compiler or always uses the optimizing
compiler. Jikes RVM also contains an adaptive optimizer [3] that
tracks hot spots in code and optimizes or reoptimizes them; for our

1Jikes RVM, because it is targeted for research use rather than com-
mercial deployment, does not perform bytecode validation.

experiments, we did not use the adaptive optimizer. Unless other-
wise stated, by optimizations we refer to all normal optimizations
in Jikes RVM except for method inlining.

3.2 Configurations
We consider four main configurations:

1. localBaseline. Download bytecode on client and compile
locally without optimizations.

2. localOpt. Download bytecodes on client and compile locally
with optimizations (-O2).

3. serverBaseline. Download unoptimized compiled code from
server.

4. serverOpt. Download optimized (-O2) compiled code from
server.

The energy consumption of a given configuration, C, has several
components:

1. Edownload(C). Energy consumed by the wireless card while
downloading code.

2. Ewait-download(C). Energy consumed by the client while
waiting for code to download.

3. Ewait-compile(C). Energy consumed while waiting for code
to compile or optimize on the server.

4. Ecompile(C). Energy for compiling or optimizing on the
client.

5. Erun(C). Energy for running the compiled application on
the client.

Table 1 give the equations we use to compute the energy con-
sumption of our four configurations. One or more of the above
energy components may not exist for a given configuration. For
example, Ecompile(C) only exists for the localBaseline and the
localOpt configurations. Also, a given component may contribute
differently to different configurations. For example, the Erun com-
ponent of the localOpt and serverOpt configurations may be the
same but hopefully much lower than the Erun component of the
localBaseline and serverBaseline configurations. Note that we are
assuming that servers do not run on batteries and thus their energy
consumption is not important to this study.

3.3 Computing the components
Prior work has noted that the energy consumption of a program

for the most part varies linearly with execution time [25, 26]. In
our own experiments we found the rate of energy consumption on
an actual Itsy pocket computer2 [10] averaged 2.22 Watts with a
standard deviation of 0.52 Watts. In other words, to a reasonable
approximation we could compute the energy consumption of a pro-
gram on an Itsy by multiplying its execution time by 2.22. Note, of
course, that compiler and run-time system optimizations that target
energy consumption could cause a program’s rate of energy con-
sumption to deviate significantly from 2.22 Watts. However, since
we are not considering any such optimizations in this study we felt
that it was appropriate to use execution time as an indicator of en-
ergy consumption.

We instrumented Jikes RVM running on a 1.4 GHz Pentium 4
desktop to measure compile time and run time of each method, the
2The Itsy pocket computer is similar to a Compaq iPAQ pocket PC.
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Configuration Equation
localBaseline Edownload(bc) + Ewait-download(bc) + Ecompile(base) + + Erun(base)
localOpt Edownload(bc) + Ewait-download(bc) + Ecompile(opt) + + Erun(opt)
serverBaseline Edownload(base) + Ewait-download(base) + + Ewait-compile(base) + Erun(base)
serverOpt Edownload(opt) + Ewait-download(opt) + + Ewait-compile(opt) + Erun(opt)

Table 1: Equations for computing components of energy

Constant Value used
Download cost per byte 444 nanoJoules/byte
Download speed 11 Mbits/sec
Handheld power 2 Watts
Idle ratio 0.5
Slowdown ratio 7

Table 2: Constants used in our experiments

Name Description
check Tests various features of the JVM
compress Modified Lempel-Ziv method
jess Java Expert Shell
db Database operations on a memory resident database
javac Java compiler from the JDK 1.0.2
mpegaudio Decompresses audio files
jack Parser generator, earlier version of JavaCC

Table 3: Benchmark descriptions.

size of the method bytecodes, and the size of the compiled methods.
The run time of a method includes only the time spent in the method
and not in its callees. We assume that the handheld is also Pentium-
based and runs a constant factor slower than the desktop.

