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WHEN TREES COLLIDE: AN APPROXIMATION ALGORITHM FOR THE
GENERALIZED STEINER PROBLEM ON NETWORKS*

AJIT AGRAWAL, PHILIP KLEIN;, AND R. RAVI

Abstract. We give the first approximation algorithm for the generalized network Steiner problem, a problem
in network design. An instance consists of a network with link-costs and, for each pair {i, j} of nodes, an edge-
connectivity requirement rij. The goal is to find a minimum-cost network using the available links and satisfying
the requirements. Our algorithm outputs a solution whose cost is within 2[log2(r + 1)] of optimal, where r is
the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial min-
max approximate equality relating minimum-cost networks to maximum packings of certain kinds of cuts. As a
consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts;
we show that this algorithm has application to estimating the reliability of a probabilistic network.

Key words, approximation algorithm, network design, Steiner tree problem

AMS subject classifications. 68R 10, 68Q25

1. Introduction. Consider the following scenario. Client industries of a telephone com-
pany have requested commercial telephone connections between pairs of their offices in dif-
ferent cities. The telephone company must then install a network of fiberoptic telephone links
that accommodates all the clients’ requirements. That is, the network must contain a path us-
ing these links between every pair of cities specified by the clients. Given the cost of installing
links between different cities, the company must now decide which links to install so as to
minimize its cost. (See Fig. 1.)

We formalize the problem as follows. Let G be a graph with nonnegative edge-costs,
and let R be a set of node-pairs (si, ti). We call these pairs site-pairs, and we say the nodes
Si, ti are sites. We call a subgraph H of G a requirementjoin if H contains a path between
si and ti for every requirement (si, ti). We call the node-pairs requirements because they
represent connectivity constraints that must be satisfied by the output subgraph. We abbreviate
requirementjoin by R-join when we want to emphasize the set R ofrequirements. The problem
we consider in this paper is to find a minimum-cost R-join.

The problem faced by the telephone company can be directly formulated as a minimum-
cost R-join problem. In this formulation, it is assumed that a link can be used simultaneously
by many clients. This assumption is reasonable in light of the very high bandwidth of fiberoptic
links.

Consider the special case of this problem in which there is a set T of terminals, and every
pair of nodes in T needs to be connected. This special case is known in the literature as the
Steiner tree problem in networks. This problem was one of the first seven problems shown
to be NP-complete by Karp [19]. Given the range of its applications, it is not surprising that
this problem has been well-studied. Many enumeration algorithms, heuristics [33], [44], 18],
and approximation algorithms [6], [38], [25], [11], [31], [37], [29], [45] are known for the
problem. Polynomial-time solutions for restricted classes of graphs are also known (see [42]).
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FG. 1. An instance of the unweighted network design problem and its solution. Solid edges correspond to

unit-cost links; dotted edges connect site pairs.

However, none of the algorithms addresses the more general case in which each client
can specify an arbitrary pair of cities. Note that in this general case the solution network need
not be connected. Moreover, a minimum-cost Steiner tree solution can be arbitrarily costlier
than a minimum-cost solution to this more general problem.

In this paper, we give the first approximation algorithm for the minimum-cost R-join
problem.

THEOREM 1.1. There is a polynomial-time algorithmforfinding an R:join ofcost at most

2 2/k times minimum, where k is the number of sites.

1.1. The generalized Steiner problem in networks. The algorithm of Theorem 1.1 is
useful when the network to be constructed need not be connected. However, the algorithm
is also useful, as a subroutine, even in designing connected networks. Namely, we consider
a generalization of the minimum-cost R-join problem involving certain redundancy require-
ments.

Consider the scenario described above but where each client can specify that her pair of
cities must be connected by some number of edge-disjoint paths so that the connection is less
vulnerable to link failure. The goal is to design a network satisfying these specifications. The
network is allowed to contain multiple links between the same pair of nodes; all such links
have the same cost.

To model this situation, we allow more general requirements. The set R of requirements
consists of triples (si, ti, ri), where ri, the requirement value, is a positive integer. An R-
multijoin is a multiset of the edges of G that contains ri edge-disjoint paths from si to ti, for
every requirement (si, ti, ri). The cost of an R-multijoin is the sum of the costs of the edges in
the multiset, counting multiplicities. Using our approximation algorithm for minimum-cost
R-join, we obtain an approximation algorithm for minimum-cost R-multijoin.

THEOREM 1.2. There is a polynomial-time algorithmforfinding an R-multijoin ofcost at

most (2 2/k)[logz(rma + 1)] times minimum, where rma is the largest requirement value
and k is the number of sites.
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This problem is called multiterminal network synthesis by Chien [7] and Gomory and
Hu [13]. Gomory and Hu and later Sridhar and Chandrasekaran [35] address the synthesis
problem for the special case where the input graph is the complete graph with all costs identical.

The problem is also essentially identical to the generalized Steinerproblem as formulated
by Krarup ([26], as cited in [41 ]). The problem is referred to as the design of minimum-cost
survivable networks in the work of Steiglitz, Weiner, and Kleitman [36]. These researchers
pose the problem of finding a subgraph of minimum cost satisfying given connectivity re-

quirements. The problem we address differs in that we allow the solution to contain multiple
copies of links appearing only once in the input graph G.

