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When worlds collide: Th17 and Treg cells in cancer and

autoimmunity
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The balance between Th17 cells and regulatory T cells (Tregs) has emerged as a prominent factor in regulating autoimmunity and
cancer. Th17 cells are vital for host defense against pathogens but have also been implicated in causing autoimmune disorders and
cancer, though their role in carcinogenesis is less well understood. Tregs are required for self-tolerance and defense against
autoimmunity and often correlate with cancer progression. This review addresses the importance of a functional homeostasis
between these two subsets in health and the consequences of its disruption when these forces collide in disease. Importantly, we
discuss the ability of Th17 cells to mediate cancer regression in immunotherapy, including adoptive transfer and checkpoint
blockade therapy, and the therapeutic possibilities of purposefully offsetting the Th17/Treg balance to treat patients with cancer as
well as those with autoimmune diseases.
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INTRODUCTION
CD4+ T cells play a critical role in regulating human health and
disease by orchestrating the immune system to contend with
danger induced by foreign antigens, such as infections or cancer
formation. Proper function of the CD4+ T cell compartment relies
on an adjustable equilibrium among various T cell subsets, which
help trigger the host’s immune system in defense against threat.
While the division of CD4 support was previously hypothesized to
be dominated solely by Th1 and Th2 helper subsets, mounting
evidence over the past decade reveals that Th17 cells and
regulatory T cells (Tregs) also play important roles in regulating
health and exacerbating autoimmunity and cancer. Herein, we will
discuss the delicate balance between Th17 and Treg cells in
maintaining a healthy, functioning immune environment, as well as
the harmful effects that transpire when homeostasis is disturbed
and their therapeutic implications. Finally, we discuss the possibi-
lities of harnessing a Th17 response against cancer in adoptive
transfer and checkpoint blockade therapy, thus highlighting an
approach whereby therapeutically and purposefully offsetting the
Th17/Treg balance could be effective in treating human cancers.

Basics of T helper subsets
Before the 1980s, helper T cells were believed to be a single subset
among T lymphocytes1. Increasing evidence now suggests that
there are at least seven distinct T helper subsets differentiated in
response to particular combinations of cytokines. These subsets
are also controlled by different transcription factors to produce a
characteristic milieu of cytokines and exert an effector function
against self and foreign antigens. These subsets are described
below and summarized visually in Fig. 1.

CD4+ T cells differentiate into subsets such as Th1, Th2, Th17,
Treg, Th9, Th22, and T follicular helper cells2. Th1 cells rely on the
expression of T-bet and eliminate intracellular pathogens through
IFN-γ production, which activates macrophages2–4. Th2 cells play a
role in the presentation of allergens; promote immunity against
parasites through production of IL-4, IL-5, and IL-13, and are
regulated by transcription factor GATA35. Interestingly, Th2
differentiation is also mediated by IL-4, creating a positive
feedback loop to bolster proliferation2,6. Th17 cells secrete IL-
17A, IL-17F, IL-21, IL-22, and CCL20, express master transcription
factor RORγt, encoded by Rorc7, and promote inflammation in
response to infections8–10. Regulatory T cells (Tregs) suppress
effector function through secretion of inhibitory cytokines such as
IL-10 and TGF-β or through cell-mediated engagement of
inhibitory checkpoint molecules such as TIGIT and CTLA-411. The
relevance of Th17 cells has been documented in promoting
autoimmunity, carcinogenesis, and antitumor immunity, whereas
Treg cells are essential for immune tolerance and have been shown
to dampen autoimmunity and antitumor immunity6,12,13.
Most recently, Th9, Th22, and T follicular helper cells (Tfh) have

been described as distinct helper populations. As such, knowledge
of the programming cytokines and master transcription factors for
these subsets is still somewhat under debate. Th9 cells
differentiate in response to IL-4 and TGF-β14–16 and produce IL-9
under control of the transcription factors STAT6, PU.117, IRF418,
BATF19, and FOXO120. IL-9 recruits lymphocytes and mast cells as
effectors21–23 and is enhanced under the influence of IL-1β and
transcription factor IRF124. Th22 cells are polarized by IL-6 and
TNF-α to secrete IL-2225 and have been shown to exacerbate
psoriasis in patients26. Which transcription factor(s) control Th22
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differentiation is less clear27,28. However, several groups have
identified aryl hydrocarbon receptor (AHR) as having a vital role in
Th22 differentiation25,28–30, while the role of T-bet is more
controversial25,30. Tfh cells classically secrete IL-21 for B cell
development in germinal centers, as well as IFN-γ and IL-4 to aid
B-cell immunoglobulin class-switching to IgG and IgE in the
lymphoid follicle31. They also secrete IL-9 to promote B cell
memory and differentiation of plasma cells31,32. Although Bcl6 has
been the widely accepted transcription factor controlling