Table 2 gives the constants we used to compute energy from our
time and size measurements. We obtained the download cost per
byte and transmission speed from the published numbers for the
Compaq WL110 wireless card [8]. While a handheld is receiving
data, it consumes energy (at the “handheld power” rate in Table 2)
in addition to the energy consumed by the card. The “Handheld
power” is the power consumed by the handheld when not in idle
mode, i.e., what we call “Peak power”. We obtained this number
from our experiments with the Itsy [10]. The idle ratio is the power
consumed when in idle mode (e.g., waiting for the server to compile
code) divided by the peak power consumption. The “Slowdown
ratio” is the speed of the handheld compared to the workstation
on which we measured the times. We computed this slowdown by
timing two applications on our measurement workstation and on a
set-top box using a configuration and (processor) similar to the Itsy.

Section 3.5 discusses the simplifications embodied in these con-
stants.

3.4 Benchmarks
Table 3 describes the benchmark programs. All benchmarks are

taken from the SPECjvm98 suite and use the large inputs (100).
These are commonly used and non-synthetic benchmark programs.
We omit one SPECjvm98 benchmark (mtrt) since our measurement
infrastructure cannot yet correctly handle multithreaded programs.

Table 4 gives the size in bytes of the bytecodes, baseline (i.e.,
compilation without optimizations) code, optimized code, and op-
timized code with all optimizations including inlining enabled for
each benchmark program. Note that the bytecode sizes are much

Benchmark Bytecode Base. Opt. Opt. + inl.
check 20.9 111.4 129.8 162.8
compress 15.2 71.3 94.4 102.3
jess 35.5 190.5 264.6 336.7
db 16.6 78.1 106.4 134.7
javac 35.9 172.9 234.8 308.5
mpegaudio 28.0 147.2 165.1 208.9
jack 38.8 227.4 240.3 302.5
G. mean ratio 1.00 5.17 6.40 7.95

Table 4: Size in KB of the bytecode, and compiled and opti-
mized (for x86) machine code

smaller than the compiled code sizes. Also, optimizations, and in
particular inlining, further increase the size of the compiled code.
For each configuration the G. mean ratio is the geometric mean of
the code size normalized to the bytecode size.

Table 5 gives the time (in seconds) to compile, optimize, and run
the benchmarks. The execution times in this table are the total time
for running the benchmarks and thus they also include time spent
in standard libraries. As expected, the optimization time is two
orders of magnitude higher than simple compilation. Also, once
optimized, the code runs significantly faster particularly with inlin-
ing enabled. The G. mean ratio gives the geometric mean of the
compile or execution time normalized to the compile or execution
time of the baseline configuration.

3.5 Simplifications
The most precise way to conduct this study is to implement the

distributed compilation framework on both a handheld and a server
platform and use either hardware or detailed energy simulations
to measure the energy costs. Since the focus of this study was to
understand whether or not there is any benefit to using a server
to compile and optimize on behalf of the handheld, it made little
sense to build the full hardware and software infrastructure. Thus,
our study is less precise and makes some simplifications.

• Energy consumption is proportional to execution time. While
this is largely true, we do notice that power consumption
can vary by up to 25% in our experiments with an actual
handheld. To account for this variation and also to account
for variation across handhelds, we report on how our results
would change with a range of power consumption.

• The handheld consumes 50% of its peak power when idle.
Other researchers have made similar assumptions [4]. Flinn
et al. report that an Itsy comsumes approximately 18% of
energy when idle compared to when it is in a tight compute
loop. To account for this variation in different handhelds,
we report how our results change when we consider different
factors for idle energy over active energy.

• Transmission energy can be approximated by multiplying the
number of transmitted bytes with the average energy to trans-
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Compile time Execution time
Benchmark Base. Opt. Opt. + inl. Base. Opt. Opt. + inl.
check 0.1 15.3 24.7 2.3 1.7 0.4
compress 0.2 11.6 19.8 54.1 21.6 18.0
jess 0.1 24.2 39.0 27.6 20.7 12.3
db 0.1 12.7 21.8 46.7 31.3 29.1
javac 0.2 24.1 37.9 13.6 12.2 10.2
mpegaudio 0.2 20.8 27.2 53.2 42.0 30.2
jack 0.2 26.0 43.5 28.8 22.8 16.1
G. Mean ratio 1.0 137.9 219.9 1.0 0.7 0.4

Table 5: Time (in seconds) for compiling and running the benchmarks on a 1.4GHz Pentium 4 workstation

mit one byte. This simplification ignores acknowledgement
or retry packets. In our experiments we discovered that the
download energy was often one or two orders of magnitude
smaller than compilation or execution energy; thus, adding
the energy for the acknowledgement or retry packets will
probably not change our results.