In this paper we will use the term R-multijoin whenever the requirements R include
requirement values exceeding one, and will reserve the term R-join for the case when the
requirement values are all one. The former case is addressed only in 3.3, where we show
how to reduce the problem to the latter case. The remainder of the paper addresses only the
latter case.

1.2. Packing cuts, with application to network reliability. Our results also have ap-
plication to evaluating network reliability. Suppose the telephone company has an existing
network and the same list of clients, each specifying a pair of cities. The company needs
to determine how likely it is that random failure of communication links renders some of its
clients’ requirements unsatisfiable. Assuming link failures are independent, determining the
probability that the surviving links can serve all clients’ requirements is a generalization of
the #P-complete problem [39] called network reliability. No approximation algorithms are
known.

However, one powerful and useful heuristic for estimating two-terminal and k-terminal
reliability [8], [9] can be directly generalized to handle the case of arbitrary pairs. The
(generalized) heuristic consists in finding a large collection of edge-disjoint cuts in the network
such that each cut separates at least one client’s pair of cities. For a surviving network to
be able to serve all clients requirements, at least one edge in each cut must survive; thus
such a cut-packing can be used to obtain a lower bound on the probability of catastrophic
failure. Experience [9] with this heuristic in the cases oftwo-terminal and k-terminal reliability
indicates that it is one of the best available.

One of the results of this paper is an algorithm for finding a nearly maximum collection of
such cuts in an auxiliary network whose reliability is the same as that of the original network.
We give more details in 3.

1.3. The combinatorial basis for our algorithms" A new approximate min-max
equality. At the heart of our proofs of near-optimality is a combinatorial theorem that re-
lates the R-join problem to the cut-packing problem in the case of unit edge-weights.

THEOREM 1.3o The minimum size of an R-join is approximately equal to one-half the
maximum size ofa collection of cuts, where each cut separates some site-pair, and no edge is
in more than two cuts. By "approximately," we mean within a factor of 2 2/k, where k is
the number of sites.

The proof of Theorem 1.3 is algorithmic and is given in 5. We can formulate the
two combinatorial quantities as the values of integer linear programs that are dual to one
another. It follows from Theorem 1.3 that the fractional relaxations of these programs provide
good approximations to both combinatorial quantities. Moreover, the factor of 2 2/k is

A related problem--finding the minimum number of communication links that would need to fail for all
requirements to be unsatisfiablencan be solved approximately, using techniques we presented in an earlier paper
[22].
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existentially tight, as shown by the example of a k-cycle given by Goemans and Bertsimas
[141.

2. Related work.

2.1. The Steiner tree problem in networks. There have been volumes of work done on
the Steiner tree problem in networks, including proposed solution methods, computational ex-
periments, heuristics, probabilistic and worst-case analyses, and algorithms for special classes
of graphs. Winter [41] and more recently Hwang and Richards [17] surveyed this body of
work.

Karp [19] showed that the problem is NP-complete. Takahashi and Matsuyama [38],
Kou, Markowsky and Berman [25], E1-Arbi [11 ], Rayward-Smith [33], Aneja [2], and Wong
[44] are among those who proposed heuristics. Among these, the heuristics that have been
analyzed have a worst-case performance ratio of 2 2/k, where k is the number of terminals
that need to be connected (called Z-vertices in [41 ]). One algorithm, proposed by Plesnik [31
and by Sullivan [37], performs somewhat better. Recently Zelikovsky gave an approximation
algorithm with a performance ratio of 11/6 [45]. Berman and Ramaiyer [6] have improved
this to 16/9.

In computational experiments, these heuristics generally perform considerably better than
the worst-case bounds. Jain 18] proposed an integer-program formulation of the Steiner tree

problem in networks, and showed that for two random distributions of costs, the value of this
integer program differed drastically from the value of its fractional relaxation.

2.2. The generalized Steiner problem in networks. The generalized Steiner problem
in networks, as originally formulated by Krarup (see [42]), is as follows. The input consists
of a graph with edge-costs, a subset Z of the vertices, and, for each pair of vertices i, j 6 Z, a

required edge-connectivity rij. The goal is to output a minimum-cost subnetwork satisfying
the connectivity requirements. When the rij’s are allowed to be zero, we can clearly assume
without loss of generality that Z consists of all the vertices of the graph.

Previous to our work, no approximation algorithms for the generalized Steiner problem
were known. There have been papers on finding exact solutions and on algorithms for special
classes of graphs [41 ], [42].

In the work of Goemans and Bertsimas, described below, and in our work, the edge-
connectivity requirement is allowed to be satisfied in part by duplicating edges of the input
graph. This corresponds to "buying" multiple communication links of the same cost and with
the same endpoints.