differentiation of Tfh cells, there are also recent reports suggesting
STAT4 and T-bet33, c-Maf34, IRF435, and Batf36 are important to
differentiation of this lineage.

T helpers in opposition
Our current understanding of T helper function revolves around a
theory that subsets are in a state of equilibrium37. Upon activation
of one particular subset, other subsets are modulated or inhibited
in order to promote the most specific effector response in defense
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Fig. 1 CD4+ cell differentiation and effector function. CD4+ T cells differentiate based on the presence of various cytokines. Under the
influence of IL-2 and TGF-β, Treg cells develop and express transcription factors STAT5 and Foxp3 and cytokines TGF-β and IL-10. IL-12
influences Th1 cell development and promotes immunity upon the presence of IFN-γ, STAT4, T-bet, and LTα. Th2 cell differentiation is induced
by IL-4, during which cytokine release may manifest in allergies or asthma. Th17 cell development occurs following the influence of TGF-β, IL-
6, and IL-21. IL-1β and IL-23 maintain Th17 cell stabilization during clonal expansion. Upon differentiation, Th17 cells are most commonly
classified by their expression of RORγt and STAT3. Th9, Th22, and Tfh cells have been most recently described, and transcription factors
controlling their differentiation remain under debate
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against imminent threat37,38. Historically, this discussion began
with the Th1/Th2 hypothesis of distinct opposing T helper subsets,
formulated after searching for a T cell responsible for helping
antibody production versus one responsible for tissue damage in
delayed-type hypersensitivity (DTH)39,40. Early studies claimed that
Th1 cells mediated tissue damage in DTH, not the antibodies in
serum, and would likely be the cell responsible for mediating
tissue damage in various autoimmune diseases40. After several
failed attempts to show that tissue damage in murine experi-
mental autoimmune encephalitis (EAE) was mediated by Th1 cells
and their effector cytokine, IFN-γ, the characterization of a novel
subset called Th17 cells emerged41–45. The Th1/Th17 balance
developed, recognizing that IFN-γ and IL-17 have antagonistic
properties, as blockade of IFN-γ results in increased IL-17
production by T cells46,47. Finally, an antagonistic relationship
between Th17 cells and Tregs has been described, as their
differentiation is stimulated by similar cytokines yet they have
different functions48–50. Th17 cells serve as an effector lymphocyte
population, while Tregs are suppressor cells48–50. Herein, we will
focus on the particular Th17/Treg balance of opposing forces in
autoimmunity and cancer and the roles of each subset in both
promotion of and protection from these pathogenic phenotypes.

The YIN: Th17 cells
Differentiation. The emergence of the distinct Th17 lineage can
be attributed to studies of central nervous system autoimmunity.
Early studies involving the EAE model revealed that IL-23 knockout
(KO) mice were resistant to developing EAE, while IL-12 KO mice
remained susceptible51. This surprising series of experiments
signified that Th1 polarization was not critical to the autoimmune
phenotype, as was previously posited51. IL-23 was subsequently
discovered to drive polarization of a pathogenic CD4+ T cell
subset characterized by production of IL-17A and IL-17F, which
could induce EAE upon adoptive transfer, while IFN-γ producing
Th1 cells could not52.
These IL-17 producing cells were considered a distinct lineage,

when the milieu of cytokines supporting their differentiation was
shown to be independent of the environment of cytokines
required for Th1 and Th2 development47,53. In fact, the in vitro
differentiation of naive CD4+ T cells to Th17 cells is suppressed by
Th1/Th2 cytokines IFN-γ and IL-453 and relies on costimulation by
CD28 and ICOS47. The cytokines most important to Th17
differentiation are TGF-β, IL-6, and IL-1β, and the phenotype is
maintained long term in the presence of IL-21 and IL-2354,55. The
role of each of these individual cytokines is discussed below.
Along with IL-6, TGF-β is well known as a critical cytokine for