• Our instrumentation does not perturb compiler optimizations.
To understand the impact of our instrumentation on compiler
optimizations, we compared the overall program speedup ob-
tained using our per-method instrumentation to the speedup
obtained by timing the full runs (without our instrumenta-
tion). We found these speedups to be comparable (though
not identical since we do not instrument certain core libraries
which would be measured in the timing of the full runs).

• The handheld already has appropriate versions of the VM
code (such as garbage collector). In other words, we assume
that the core VM code does need to be downloaded or com-
piled. This is a reasonable assumption since the VM core
services are used by all programs and thus should be avail-
able in pre-compiled form.

4. RESULTS
Section 4.1 compares the energy consumption of our different

configurations. Section 4.2 presents similar numbers except broken
down by Java methods. Section 4.3 breaks down energy consump-
tion into its components. Section 4.4 considers our results when
we use smaller inputs for our benchmarks. Section 4.5 reports the
effect of varying our parameters. Finally Section 4.6 summarizes
the results.

4.1 Same configuration for all methods
Table 6 compares the energy costs of our different configura-

tions normalized to the energy cost of localBaseline, including the
geometric mean of each column at the bottom. The “NoIdle” con-
figurations assume that the server optimizes all methods before the
client needs them, and thus the client does not have to wait (idle)
while the server optimizes the code. From the table we see that
moving non-optimizing compilation to the server has little benefit
over localBaseline. In other words, the slight savings by moving
non-optimizing compilation onto a server balances the greater cost
of downloading compiled code instead of the smaller bytecodes.

For the optimizing configurations, localOpt and localOpt with
inlining consume far more energy than localBaseline except for
compress. In other words, the cost of locally optimizing and in-
lining code is so great that for most benchmarks it overwhelms the
benefit of optimizing the code. From Table 5 we see that the feasi-
bility of localOpt depends greatly on how the execution time of the
benchmark compared to its compilation time.

The serverOptNoIdle configuration consumes the least energy
overall for our benchmark programs. However, serverOptNoIdle
may not be realistic since it assumes that the server is able to com-
pile and optimize all the code before the handheld needs it. The
serverOpt configuration also performs well but as expected, not
as well as serverOptNoIdle. For configurations without inlining,
serverOpt actually performs slightly worse than localBaseline for
two benchmark programs.

To summarize, our data tells us that for realistic configurations,
optimizing on the server is often, but not always, a good idea. If
we can predict in advance which methods will be needed in the
future of the computation (i.e., approach the NoIdle configurations)
optimizing on the server is beneficial for all programs.

4.2 Different configurations for each method
Section 4.1 evaluates configurations based on their overall en-

ergy consumption. However, it does not explore whether it is worth-
while to use a mixture of configurations for a benchmark, for ex-
ample, using localBaseline for some methods and serverOpt for
others.

Table 7 presents the energy consumption of an “Optimal” con-
figuration. This configuration picks the best compilation strategy
for each method. For comparison, the table also presents results
for the two configurations that optimize (but do not inline) on the
server. The results for serverOptNoIdle and serverOpt in Tables 6
and 7 are different because Table 6 uses end-to-end program execu-
tion time while Table 7 uses per-method execution times (which are
unavailable for certain core classes, such as the garbage collector).

The reason for omitting inlining from Table 7 is practical: we
cannot determine the time spent in a method (but not its callees) in
the presence of inlining since inlining (and subsequent optimiza-
tions) can interleave the instructions of callers and callees. For
four of the benchmarks we see that “Optimal” performs better than
serverOptNoIdle. In other words, using the same configuration
(e.g., serverOptNoIdle) for all methods is suboptimal. To get the
best energy consumption, we must decide what kind of compila-
tion to use on a per-method basis.

Figures 1 and 2 show the energy each method consumes, as a
fraction of the energy it consumes with localBaseline. The energy
consumption of a method includes costs of downloading, compiling
(or waiting for compilation on the server), and running the method
(Table 1). The graphs are cumulative along the horizontal axis. In
other words, a point (x,y) says that x% of the methods consume
y or less energy compared to what the method consumes with lo-
calBaseline. The methods are sorted in order of increasing ratio of
energy consumption compared with localBaseline.