2.3. Survivable networks. In recent work, Goemans and Bertsimas [14] considered a

special case of the generalized Steiner problem in networks. Instead of arbitrary require-
ment values, the input includes an assignment of integers ri to nodes. The goal is to find a
minimum-cost network satisfying requirements rij min(ri, rJ)- They propose a simple but
powerful approach which involves solving a series of ordinary Steiner tree problems using
a standard heuristic. They show that this approach yields solutions that are within a factor
of 2 min(log R, p) of optimal, where R is the maximum ri and p is the number of distinct
nonzero values ri in the input. Moreover, they show that their analysis is tight in the worst

case.
Goemans and Bertsimas restricted their attention to edge-connectivity requirements of

the special form ri.i min(ri, rj) so that each subproblem has essentially the form of an (un-
generalized) Steiner tree problem. That enabled them to solve each subproblem approximately,
using one of the known approximation algorithms for the Steiner tree. By providing an ap-
proximation algorithm for the case of rij {0, }, we make it possible to handle requirements
rij not of that special form.
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2.4. Subsequent work. Building on our result, Goemans and Williamson 16] simplified
and generalized our algorithm. They describe a framework in which to formulate and find
approximately optimal solutions formany constrainedforestproblems, ofwhich the minimum-
cost R-join problem is an example. Their approximation algorithm uses an approach similar
to ours and achieves the same performance guarantee. Goemans and Williamson describe an
implementation of their algorithm that runs in O (n 2 log n) time on graphs with n nodes.

In work building on that of Goemans and Williamson, we showed [32] how to obtain
approximately optimal solutions to 2-edge-connected versions of the problems addressed in
16]. In these problems, one needs to achieve 2-connectivity without duplicating links. Finally,

several subsequent papers [15], [23], [40] extended these methods to give approximation
algorithms for the generalized Steiner problem without link duplication.

3. Background. An instance of the generalized Steiner problem consists of a graph G
with edge-costs c, together with a collection R1 Rb} of requirements: each requirement
Ri consists of a site pair {si, ti }, a pair of nodes of G, and a requirement value ri, a positive
integer. A feasible network is a multiset N consisting of edges of G, such that for every
requirement Ri ({si, ti }, ri), there are at least ri edge-disjoint paths between si to ti in the
multigraph with edges N.

3.1. The unweighted ease. To prove performance guarantees for our algorithm, we ex-
ploit an approximate duality between feasible networks and packings of cuts. Fix some
instance of the generalized Steiner problem, where all costs and requirement values are 1.
Thus the instance consists of a graph G and a collection of site pairs {si, ti }. Let k denote the
cardinality of the set of sites, i.e., the set of nodes appearing in site pairs. Note that the number
of sites may be significantly smaller than the total number of nodes. A feasible network is a
subgraph in which, for every site pair {si, ti }, there is a path between si and ti.

Let N be any feasible solution for this instance. Observe that if N is minimal, then it is
just a forest. Let S be any subset of nodesof G such that for some site pair {si, ti }, one of the
sites is in S and one is not. In this case, the set of edges A with exactly one endpoint in S is
called a requirement cut. There must be a path between si and t; in N, so N intersects A in at

least one edge. Thus we have the following lemmao
LEMMA 3.1. Everyfeasible network and every requirement cut have at least one edge in

common.
Suppose A At are (not necessarily distinct) requirement cuts such that each edge

of G occurs in at most two cuts. We call such a collection of cuts a 2-packing. Then we have
the following easy lower bound on the minimum size of a network design.

LEMMA 3.2. The minimum size of a feasible network is at least one-half the maximum
size ofa 2-packing of requirement cuts.

Proof Let N be a feasible network and let A A
requirement cuts. We have

(1) IN[ >Z-l{i’e
eN

because each IAi fq NI is at least one.
For comparison, Edmonds and Johnson [10] show that T-joins and T-cuts satisfy an

analogous inequality, and, more importantly, they satisfy it with equality.
Instead of showing equality, we show approximate equality, to within a factor of 2(1

/ k). This is the content of Theorem 1.3.
Our proof of Theorem 1.3 is algorithmic. We give an algorithm that constructs a feasible

network and a 2-packing, such that the first has size at most (1 / k) times the second. It fol-
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lows that the feasible network is approximately minimum and the 2-packing is approximately
maximum, to within a factor of 2(1 ! k).

The first step is to transform the original graph Go into a bipartite graph G by replacing
each edge uv of Go with two edges ux and xv in series, where x is a new node. The resulting
graph G has the following properties:

Any minimal feasible network in G corresponds to a feasible network in Go of half
the size.
Any packing of edge-disjoint requirement cuts in G corresponds to a 2-packing of
requirement cuts in Go of the same size.

Consequently, in order to prove Theorem 1.3 for Go, it is sufficient to show the following for
.G:

we can find a feasible network N and a packing of edge-disjoint
(2) requirement cuts A1 A such that N < 2(1 / k)/, where

k is the total number of sites.

We show (2) in4 and 5.

3.2. The weighted case. Now we consider the case in which the costs of edges may
vary, but the requirement values are still all one. It turns out that, like Edmonds and Johnson’s
theorem, Lemma 3.2 and Theorem 1.3 are self-refining. For nonnegative integer edge-costs
c, we simply replace each edge e by a path of length c(e). We say a collection of requirement
cuts is a 2e-packing if each edge e appears at most 2c(e) times. Using this transformation, we
obtain the following theorem from Theorem 1.3.

THEOREM 3.3. The minimum-cost ofa feasible network is at least one-half the size ofa
2c-packing of requirement cuts, and at most (1 / k) times this size.

To actually compute an approximately minimum feasible network, we use a more direct
approach, which we describe in 4.2.1.

3.3. Arbitrary integral requirements. So far we have dealt with the case in which each
site pair need only be connected in the final feasible network. As discussed in the introduction
and 2, a client may also require that there be at least rij edge-disjoint paths between her pair
of sites? Thus the case dealt with up to now requires each l’ij to be either 0 or 1.