inducing RORγt in naive CD4+ T cells, which in turn drives their
differentiation to a Th17 phenotype. However, new findings have
provided insight into exactly how TGF-β regulates RORγt.
Interestingly, TGF-β was shown to modulate the SKI–SMAD4
complex56. The SKI–SMAD4 complex suppresses RORγt, as the SKI
protein inhibits acetylation of the Rorc locus56. However, in the
presence of TGF-β, SKI is degraded, permitting RORγt expression
in CD4+ T cells and ultimately driving Th17 differentiation56. Low
doses of TGF-β1 also inhibit IL-2-mediated activation of STAT5 and
reduce T-bet and GATA3 expression, which inhibits Th1/Th2/Treg
differentiation while promoting the Th17 lineage57. Recent
findings have also demonstrated that phosphatase and tensin
homolog (PTEN) in Th17 cells suppresses IL-2 signaling, reducing
STAT5 and the Treg pathway while upregulating STAT3, a
transcription factor that supports the Th17 pathway58. It is also
important to appreciate that TGF-β and IL-6 induce the IL-23
receptor (IL-23R) in Th17 cells59. IL-23 further activates STAT3,
RORα and RORγt in Th17 cells to maintain their long term
proinflammatory signature6,7,59,60. Thus, naive CD4+ T cells
cultured with TGF-β and IL-6 but without IL-23 still produce IL-
17 but also produce anti-inflammatory cytokine IL-1061,62. These
non-pathogenic Th17 cells do not induce EAE and have

compromised persistence and phenotypic maintenance in vivo 62.
Recent reports have also shed new light on the role of IL-1β and

IL-21 in regulating Th17 cells. IL-1β induces alternative splicing of
Foxp3, inhibiting Treg differentiation and promoting IL-17A
production55. Finally, IL-21 activates STAT3 downstream and can
induce Th17 differentiation even in the absence of IL-663. As Th17
cells also produce IL-21, this autocrine signaling amplifies the Th17
response and aids in their maintenance. Globally, transcription
factor JunB also supports the Th17 phenotype while repressing
alternate CD4+ Th1 and Treg phenotypes64. Collectively, this
mounting body of work reveals that various cytokines and key
transcription factors are critical for inducing Th17 differentiation
and maintaining their function and phenotype long term.

Function. At homeostasis, Th17 cells promote gut barrier
defense, granulopoiesis, granulocyte chemotaxis, and immunity
against extracellular pathogens. Most Th17 cells reside within the
lamina propria of the gut in healthy individuals but are induced at
other mucosal sites upon exposure to danger signals, such as
infection65. To maintain gut defense, IL-17 upregulates claudins
for tight junction formation in the intestinal barrier and IL-22 plays
a role in epithelial maintenance66,67. IL-17 induces granulopoeisis
indirectly through stimulation of epithelial cells, endothelial cells,
and fibroblasts to secrete GM-CSF, IL-6, IL-8, and MIP-268,69. In turn,
IL-8, and MIP-2 enhance chemotaxis of neutrophils70. Mice
deficient in IL-17R have an impaired ability to repopulate these
immune cells after irradiation71. Th17 cells and IL-17 have been
implicated in immunity against extracellular pathogens, such as
Klebsiella pneumoniae69, Staphylococcus aureus72, Salmonella enter-
ica serovar Enteriditus73, and Shigella flexneri74 among other
bacterial species. Th17 cells have also been shown to augment
Th1 recruitment in Mycobacterium tuberculosis infection, which is
critical to granuloma formation and sequestration of bacteria75.
These collective Th17 functions are critical in preserving the health
of the host and when compromised can lead to various disease
symptoms, as discussed below.
Mutations that result in loss of Th17 cell function manifest in

disorders such as Job’s syndrome, also named hyper-IgE
syndrome, and chronic mucocutaneous candidiasis (CMC) disease.
Job’s syndrome is caused by an autosomal dominant STAT3
inactivating mutation and results in increased susceptibility of
patients to S. aureus and Candida albicans76. Phenotypically, this
disease presents as a triad of eosiniphilia, eczema, and recurrent
skin and pulmonary infections77. CMC disease, manifested by
chronic infection of the skin, nails, and mucosa by C. albicans, is
related to any of four inheritable gene defects in IL-17RA, IL-17RC,
IL-17F, or ACT178. These mutations impair the host Th17 response
and increase susceptibility to infection with extracellular patho-
gens. Thus, Th17 cell function plays a critical role in regulating
immune responses in health and in disease within the host. Based
on these findings, translational researchers and physician scien-
tists have been actively investigating methods to regulate the
Th17 pathway in patients to treat both autoimmunity and
infectious disease.