Each graph has one curve for each configuration (localOpt, serverOpt,
serverBaseline) plus two additional curves for the “NoIdle” config-
urations. In the legends, IdleR is the idle ratio and Power is the
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Figure 1: Cumulative energy consumption normalized to localBaseline
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Without inlining With inlining
Benchmark serverBaselineNoIdle serverBaseline localOpt serverOptNoIdle serverOpt localOpt serverOptNoIdle serverOpt

check 0.97 0.97 7.01 0.69 1.14 10.41 0.17 0.90
compress 1.00 1.00 0.24 0.03 0.04 0.70 0.33 0.33
jess 1.00 1.00 1.62 0.75 0.81 1.85 0.44 0.44
db 1.00 1.00 0.94 0.67 0.69 1.09 0.62 0.62
javac 0.99 0.99 2.64 0.89 1.02 3.50 0.74 0.74
mpegaudio 1.00 1.00 1.18 0.79 0.81 1.08 0.57 0.57
jack 1.00 1.00 1.69 0.79 0.85 2.06 0.56 0.56
Geo. Mean 0.99 0.99 1.45 0.48 0.57 1.97 0.45 0.57

Table 6: Energy costs of different configurations compared to localBaseline

Benchmark serverOptNoIdle serverOpt Optimal
check 0.51 11.70 0.43
compress 0.76 0.76 0.76
jess 0.86 0.87 0.83
db 0.69 0.70 0.69
javac 0.88 0.93 0.87
mpegaudio 0.55 0.56 0.54
jack 0.61 0.65 0.61
Geo. Mean 0.68 1.09 0.66

Table 7: Energy costs for optimal configuration normalized to
energy cost of localBaseline

handheld energy consumption per unit time. For these figures we
keep IdleR and Power fixed. In Section 4.5 we vary these parame-
ters and study their impact on the results. Note that the “opt” con-
figurations include all optimizations except for inlining. To make
the curves easier to identify (in this and later graphs), the order in
the legend (bottom to top) matches as much as possible to the order
of the curves (bottom to top).

From Figures 1 and 2 we see that the curves for serverOptNoIdle,
serverBaseline, and serverBaselineNoIdle overlap significantly. How-
ever, for a significant number of methods serverOptNoIdle is the
best configuration. serverOpt, on the other hand, performs poorly,
and is worse than localBaseline (i.e., its curve is above 1) for the
majority of the methods. These results seem to contradict the re-
sults in Table 6 which shows that serverOpt is significantly better
than serverBaseline and serverBaselineNoIdle, while worse than
serverOptNoIdle. The reason for this apparent contradiction is that
Figures 1 and 2 weigh all methods equally, while Table 6 weighs
methods by the amount of time spent in the method. Thus, even
though serverOpt performs much worse than serverBaseline for
most methods, it performs better than serverBaseline for the hand-
ful of methods that contribute most to execution time (and thus
energy consumption).

The serverBaselineNoIdle configuration is also often better than
localBaseline, but curiously, the serverBaselineNoIdle curves all
flatten out at 1. Here is why. The main benefit of serverBaseli-
neNoIdle over localBaseline is that the handheld does not need to
compile the code.3 If the program spends little time in the method,
then the compilation cost of the method will dominate its energy
consumption. If on the other hand, the program spends significant
time in the method, then its compilation cost will be amortized over
a longer execution time and thus, the execution time of the method
will dominate its energy consumption. Based on these observa-
tions, serverBaselineNoIdle is better than localBaseline for meth-

3We found the download energy to be much smaller than energy
for baseline compilation.
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Figure 2: Figure 1 continued

ods with a low running time, but serverBaselineNoIdle and local-
Baseline perform asymptotically the same for methods with longer
running times. Hence the ratio curves approach 1.

While serverBaseline and serverBaselineNoIdle have almost iden-
tical performance, serverOpt and serverOptNoIdle have very differ-
ent energy performance. This occurs because the time to compile
without optimizations is insignificant (and thus we consume little
idle energy) compared to the time to optimize (Table 5).