In order to obtain an approximation algorithm for this generalized problem from our

algorithm for the case of 0-1 requirements, we make use of a heuristic technique due to
Goemans and Bertsimas [14]. They propose a technique they call the tree heuristic, which
consists essentially of decomposing a problem with many different requirement values into a
series of simpler problems in which only two requirement values appear. As we mentioned in
.2, they use the technique for solving only a special case of the generalized Steiner problem.
In conjunction with our new algorithms for the 0-1 case, however, the technique can be easily
adapted to apply to the general case.

Let the different values of rij be 0 P0 < pl < p2 < < P,-. For each 0 < d _< s,
consider the transformed problem

Pd Pd- if ri,j >_ Pd,
r/- 0 otherwise,

which is essentially Pd Pd- copies of a 0-1 problem. Use a standard heuristic to find an

approximately optimal solution, and combine the solutions to the s transformed problems to

2In this case, the feasbile network is allowed to use multiple copies of edges of the input graph; each copy of a

given edge costs the same.
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get a solution to the original problem. The resulting performance guarantee is (R)(s). By
using a similar approach, if each ri is an integer b bits long, then the original problem can be
decomposed into b problems, and the resulting performance bound is 2(1 1/k)b. This is
how we get the performance bound stated in Theorem 1.2.

The obvious question is whether one can do better than this. Goemans and Bertsimas can
show that their analysis is tight, so another approach is needed, one that can deal simultaneously
with widely varying requirement values.

3.4. Reliability estimation. In the introduction, we described a heuristic for estimation
of network reliability in a probabilistic network. In order to use this heuristic effectively,
we want to find a maximum collection of edge-disjoint requirement cuts. This problem is
NP-complete for general graphs. Moreover, an approximation algorithm for this cut-packing
problem would yield an approximation algorithm formaximum independent set [9], an unlikely
outcome in view of recent results [3], [4], [12]. We instead show how to make use of a cut-

packing in bipartite graphs. We apply the transformation described in 3.1 to turn an arbitrary
graph into a bipartite graph with all sites on one side of the bipartition: replace an edge having
failure probability p with two series edges each having failure probability v/-. We
do not change the probability of reliability in carrying out this transformation, and we can
apply the algorithm of 4 to find an approximately maximum set of edge-disjoint cuts in the
resulting graph,

Thus we propose a four-step recipe fbr estimating network reliability. Transform the
network into a bipartite network, find an approximately maximum cut-packing, compute for
each cut the probability that at least one edge survives, and multiply these probabilities to get
an upper bound on the probability that all clients can continue to communicate.

4. The algorithm. In this section, we describe an algorithm for finding a cut-packing
and an R-join. In 4.2, we describe how to find a cut-packing in the case of unit edge-weights
In 4.2.1 we describe the modification needed to handle arbitrary edge-weights. The algorithm
for finding an R-join is the same in the two cases.

4.1. Overview. We start by providing an overview of the algorithm for the case of unit

edge-weights. The algorithm grows breadth-first search trees from the sites, accumulating
cuts as it proceeds. The algorithm employs a notion of timesteps. At each timestep, each
of the breadth-first trees grows by an additional level. Each tree grows until all the sites it

contains have found their mates. When trees collide, they are merged. As the algorithm grows
trees, it builds networks spanning the sites in each of these trees. Using a charging scheme,
we show that the size of each network in a tree is about twice the number of cuts accumulated
while growing the tree

4.2. Finding a cut-packing. Assume the input graph has unit edge-weights; we briefly
address the more general case at the end of this subsection. Let G be a bipartite graph with
all sites on the same side of the bipartition. (We can obtain such a graph from an arbitrary
graph as described in 3.1. All subsequent references to the ’original graph" refer to G.) We
are given a collection of site pairs {s, t }, {s2, t2} {Sb, t,}. We refer to the nodes s;, ti as
sites. We say that two sites in the same site pair are mates of each other.

The algorithm for constructing the cut-packing is quite intuitive. (A summary is given
at the end of this subsection.) We grow disjoint breadth-first search trees from all sites s

simultaneously. We call the edges connecting one level to the next in a breadth-first search
tree a level cut. Each level cut in a breadth-first search tree rooted at s is a requirement

3More specifically, Goemans and Bertsimas show the performance bound is 2( / k)(ct= (p,/- pt-1 p, ).
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CUt because its edges separate s from its mate. Thus at each timestep, we accumulate one
additional requirement cut for each tree being grown.

When multiple trees collide, we merge them into a single tree and continue growing from
its boundary. Thus in general a tree may contain many sites. As soon as every site in a tree
has its mate in the same tree, we can no longer guarantee that subsequent level cuts of the
tree are requirement cuts, so we call the tree inactive, and we contract all its nodes into a
single supernode. A tree that is still in the process of being grown is said to be active. The
algorithm terminates when there are no active trees. At this point, every site pair’s two nodes
are contained in the same tree. More precisely, since each tree has become inactive, and has
hence been contracted to a supernode, there are no sites remaining in the graph.

Because of contractions, the graph on which we are working evolves during the course
of the algorithm. We use G to denote the graph after timesteps. When we refer to a graph,
unless we explicitly call it the "original graph," we will mean the contracted graph G at a
certain point in the algorithm.