The Yang: Regulatory T cells
Effector functions of the adaptive immune response provide the
ability to fight and clear invading pathogens while generating
memory against those pathogens for a rapid recall response. Such
effector functions, while vital for survival, can be damaging if
engaged for too long, driving chronic inflammation, or if directed
against self-tissue, causing autoimmunity38. As such, effector
T cells must be regulated to prevent immune cell defense from
turning to offense.
The discovery and recognition of a distinct T cell subset

functioning to suppress immune responses was controversial in
the late 20th century, and some debate over lineage still exists
today. The first discovery that T cells could dampen immune
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responses was made in 1970, and thereafter, these cells were
termed “suppressor” cells79. These cells were defined by their
expression of the “I-J” molecule, which was claimed to be
important to suppressive function80. Controversy arose when the
I-J coding region could not be identified on murine major
histocompatibility complex (MHC) and due to a lack of other
concrete identifying markers led to the collapse of the “suppres-
sor” T cell movement81.
Around that time, it was separately noted that immune

tolerance could be broken from the beginning of development.
Neonatal thymectomy of mice resulted in destruction of the
ovaries, which was later correlated with tissue damage in other
organs82,83. Identification of two types of “regulatory” T cells
followed—one naturally occurring in the thymus and responsible
for clonal deletion of T cells specific to self-antigens and one in the
periphery, inducible from naive CD4+ T cells.

Differentiation and function
Several cornerstone discoveries about Tregs include the identifica-
tion of IL-2Rα (CD25) as a functional marker, the importance of IL-2
for tolerogenic function, and designation of Foxp3 as the master
transcriptional regulator. In mice, CD25 marks a population of
CD4+ T cells that normalize immune function and prevent lethal
autoimmunity84,85. Reconstitution of the neonatally thymecto-
mized mice with CD4+ CD25+ T cells, but not with CD25− cells,
prevented autoimmune development86. IL-2 is critical for Treg
development and function, as IL-2Rα KO, IL-2Rβ KO, and
neutralization of IL-2 induce severe autoimmunity87–89. Very
recent reports by Dwyer et al. have further revealed that the
level of IL-2 signaling is vital to proper Treg function, as chronically
reduced IL-2 signaling compromised peripheral tolerance and led
to accelerated onset of type 1 diabetes in NOD mice90. Despite its
necessity for function, CD25 is not exclusively on Tregs and does
not mark the Treg population as effectively in humans as it does in
mice. Other Treg surface molecules include glucocorticoid-
induced TNF receptor (GITR), PD-1, CTLA-485, TIGIT91, and GARP92,

though these markers are also not exclusive to Treg cells. The
master transcriptional activator of Tregs is Foxp3, which is a more
specific marker for Tregs93 and is important for Treg development
and maintenance of function12,94–97. Foxp3 is enhanced by Helios
expression98, which correlates with GARP expression and marks a
regulatory cell with greater immunosuppressive characteristics99.
Bluestone and coworkers found that Foxp3 expression also
correlates inversely with CD127 (IL-7Rα) expression, identifying
the phenotype of CD4+CD25+CD127lo/− as more representative of
human Tregs100. Foxp3 is present in natural and peripheral Tregs,
although the exact mechanism of generating peripheral Tregs
in the context of antigen specificity is still somewhat under
debate101.
Cellular development of Th17 and Treg cells shares a common

cytokine, TGF-β, which is needed to induce Foxp3 and RORγt in
Treg and Th17 cells, respectively. TGF-β with IL-2 can induce
Foxp3+ Treg differentiation peripherally from naive CD4+ T cells,
whereas TGF-β plus IL-6 (secreted by the innate immune arm, such
as activated dendritic cells) induces the Th17 lineage
(Fig. 1)48,49,102. As mentioned previously, IL-6 and IL-21 induce
STAT3, which inhibits Foxp3, while IL-2 induces STAT5, which
reduces STAT3 binding and inhibits Th17 differentiation59,103–105.
Supplemental IL-2 as therapy for autoimmune disease may
augment Treg function and boost self-tolerance. The notion is
now well appreciated that generating a regulatory response is
closely related to differentiating an effector Th17 response against
pathogens. Collectively, the immune system tightly regulates
Th17/Treg homeostasis via the TGF-β/IL-2 and IL-6 cytokine axis.
Defects in Treg function lead to unregulated immune responses