Finally, localOpt performs poorly, yielding better energy con-
sumption than localBaseline for only a few percent of the methods.
From Table 6 we see that localOpt consumes much more overall
energy than localBaseline.

To summarize, for the majority of methods, it makes sense to
optimize on the server especially if we can avoid waiting for the
server to optimize. In other words, serverOptNoIdle is the config-
uration of choice. However, there are still some methods for which
localBaseline performs better than serverOptNoIdle; we are trying
to find ways to identify these methods in our future work (Section
6).

4.3 Breakdown of energy consumption
We now break down the energy consumption of methods into

their components. Figures 3 (a), (b), and (c) break down the energy
consumption of the localBaseline, serverOptNoIdle, and serverOpt
configurations for one benchmark program, javac. The graphs for
other benchmarks are similar so we omit them. These graphs plot
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the energy consumption of a method (in Joules) versus the execu-
tion time of the method. By execution time of a method we mean
the total time spent in the method (but not its callees) during a run
of the program. That is, we are summing over all invocations of
the method, not just a single invocation. The vertical axis (energy)
uses a log scale, and the energy components are stacked (in the
same order as the legends) one on top of another.

From the localBaseline breakdown graph (Figure 3 (a)) we see
that for methods with low execution time energy consumption is
dominated by the energy costs of compiling the code (the transmis-
sion energy is negligible). For methods with relatively high execu-
tion time, the method execution component dominates the energy
consumption. Figure 3(c) (serverOpt) is similar; however, instead
of local compilation time, it has the overhead of waiting for the
server to optimize.

From the serverOptNoIdle breakdown graph (Figure 3 (b)) we
see that except for methods with very low execution time, the exe-
cution dominates the energy consumption.

We also note that transmission energy in the configurations that
optimize on the server are much higher than the transmission en-
ergy of localBaseline (which is nearly invisible in Figure 3(a)).
This is because optimized code is much larger than bytecodes (Ta-
ble 4).

These results suggest that for methods with low execution time
serverOptNoIdle has an advantage over localBaseline, since serverOpt-
NoIdle incurs no compilation energy costs. On the flip side, for
these methods, localBaseline has an advantage over serverOpt, since
serverOpt has to consume energy waiting for the server to optimize.
Moreover, the idle energy is not recovered afterwards in the (hope-
fully shorter) execution time of the optimized code.

For methods with long execution time, the main advantage of
serverOptNoIdle over localBaseline is faster execution time. For
methods with short execution time, serverOptNoIdle also elimi-
nates the compilation overhead for localBaseline which is a sig-
nificant component of energy for these methods. Thus, serverOpt-
NoIdle will have better energy consumption than localBaseline for
long-running methods, but the improvement will not be as dramatic
as for short-running methods. Finally, serverOpt will perform bet-
ter for long-running methods than for short-running methods, be-
cause for long-running methods, the idle time is amortized over
longer a longer execution.

Figure 4 confirms the above argument by presenting the energy
consumption of serverOpt and serverOptNoIdle configurations for
one benchmark program (javac). The graphs for the other bench-
marks are similar. Each point in this graph corresponds to the en-
ergy consumption of one method in either the serverOpt or serverOpt-
NoIdle configurations. The energy consumption in the graphs is
normalized to the energy consumption of localBaseline. From this
graph we see that for the short-running methods, serverOpt is much
worse than localBaseline and serverOptNoIdle is much better than
localBaseline. For long-running methods, both serverOpt and serverOpt-
NoIdle usually perform as well or better than localBaseline, with
serverOpt performing slightly worse than serverOptNoIdle.

4.4 Smaller input sizes
Figure 5 presents results for javac using smaller inputs (input 1

from SPECjvm98). This graph should be compared to the graph
for javac in Figure 1. We omit the graphs for the other benchmarks
since they are similar.

From Figure 5 we see that serverOptNoIdle, serverBaseline, and
serverBaselineNoIdle continue to perform well compared to local-
Baseline. However, unlike the javac graph in Figure 1, serverOpt-
NoIdle performs slightly worse than serverBaseline and serverBase-
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lineNoIdle. Also, with the small inputs serverOpt performs much
worse than localBaseline and localOpt performs so poorly that its
curve is not even visible in Figure 5. The reason for these dif-
ferences between the energy consumption of the small and large
inputs is that with the smaller inputs we are frequently unable to
recover the energy cost of the optimizations (which is the same for
both small and large inputs) and even transmission.