It is important to the analysis that all active trees grow at the same rate. The algorithm
takes place over a series of timesteps. In each timestep, each active tree grows by one level.
Thus after timesteps, active trees that have not participated in any collisions all have radius
(as measured in the contracted graph G t). More generally, let the boundary of a tree be the

set of nodes at the most recent level of the tree. We have the following proposition.
PROPOSITION 4.1. After timesteps, each node in the boundary ofan active tree is distance

from some site internal to the tree.

In the initial bipartite graph, all the sites are on the same side of the bipartition. We show
that this property continues to hold throughout the algorithm.

LEMMA 4.2. After timesteps, the graph is still bipartite, with all sites on the same side

of the bipartition.

Proof The proof is by induction on t. The basis 0 is trivial. We must show that the
bipartition property described in the lemma is preserved by contractions. Suppose that Gt-
obeys the property, and that after timesteps, some tree T has just become inactive and is
about to be contracted. By Proposition 4.1, all the nodes in the boundary of T have distance
from some site. Hence they all belong in the same side of Gt-I’S bipartition. It follows that

after the nodes of T are contracted to a single node, the bipartition property still holds. [

We can use Lemma 4.2 to show that all the cuts found by the algorithm are edge-disjoint.
COROLLARY 4.3. No edge belongs to a level cut ofmore than one tree.

Proof By Proposition 4.1 and Lemma 4.2, all the nodes in boundaries of all active trees
are in the same side of the bipartition of the graph. Hence no edge is incident to two active
trees. [3

Thus trees collide by reaching the same node in a given step. Below we summarize the
cut-packing algorithm. In anticipation of the analysis of the algorithm, we "assign" cuts found
to particular trees.

Initialize each site to be an active tree. Repeat the following steps until every tree is
inactive.

2 Grow each tree by one level. Assign the corresponding level cut to the tree.
3 Contract each tree that has just become inactive
4 Repeat
5 Take two distinct trees sharing a boundary node, and merge them into a single

tree. (For the cut-packing algorithm, merging trees consists merely of taking the
union of their nodes and of the cuts assigned to them.)

6 Until no more trees can be merged.
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Because trees are merged immediately after they collide, we can claim the following.
Just before the trees are grown, they are node-disjoint. Just after the trees are grown, they are
internally node-disjoint: only their boundaries can share nodes. We make use of this property
in the next subsection.

4.2.1. The cut-packing algorithm for weighted edges. The cut-packing algorithm in
the case of weighted edges is only slightly more elaborate. We describe it in this subsection.
The algorithm to find a feasible network based on the cut-packing, described in the next
section, remains unchanged.

The key is to carry out many timesteps in a single iteration. It is useful to imagine that
in each iteration, the growing trees continuously "consume" all their incident edges at the
same rate until some edge is completely consumed, at which time things must be updated,
We assume for simplicity that the edge-weights are integral. For each edge, we maintain a
variable indicating how much of that edge remains to be consumed. To determine the amount
by which to grow active trees in an iteration, we compute two minima:

(3) ) min amount of e yet to be consumed,

where the min is over edges e that have one endpoint in an active tree, and

(4) )2 min amount of e yet to be consumed,
e

where the rain is over edges e that have both endpoints in distinct active tree,

.2}.Finally, we let min{,,
To grow the trees by ), we update the variables associated with edges: each edge having

one endpoint in an active tree has its variable decreased by , and each edge having its
endpoints in distinct active trees has its variable decreased by 2)v (because each such edge
is being consumed from both sides). Then we execute steps 3 through 6 of the unweighted
algorithm. It follows by the definition of ) that at least one edge is wholly consumed in an
iteration, hence at least one tree grows by at least one node. For a tree T, let tT be the number
of nodes in To It follows that the potential functionT tv (number of trees) goes up by at
least one in each iteration, and hence that the number of iterations is at most the number of
nodes in the graph. Thus the cut-packing algorithm requires only polynomial time.

4.3. The network-design algorithm. The basic approach to building a feasible network
is also quite intuitive. For each tree, we maintain a connected network connecting together
all sites in the tree. This is easy: start with each site being a network in itself, and, whenever
trees merge, use simple paths to join up their two networks.

It is possible to show that for each tree, the size of a network for that tree is no more than
twice the number of cuts assigned to the tree. Such an analysis, however, is insufficient: the
networks formed in this way are not connected in the original graph, because ofthe contractions
we have performed along the way. A path that contains a supernode is not in general a path
in the original graph. Therefore, we must be more careful in joining networks, and must not

forget to include edges between nodes within inactive trees. Note that such edges do not even
appear in the contracted graph G,.

We introduce some terminology to help us relate various contracted graphs to each other
and to the original graph, We call a node a real node if it appears in the original graph, in

4Using a heap to organize the edges incident to each tree, one can implement the algorithm to run in O0l log n)
time [1]. Using a more sophisticated two-level heap structure, one can implement it in O(nv@ log n) time [21].
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Nv

NT

FIG. 2. The network Nr corresponds in a natural way to a subgraph N of the original graph. To obtain N
from Nr, replace each supernode v in N7r with the subgraph Nv and recurse on the supernodes in Nv, like v above.

order to distinguish such nodes from supernodes. If the tree T was contracted to form the
supernode v, we say T corresponds to v, and vice versa. We say v immediately encloses v’ if
v is a supernode corresponding to a tree T containing v’. Note that each node is immediately
enclosed by at most one node. A node enclosed by another node does not appear in the current
graph, but we cannot simply forget about it since it continues to play a role in the algorithm.