to self-tissue. Treg function depends heavily on migratory activity
—during an immune response, Tregs migrate from blood to
lymph nodes and tissues, and the ratio of Treg/non-Treg CD4+

cells in those compartments increases106. Recent reports have
shown that Treg migration is regulated by bioenergetics.
Specifically, glucokinase-dependent glycolysis in Tregs was found
to prevent the effector response from generating excess

Fig. 2 Cytokines induce functional plasticity of Th17s and Tregs. Both Th17 cells and Tregs exhibit the ability to acquire characteristics of
other helper subsets. The presence of Th17-type cytokines IL-1B and IL-6 can generate Treg-producing IL-17. The ability of Th17 to
differentiate into a Treg-like phenotype is less well described at this time. Similarly, a Th17 cell reactivated in the presence of IL-12 generates
an ex-Th17 or non-classical Th1 cell with self-renewing abilities compared to a classical Th1 cell that progressively differentiates into
senescence
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inflammation107. Without the ability to migrate, Tregs cannot
relocate to the site of inflammation, as shown by their reduced
ability to suppress allograft rejection107.
Similarly, inheritable mutations that render Tregs dysfunctional

cause lethal autoimmunity. Mutations in Foxp3 result in a disease
known as IPEX, which is characterized by immune dysregulation,
polyendocrinopathy, enteropathy, and X-linked syndrome108. This
disorder generally presents early after birth with severe dermatitis
or psoriaform lesions, watery diarrhea, excessive cytokines,
thyroiditis and hypothyroidism and frequently leads to death
early in childhood108. This mutation impairs the regulatory host
response and permits rampant inflammation from other unop-
posed immune cell compartments.

Th17/Treg plasticity
Both Th17 and Treg cells have been described as exhibiting the
property of plasticity. Plasticity is defined by the unique ability to
adapt to signaling cues in a changing environment. For example,
as shown in Fig. 2, Th17 cells can acquire Th1-like characteristics
after activation, a property that likely plays a role in enhancing
autoimmunity and antitumor immunity. Termed ex-Th17 cells, or
non-classical Th1 cells, these cells lose their ability to secrete IL-17
while gaining the capacity to secrete IFN-γ in the presence of
proinflammatory signals, such as TCR-triggering or exposure to IL-
12 or IL-23109. Although ex-Th17 cells acquire a Th1 profile, they
can still be distinguished from classic Th1 cells via unique surface
markers, including CD161, CCR6, and IL-17RE110. Moreover, these
cells are functionally distinct from classic Th1 cells, secreting more
TNF, IL-2, GM-CSF, and IFN-γ111. Interestingly, proliferation of ex-
Th17 cells is not suppressed by Treg cells in direct contrast to
classical Th1 and Th17 cells, which are inhibited by Treg cells111.
These data implicate a possible role for these cells in an
unbalanced Th17/Treg autoimmune response. The observed

plasticity of Th17 cells occurs only in the direction of Th17 to
Th1, as Th1 cells have not been shown to convert to Th17-like
T cells112.
As also displayed in Fig. 2, Tregs are able to reacquire

characteristics of Th17 cells under a cytokine-driven influence.
When Foxp3+ Tregs are exposed to IL-6 with or without IL-1β and
IL-23, Foxp3 becomes down-regulated in favor of expressing Th17
genes including IL-17, IL-22, IL-23R, and RORγt113. Such ex-Foxp3
cells have been implicated in the pathogenesis of autoimmune
arthritis because they have a reduced ability to suppress cytotoxic
CD8+ and effector Th17 cells114. Conversely, the transition to Th17
cells acquiring Treg-like characteristics is less well described but
has recently been shown in ovarian and colorectal cancer model.
Over time, tumor-infiltrating cells that produce IL-17 and are
Foxp3− transdifferentiate into IL-17Aneg-Foxp3+ cells, termed “ex-
Th17 Tregs”115. It is hypothesized that this conversion is controlled
by TGF-β and prostaglandin E2 (PGE2)115. This dynamic function-
ality by Th17s and Tregs reveals the complexity of manipulating
these subsets therapeutically.