4.5 Sensitivity analysis
First, we observe that our results are not very sensitive to the

downloading power consumption rate. Figure 3 shows clearly that
energy for downloading is not a big factor overall, so changing
the download power by a factor of 2 or more will not significantly
change the overall outcomes.

We now consider the idle ratio, IdleR, and the peak power con-
sumption, Power. So far, we have fixed the rate of energy con-
sumption of the handheld when active and when in idle mode to 2
and 1 Watts respectively. We now vary both parameters to approx-
imate a range of design choices in the handheld: from more ag-
gressive handhelds that consume energy at a higher rate to severely
resource-limited handhelds such as ones that may be found in highly-
portable devices.

Figure 6(a) shows how the energy consumption of serverOpt-
NoIdle changes when handheld power varies from 0.2 to 4 Watts.
(These graphs follow the same format as the graphs in Figures 1
and 2.) We hold the idle ratio constant at 0.5 (i.e., half of the hand-
held power) for these graphs. We also assume that the speed of the
handheld does not change with changing energy (i.e., the reduced
energy consumption comes from not a slower device but from a
more efficiently designed device or one with a less sophisticated
display). We present results for only one benchmark, javac, since
the other benchmarks yield similar graphs.

From Figure 6(a) we see that decreasing the handheld power con-
sumption has relatively little impact on the shape of the serverOpt-
NoIdle curve. The 0.2 curve is the one that changes the most. Low-
ering the handheld power consumption to 0.2 Watts lowers the en-
ergy needed to run the program and thus the benefit of optimiza-
tions in reducing execution time becomes less important.

Figure 6(b) shows how the energy consumption of serverOpt
changes when the idle ratio changes from 0.5 to 0.1 (i.e., half to
a tenth of the handheld power consumption). These graphs follow
the same format as the graphs in Figure 1 and 2). We hold the hand-
held power constant at 2 Watts for these graphs. We present results
for only one benchmark, javac, since the other benchmarks yield
similar graphs.

From Figure 6(b) we see that while lowering the idle ratio has a
great impact on the shape of the curve, both the 0.5 and 0.1 curves
cross localBaseline at about the same point. In other words, lower-
ing the idle ratio does not affect the number of methods for which
serverOpt is more attractive than localBaseline.

4.6 Summary of results
Our results indicate that a sufficiently smart implementation of

distributed compilation could significantly improve the energy con-
sumption of Java programs running on a handheld. However, to get
the maximum benefit, we need to be either selective about which
methods we optimize or use precompilation to avoid waiting (and
wasting energy) while the server is optimizing code.

5. RELATED WORK
The research of Rudenko et al. [19, 20] is the most similar to

ours. They report the energy benefits of migrating tasks onto a
tethered server from a laptop. One of the tasks they consider is
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Figure 6: Changing energy parameters.

incremental compilation.4 They measure energy consumption us-
ing the APM metrics to indicate the energy remaining in the bat-
tery. They demonstrate that there is often a significant benefit to
migrating compilation to a server. Our work differs from theirs
as follows. First, we consider both optimizing and non-optimizing
compilation. Second, we consider energy consumption on a hand-
held as opposed to a laptop. Compared to laptops, handhelds have
smaller and lower resolution screens and no disk (but flash mem-
ory), therefore the energy behavior of a handheld will be different
from a laptop. Third, we conduct our experiments for Java pro-
grams and consider the possibility of deciding on a per-method ba-
sis how and where to compile them.

Flinn et al. [12] describe a framework that automatically down-
loads tasks to a wired server based on information provided by the
application and past profiles. Their work also incorporates a notion
of “fidelity”; for example, their system may decide based on the
environment to use either the full or a short vocabulary for a speech
recognition system. Our work is in a sense a detailed evaluation of
one application of their framework.

Kremer et al. [16, 17] describe a framework for migrating the
execution of applications on to a server. The server periodically (as
determined by the compiler) sends checkpoints to the handheld; if
the server dies or is disconnected, the handheld can continue exe-
cution from the last checkpoint. These ideas are useful in building
a distributed compilation system.