We define the relation encloses to be the reflexive and transitive closure of the relation
immediately encloses. That is, v encloses v’ ifby some series of contractions, v’ was identified
with other nodes to form v.

For an edge e incident to a node v in a contracted graph, there is a real node v enclosed
in v such that e is incident to v’ in the original graph. We say that v’ is the real node by which
e is incident to v.

For each tree T, we maintain a network Nr, a subgraph of T. We maintain the following
site-inclusion invariant:

For each T, the network NT includes all sites that are nodes of T.
We specifically mean to exclude those sites strictly enclosed by supernodes belonging to T.
The site-inclusion invariant speaks only of those sites that are themselves nodes of T. If v is
a supernode corresponding to an (inactive) tree T, we use To to denote T, and we use No to
denote Nr. We say a node is free if it is not contained in any network Nr.

Each network Nr corresponds in a natural way to a subgraph N. of the original graph.
Namely, to get N. from NT, replace each supernode v in NT with the subgraph No, and recurse
on the supernodes in No (see Fig. 2).

We want each network NT to correspond to a connected subgraph in the original graph.
We therefore maintain the following connectivity invariant:

Each subgraph N. is connected.
At any stage in the algorithm, the networks NT induce a subgraph of the original graph,

namely the subgraph induced by the edges in [,.,IT Nr where the union is over all trees active
and inactive. Let us call this subgraph N. Note that each induced subgraph N. is a subgraph
of N.
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We now observe that when the algorithm terminates, the invariants imply that N is indeed
a feasible network--for each site pair {sl, s2}, there is a path in N between sl and s2. Let T be
the tree containing s. Once the algorithm terminates, T must be inactive, and hence contains
s’s mate s2 as well. By the site-inclusion invariant, s and s2 are nodes of NT. Since they are
original nodes, they are also nodes of the induced subgraph N., which is a subgraph of N.
Finally, by the connectivity invariant,N is connected, so the required path exists.

Now we give the algorithm for network design. We run the cut-packing algorithm of
the last subsection and, whenever a "merge" of trees occurs, we update the Nr’s in order to
maintain the invariants. Initially, when every active tree T consists of a single site, N- consists
also of this site. For each tree T not yet formed. Nr is empty. Thus trivially the invariants
hold initially.

In step 5 of the cut-packing algorithm, we merge a pair of distinct trees T and T2 sharing a
common boundary node v. By simply taking the union of their networks Nr/, we get a network
that obeys the site-inclusion invariant. However, this network does not obey the connectivity
invariant. We must therefore connect up these networks. To do this, we add paths from the
common node v to each of the networks N,.. This involves some care when v is a supernode.
However, in this description of the algorithm, we postpone discussion of this case until 4.4.
Assume therefore that v is a real node. We call a procedure CONNECTTONETWORK (v, Ti) for

1,2.
The goal of CONNECTTONETWORK (v, T) is to augment various networks Nr, until v is

connected to N. To do this, the procedure first finds a shortest path P0 in T from v to a site in
T, identifies the shortest initial subpath P of P0 that ends on a node of Nr, and adds the edges
of P to N. We are not done yet; P does not necessarily correspond to a connected subgraph
of the original graph because it may contain supernodes. Moreover, we have just added such
supernodes u to NT, so the networks N, corresponding to these supernodes belong to N..
In order to maintain the connectivity invariant, therefore, we must connect the networks N,
to N.. We make these connections recursively using a procedure EXPANDPATH (u, P). This
procedure expands P into a real path (i.e. a path in the original graph) by replacing each
supernode u in the path with a subpath within Tu that connects a boundary node of T, to u’s
network, goes through that network, and comes out again to the boundary of Tu. For technical
reasons, EXPANDPATH does not replace the last node of P, so if this last node is a supernode.
we use a recursive call to CONNECTTONETWORK to make this part of the path real. Making a
path real using EXPANDPATH and CONNECTTONETWORK is illustrated in Fig. 3.

Now we give the procedure for CONNECTTONETWORK (v, T). Once again, the basic idea
is to find a short path P in T from v to the network Nr, then introduce additional edges to

make P correspond to a real path, i.e., a path among the real nodes.

CONNECTTONETWORK(v, T)
Assumption: The node v is a real node enclosed by some node v0 in the boundary of T.
C1
C2

C3
C4

C5
C6
C7
C8
C9

Let v0 be the node in T that encloses v.
Let P0 be a shortest path in T from v0 to a site s. Let vr be the first node of P0
belonging to N-, and let P be the subpath of P0 from v0 to yr.
Add P to N-.
Call EXPANDPATH(v, P) to make a real path out of P, except possibly for the last
connection.
If the last node Vr in P is a real node, then stop.
Else,
Let T’ be the (inactive) tree corresponding to the supernode yr.
Let v’ be the real node by which the last edge of P is incident to yr.
RecUrsively call CONNECTTONETWORK(v’, T’).
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N
Vr

FIG. 3. After identifying a path P of 131 13 to connect v to T, any supernode u in P is expanded by
EXPANDPATH(v, P) into a connection via the network tree of u. Nu. If the last node in P, v,. is a supernode,
it is recursively expanded to a path in the original graph by identifying a vertex v on its boundary and calling
CONNECTTONETWORK(v, Tot) recursively to connect v to the network Nvro

The procedure CONNECTTONETWORK uses a subprocedure EXPANDPATH(v, P) to make
a real path out of P. For each node v of P except the last, if v is a supernode, we may have
to add edges to No.
EXPANDPATH(v, P)
Assumption: P is a path in some tree T, whose first node encloses v, which is assumed to be
a real node.
E1
E2
E3
E4
E5
E6
E7
E8
E9
El0

Write P l)oeovlel er-l Vr.
Fori:=0tor-ldo

Let o’ be the real node by which ei is incident to
Comment: We must make a real path in N from v to
If vi is a supernode then
Let T be the tree corresponding to vi.
Call CONNECTTONETWORK(v, T).
Call CONNECTTONETWORK(v’, T).
Comment: Now there is a real path from v to T’s network to v’.