Th17/Treg in Autoimmunity
Th17 cell-mediated immunity is important for maintaining
mucosal and hematopoietic homeostasis. However, too strong
of a Th17 cell response can induce autoimmunity. Likewise, a
lack of Tregs can result in lethal autoimmunity in humans. As
detailed in Table 1, the altered homeostasis between Th17 and
Treg has been implicated in several autoimmune diseases,
including multiple sclerosis116,117, psoriasis118, rheumatoid
arthritis119, inflammatory bowel disease120, and systemic lupus
erythematosus121. Thus, the relationship between effector Th17
cells and Tregs must remain balanced to preserve functional
immunity and health of the host. Some important examples of
this Th17/Treg balance in patients are discussed in various

Table 1. Th17/Treg role in pathogenesis and therapy for autoimmune diseases

Th17 role in pathogenesis Treg role in
pathogenesis

Therapeutic intervention References

Th17-related Treg-related

MS IL-17 in CSF and
chronic lesions

nL Frequency Ustekinumab showed no benefit Baltimore VA looks to induce
myelin-specific Tregs

126–128

IL-23 KO mice resist
EAE

Function Secukinumab may show benefit

Psoriasis IL-17, IL-23, IFN-γ in
lesions stimulate
keratinocyte
proliferation

Function Secukinumab None 130–139

Increased Treg
plasticity to
Th17-like
phenotype

Ustekinumab

Guselkumab

RA Th17 frequency Frequency No benefit over standard of care with
Secukinumab or Ustekinumab

Tocilizumab restores Th17/Treg
imbalance

119,141–144

Th17 migration to
synovium

nL Function Tociluzumab has shown efficacy alone or
in combination with methotrexate

IBD IL-17 in serum and
mucosa

Frequency Ustekinumab showed no benefit over
placebo; showed efficacy in patients who
failed anti-TNF-α therapy

Anti-CD3 shows benefit in UC;
may result from accumulation of
IL-10+ Tregs in colon

145–148

IL-23 mediated
pathology

nL Function

SLE IL-17 compared to
healthy controls

Frequency
None

MSCT/HSCT induces remission 121,149–151

IL-23R KO mice show
reduced severity of
nephritis

Function,
migration

MSmultiple sclerosis, nL normal, RA rheumatoid arthritis, IBD inflammatory bowel disease, UC ulcerative colitis, SLE systemic lupus erythematosus, KO knockout,

MSCT mesenchymal stem cell transplant, HSCT hematopoietic stem cell transplant
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autoimmune manifestations below. In addition, recent thera-
peutics that have been used to reduce the severity of these
diseases by modulating the Th17/Treg axis are discussed below.

Multiple sclerosis
Multiple sclerosis (MS) is a chronic inflammatory disease involving
destruction of myelin in central nervous system white matter. This
disease presents in patients as deficits in sensory or motor
function, unilateral vision loss, diplopia, gait disturbance, or loss of
bladder control, among other varied symptoms of nervous system
malfunction. As discussed previously, the experimental mouse
model of MS is EAE, from which came the discovery of Th17 cells
and their role in neuroinflammation. In MS patients, myelin-
reactive T cells not only secrete IL-17 but also secrete IFN-γ and
GM-CSF in contrast to T cells from healthy individuals122. These
data suggest, as in the EAE animal model, that Th17 cells play a
role in MS in human patients. These data also suggest that these
Th17 cells are pathogenic due to their ability to cosecrete multiple
cytokines. IL-17 levels have been reported to be increased in the
CSF of MS patients during symptomatic relapse123, as well as in
chronic lesions116. Interestingly, Th17 cells from patients with
active symptoms of MS secrete less IL-10 compared to those who
are clinically stable124. These data further suggest that Th17 cells
from MS patients with stable disease are non-pathogenic with a
regulatory property that might protect the host from aberrant
cytotoxic responses against self.
Treg frequency and function have also been studied in MS.