Teodorescu and Pandey [23] describe a Java system that is dis-
tributed across servers and resource-limited devices. The resource-
limited devices run minimal kernels that download parts of the run-
time system on demand. Like our work, the granularity of transfer-
ring code is a method. However, unlike our work, all compilation
is done on the server. Teodorescu and Pandey do not investigate the
energy costs of distributing the tasks of a Java virtual machine.

Sirer et al. [22] consider how to distribute the tasks of a Java vir-
tual machine between a personal computer and a proxy server. By
putting tasks such as bytecode verification on a server, they expect
to enhance the reliability and stability of a system. For example, a

4We believe their experiments are for C or C++ programs, but the
papers do not make that clear. Also, we are not sure if they enabled
or disabled optimizations during compilation.

system administrator would need to install many security patches
on only a small number of servers rather than on every computer in
the organization. Since the proxy servers are behind firewalls and
relatively secure, a client in the organization can trust the server.
We follow the model of Sirer at al. for our work. However, the
motivations behind our work and theirs are different: they are con-
cerned with security and performance while we are concerned with
energy consumption.

Two prior projects have investigated the energy consumption of
a Java virtual machine on a handheld. Farkas et al. [11] report
on the energy consumption of a Java virtual machine running on a
StrongARM-based Itsy [27]. Farkas et al. conduct their measure-
ments using special hardware. Chen et al. [6] describe the effect
of variations in a mark-and-sweep garbage collection algorithm in
a severely resource limited environment. Chen’s environment is a
microSPARC-IIep based 100MHz system with 128 KB of ROM
and no caches. Both above-mentioned works assume that all com-
pilation or interpretation happen on the handheld and do not con-
sider the possibility of migrating the compilation to a server.

Finally, there has been much work on compiler optimizations for
reducing energy consumption of programs [24, 14, 15].

6. FUTURE WORK
The research presented here points us to several questions worthy

of further study:

• How to predict which methods to optimize, how to optimize
them, and where to optimize them? In this paper we only
considered two levels of optimizations: with and without in-
lining. However, different optimizations have very different
properties in terms of how they affect code size, how long
they take, and when and to what extent they are effective.

• How to predict which methods will be used in the future
of the computation and thus need to be precompiled? Our
results suggest that this precompilation can make a signifi-
cant difference in the benefit we get out of optimizing on the
server.

• Even if methods are not precompiled, can we overlap server
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and client effectively, so as to reduce idle time? This would
involve predicting which methods the client will need in the
near future, based on recent demands.

• How to deal with the issue of inlining of methods? Some-
times inlining is beneficial, but it often costs significantly
more than optimization without inlining, and the resulting
code tends to be larger.

• How does interpretation (either instead of or in combination
with compilation) compare to our configurations? Which
methods should be interpreted, and which compiled, espe-
cially if we can obtain compiled versions from a server?

• How does downloading preanalyzed bytecodes compare to
our configurations? To avoid the long idle times while wait-
ing for a server to optimize, it may make sense to have the
server simply annotate the bytecodes based on potentially ex-
pensive analyses. The handheld can use those annotations to
optimize code if necessary.

• Does the story change significantly if the client is a laptop or
notebook computer rather than a handheld?

7. CONCLUSIONS
Since high-performance Java systems spend significant time and

energy compiling and optimizing code we consider moving compi-
lation to a tethered server. We consider four main configurations:
(i) the handheld compiles code itself; (ii) the handheld optimizes
code itself; (iii) the server compiles the code and the handheld
downloads it; (iv) the server optimizes the code and the handheld
downloads it. These configurations offer different tradeoffs. Opti-
mized (and even compiled) code is larger than bytecodes and thus
will incur greater download energy costs than bytecode. Optimiza-
tions take longer than non-optimizing compilation and thus incur
more energy cost. Optimized code runs faster than non-optimized
code and thus uses less energy.

Our results show that there is significant benefit to moving op-
timizations to a server. We find that at least for longer running
methods, the energy benefits of optimizations (due to faster execu-
tion time) overwhelms the costs of optimizations (greater download
and optimization energy).
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