Let v be the real node by which ei is incident to vi+t.

To prove that by using these procedures in the merge we maintain the connectivity invari-
ant, we would use induction to show the following two statements. The call
CONNECTTONETWORK(I), T) introduces edges in N, to connect the real node v to N.. The
call EXPANDPATH(v, aP) introduces edges, in the networks Nv; (for each supernode vi P
except the last) so that the edges of P are connected up in N.

4.4. Merging trees whose common node is a supernode. To complete the description
of the algorithm, we consider the case in which the node at which trees collide is a supernode
rather than a real node. Let v be a supernode and suppose trees T1 Tk collide at v at time
t. We describe how to merge these trees.
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To initialize, let T T. For 2 to k, we merge T into T as follows. Since v is on
the boundary of Ti, Proposition 4.1 ensures a path of length from v to a site of Ti. Let e
be the first edge on this path and let vi be the real node by which e is incident to v. We then
call CONNECTTONETWORK(oi, T) and CONNECTTONETWORK(oi, T.). These calls establish a
path going through v between the network of T and the network of T,.. We then let T be the
resulting merged tree, i.e., T := T t_J T/. This completes the merge of Ti into T.

The second invocation, CONNECTTONETWORK(oi, T/), needs some elaboration. As we
shall see in the next section, the analysis of the algorithm requires that steps E7 and E8 of
EXPANDPATH be executed at most once for a given tree T during the course of the algorithm.
The first invocation of CONNECTTONETWORK(I)i, T) executes these two steps for the tree

To corresponding to the supernode v. We must therefore avoid executing these steps in
subsequent invocations of CONNECTTONETWORK. Fortunately, the choice of vi enables us to
avoid executing these steps, as we now explain.

Step C2 of CONNECTTONETWORK selects a path P0 from the supernode v to a site in T.
By choice of vi, we can select the path P0 so that its first edge is incident to the real node
vi in G. P is an initial subpath of P0. Therefore, when we call EXPANDPATH(vi, P) in step
C4, we omit the iteration 0 in EXPANDPATH in which P’s connection to v,,. is made a real
connection. This omission avoids reexecution of steps E7 and E8 of EXPANDPATH on the tree

To.
5. Proving the performance guarantee of the R-join algorithm. To prove (2) of 3.1,

we shall show that the cost of the feasible network produced by the algorithm is small relative
to the number of cuts produced.

At any point in the execution of the algorithm, the age of a tree is the number of timesteps
the tree grew. Thus the age of an active tree is the current number of elapsed timesteps, while
the age of an inactive tree is the number of timesteps that had elapsed when the tree became
inactive. We denote the age of a tree T byage(T). We define the connect-cost of a call to the
subroutine CONNECTTONETWORK as the number of edges added to the network by the routine
not including any calls to the routine EXPANDPATH. That is, the cost for a call is the number
of edges added in step C3, plus the cost of the recursive call in C9. We recursively define the
height of a node to be 0 if it is a real node and one more than the maximum height of any node
it encloses if it is a supernode.

LEMMA 5.1. Steps E7 and E8 ofEXPANDPATH are executed at most oncefor a given tree
T through the course of the algorithm.

Proof Suppose we are about to begin the merging process for a given timestep. Through
a series of calls to CONNECTTONETWORK, we build paths P that connect up some trees’
networks. The key observation is that for every such path P, constructed in step C2 of
CONNECTTONETWORK, every node of P except the last was previously free. (Recall that a

free node is one that is not contained in any network Nr.) Moreover, since the edges of P are
added to the network in step C3, such nodes are subsequently not free. Consequently, each
node appears as a nonfinal node of a path P at most once during the course of the algorithm.

To complete the proof of the lemma, we need only add that a tree T for which steps
E7 and E8 of EXPANDPATH(V, P) are executed corresponds to a nonfinal node v; of the
path P. U

LEMMA 5.2. The connect-cost ofa tree T is at most age(T).
Proof. We prove it by induction on the height of the nodes on the path from v to Nr. The

statement trivially holds if all nodes have height 0, because by Proposition 4.1, v is at distance
age(T) from Nr.

Assume that the statement is true for nodes of height at most l. Let P be the path added
in step C3, and let or be P’s final node. By Proposition 4.1, P has at most age(T) edges.
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T

age(T) t

Cage(T)

c < age(T’) < t

FIG. 4. ProofofLemma 5.2 that the cost ofa call to CONNECTTONETWORK in the construction ofthe solution

for the tree T is at most age(T).