Although the frequency of Tregs is generally accepted as
unaltered in MS patients117,125, Tregs from MS patients show
impaired ability to suppress proliferation and cytokine secretion
of other CD4+CD25− T cells compared to healthy individuals117.
Both the upregulation of IL-17 and down-regulation of Treg-
mediated immunity likely contribute to the pathogenesis of MS in
humans.
Due to these Th17/Treg-related causes of MS, therapies that

target these pathways are of great interest to the medical
community. However, intriguingly, recent trials with IL-12/23
blockade (ustekinumab) did not show efficacy against the
disease126. However, blockade of IL-17 with secukinumab showed
some efficacy over placebo127. These preliminary findings will
need to be evaluated more robustly in future trials. There is also
growing interest in inducing suppressive Tregs in patients to
reduce the severity of MS. For example, there is a new study led by
Jewell at the Baltimore VA Medical Center that seeks to use
nanotechnology to program myelin-specific Tregs in lymph nodes
through exposure to myelin and toll-like receptor suppressive
ligands, but data are not available from this investigation at this
time (NIH Award 1I01BX003690-01)128. Perhaps targeting a
combination of both Th17 and Treg pathways through IL-17
blockade and a boost of functional Tregs is necessary for disease
control in patients with multiple sclerosis.

Psoriasis
MS is not the only disease where pathogenic Th17 cells have
been shown to exacerbate autoimmune manifestations. Psoriasis
is a chronic inflammatory skin disorder where the over-
production of IL-23 by keratinocytes supports pathogenic Th17
cells in the dermis129. Hallmark features of psoriasis include
various factors: parakeratosis, elongation and bulbous widening
of the rete ridges with thinning of suprapapillary plates, dilated
blood vessels and rouleaux formation in the papillary dermis118.
Patients with psoriasis have more IL-17 and IL-22-producing cells
in their peripheral blood than healthy individuals130. Moreover,
psoriatic lesions have been discovered to contain increased
IL-17A, IL-17C, and IL-17F compared to non-lesioned skin
biopsies131–133 and are populated with more Th17 and
Th1 cells134. T cell recruitment and proliferation are induced by
CCL20 and IL-23 (secreted by APCs), while IFN-γ and various

isoforms of IL-17 stimulate keratinocyte proliferation and APC
activation in a cyclic manner134–137.
In addition to the strong link to Th17 hyperactivity, psoriasis has

also been associated with altered Treg functionality. Patients have
comparable Treg frequency compared to healthy individuals, but
suppression of effector T cell function is impaired, similar to what has
been shown in MS138. Treg cells from psoriasis patients produce
more IL-17 and progressively lose Foxp3 expression more frequently
than healthy controls, demonstrating a plasticity in Treg cells that
further exacerbates disease pathology139.
Therapeutic options for patients include topical corticosteroids

or phototherapy for mild disease, systemic immunosuppression,
or TNF-α inhibitors (adalimumab, etanercept). More recently,
interventions that target Th17 cells have been FDA approved and
include blockade of IL-17 (secukinumab) or IL-12/23 (ustekinu-
mab). A new drug that selectively blocks IL-23 called guselkumab
was FDA approved July 2017. This drug was approved based on
improved response to selective IL-23 blockade versus adalimumab
and ustekinumab140. Therapies that may bolster or correct the
faulty Treg function in these patients may also yield improved
effects, but such therapies are not currently available. It is possible
that modulation of low dose IL-2 or TGF-β could also bolster the
generation of suppressive Treg cells in these patients while
concomitantly suppressing Th1 or Th17 cells.

Other autoimmune diseases impacted by Th17/Treg axis: RA, IBD, SLE
Similar to MS and psoriasis, it has become clear that the
pathogenesis of rheumatoid arthritis (RA), inflammatory bowel
disease (IBD), and systemic lupus erythematosus (SLE) are also
influenced by an imbalance in Th17/Treg function. These
autoimmune diseases are summarized in Table 1. Clinical
investigations are underway to understand how drugs that block
the IL-17 and IL-23 pathway or potentiate Treg function impact
RA, IBD, and SLE. More information on these findings is outlined in
these references119,141–151.