Therefore, if o is a real node, we are through. Otherwise, vr corresponds to an inactive tree
T’. The proof for this case is illustrated in Fig. 4. Let c be the cost of the recursive call
CONNECTTONETWORK(v’, T’) in step C9. By the inductive hypothesis, c is at most age(T’),
since no node in T’ has height more than 1. Suppose or was added to T after timesteps.
It follows that the number of edges in P is age(T) t. Moreover, age(T’) is at most t,

since T’ was already inactive when vr was added to T. Hence the total cost of the call to
CONNECTTONETWOP,K which is IPI + c, is at most age(T) + age(T’), which in turn is at

mostage(T).
Define the expand-cost of a tree T as the cost of the calls CONNECTTO-NETWORK(v, T)

and CONNnCTTONTWORK(v’, T) in steps E7 and E8. By Lemmas 5.1 and 5.2, the expand-cost
of T is at most 2. age(T). Moreover, by the proof ofLemma 5.1, if the node v corresponding
to T remains forever free, then these calls are never made, so the expand-cost of T is zero.
We use ExpandCost(T) to denote the expand-cost of T.

When trees T Tr merge, the network Nr for the resulting tree T is constructed by tak-
ing the union ofthe networks for the T ’s, and then making some calls to CONNECTTONETWORK.
We recursively define the cost of T as the sum of the costs of the trees merged to form T,
plus the costs of the calls to CONNECTTONETWORK, Thus the cost of a tree T is the number
of edges added to create N., not including edges added in steps E7 and E8 of nX’ANDP,TH.
We denote the cost of T by Cost(T).

We will charge the cost ofa tree against the number ofcuts assigned to the tree. Recall from
the cut-packing algorithm that in each timestep we grow each tree, and assign the corresponding
level cut to the tree. Moreover, when trees are merged, their cuts are assigned to the resulting
tree. We denote the number of cuts assigned to a tree by C P(T).
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LEMMA 5.3. After timesteps have elapsed, the cost ofa tree T is at most 2. CP(T)
2.age(T).

Proof We shall prove this statement by induction on the number of elapsed timesteps.
When is 0, the lemma holds trivially. Assume that the statement holds for t. During the +
1st timestep, each active tree T, is grown by one level, so C P(T) goes up by one, while its age
also increases by one. So far, so good. Next, trees are merged. The additional cost incurred
in merging T Tr to form a tree T is the cost of 2(r 1) calls to CONNECTTONETWORK,
each at cost at most age(T) by Lemma 5.2. Hence the total cost of T is

2(r 1)age(T) + Cost (Ti)
i=1

which, by the inductive hypothesis, is at at most 2(CP(T) age(T)). [3

Now we can bound the size of the feasible network output by our algorithm. The size is
the sum, over all inactive trees T of the cost of T plus the expand-cost of T. For any tree T
whose node remains free, the expand-cost is zero. Let us call a tree free if its corresponding
supernode is free. Thus we have

size of feasible network

< Cost(T) + ExpandCost(T)
T

< Cost(T) + E (Cost(T) + ExpandCost(T))
free T unfree T

(5) _< 2( CP(T) E age(T)),
T free T

where the last inequality follows from Lemma 5.3 and our remarks about expand-cost.
Since CP(T) is the total number of cuts assigned by the cut-packing algorithm, we

have proved a version of (2) with a factor of 2 instead of 2(1 / k). To get the smaller factor,
we prove a lower bound on the second sum in (5).

For a tree T, let k- denote the number of sites that are nodes of T. Define k. -]{kr,
T encloses T’}. Similarly, let CP*(T) {CP(T’) T encloses T’}.

LEMMA 5.4. For any tree T, age(T) is at least CP*(T)/k.
Proof. The key observation is that for any tree T’, CP (T’) is at most kr, times age(T’),

since each of the k(TI) sites is assigned a maximum of one cut per timestep until age(T’)
timesteps. If T’ is enclosed by T, then age(T’) is at most age(T), so we have

CP*(T) E{CP(T’) T encloses T’}

<_ {kT, T encloses T’}age(T) kage(T).

We use Lemma 5.4 to get our lower bound on {age(T) T free}. Let k* max{k.
T free}. Then by Lemma 5.4, for each free tree T, age(T) > CP*(T)/k*. Since each tree
is enclosed by some free tree, {CP*(T) T free} is the total number CP of cuts assigned.
Hence

E{age(T) T free} > CP/k*.(6)

Substituting into (5) and replacing k* by k, the total number of sites, gives (2) and completes
the proof of Theorem 1.3.
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6. Further directions for research. Two important variants of the basic Steiner tree

problem in networks are the node Steiner problem [34], in which nodes are assigned costs,
and the directed Steiner tree problem, in which the input graph is directed and one seeks a
directed tree as the solution. It is an open problem to find good approximation algorithms for
either problem. It was observed by Berman [5] that the set cover problem is reducible to the
node Steiner problem via an approximation-preserving transformation. Khuller [20] made
an analogous observation concerning the directed Steiner tree problem. In fact, Segev [34]
gave an approximation-preserving reduction from the node Steiner problem to the directed
Steiner problem. In view of Lund and Yannakakis’ recent result showing that the set cover
problem cannot be approximated by a factor smaller than logarithmic [28], it is natural to
ask whether there are logarithmic-factor approximation algorithms for the node and directed
Steiner problems. We have recently discovered such an algorithm for the former problem
[24].
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