A pinch of salt to reduce autoimmunity?
While an obvious way to treat autoimmunity in patients is by
blunting the Th17 pathway via IL-17 or IL-23 blockade with FDA-
approved drugs, holistic strategies involving simply changing the
patient’s diet or modulating the microbiota to dampen Th17-
mediated diseases are becoming increasingly more appreciated. A
high-salt diet has been shown to induce Th17 cells and exacerbate
EAE152. This concept is supported by a recent report by Wilck and
team, who found that a high-salt diet triggers an increased
number of pathogenic Th17 cells in the peripheral blood of mice,
correlating with destruction of the Lactobacillus species in the gut
microbiome and hypertension153,154. Repopulating the gut with
Lactobacillus species was shown to mitigate the severity of EAE
and hypertension152,153. The high-salt diet similarly led to an
increase in peripheral circulating Th17 cells in a healthy human
cohort153. In a preclinical arthritis model, the gut microbe
segmented filamentous bacterium (SFB) was also found to support
Th17 cells and exacerbate autoimmunity155. While antibiotics have
been shown to reduce SFB and lessen the pathogenesis of Th17
cells, thus reducing these autoimmune diseases, it is less clear how
altering the salt intake or administering probiotics in human
patients could impact disease outcome. Regardless, it is now clear
that modulating the microbiome can also play a major role in
shaping the biology of the Th17/Treg axis. As discussed below, we
will review the important role of Th17 cells and Tregs in cancer
progression as well as ways to manipulate these two subsets to
augment cancer immunotherapy.

Th17/Treg in Cancer
The relative contribution of Th17 and Treg cells in carcinogenesis
is often related to chronic inflammation. It was first posited in
1863 that tissue injury and resulting cell proliferation could lead to
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cancer156. Today, it is widely accepted that chronic infection with
bacteria, such as Helicobacter pylori157, or viruses, such as human
papilloma virus158, can cause cancer. Although present day
evidence for the role of Th17 cells in cancer is contradictory,
excess inflammation from Th17 cells or too much immunosup-
pression induced by Treg cells may lead to carcinogenesis.
Th17 cells are found in human tumors159,160. IL-17A promotes

the proliferation of malignant cells and induces angiogenic
constituents by stimulating fibroblasts to upregulate vascular
endothelial growth factor (VEGF), resulting in tumor neovascular-
ization161,162. Whether Th17 cells promote or inhibit cancer
development depends on the phenotype of the tumor. Pro-
tumorigenic neutrophils, recruited by IL-17, have been reported in
breast cancers163. High IL-17A and RORγt expression correlated
with reduced disease-free survival rates in patients with colorectal
cancer164. In pancreatic cancer, increased IL-22 production by
Th17 cells is associated with decreased survival rates in
patients165. In non-small cell lung cancer, patients were found to
have a greater ratio of Th17/Treg frequencies compared to healthy
controls, which correlated with the levels of carcinoembryonic
antigen (CEA)166. In breast cancer, though, IL-22 production
correlates with decreased tumor formation and a positive
prognosis167. In ovarian cancer, increased tumor-associated IL-17
predicted improved patient survival160.
Treg cells, however, are often associated with tumor progres-

sion and reduced survival in cancer patients168,169. GARP
expression in tumors has been shown to enhance active TGF-β
and support Treg induction in the cancer microenvironment, thus
hindering immune responses170. Treg presence in the tumor
microenvironment has been associated with more advanced stage
of malignancy, presence of invasion, and worsened prog-
nosis168,169. Depletion of live Tregs in the murine tumor
microenvironment prevented immunosuppression of tumor-
infiltrating CD8+ T cells, allowing improved anti-tumor efficacy
of endogenous effector T cells171. Apoptotic Tregs in the tumor,
however, may also contribute to immune evasion. Recent work by
the Zou lab revealed that oxidative stress in the tumor
microenvironment induces Treg apoptosis, releasing large
amounts of ATP, which is metabolized to immunosuppressive
adenosine and signals through the A2a receptor (A2aR)172. This
work suggests that selective depletion of Tregs in a patient’s
tumor with inhibition of the A2aR pathway could circumvent the
immune-evasive tumor microenvironment and thus increase
immunity to human malignancies173.

Immunotherapy: a shift in the paradigm?
Despite the evidence suggesting a pro-tumorigenic role of Th17
cells and related cytokines, recent advances in the field of
immunotherapy for treating cancer have suggested that Th17 cells
may play a powerful role in antitumor immunity. In this case,
tipping the Th17/Treg scale towards a dominant Th17 cell
influence could be beneficial for patients with aggressive tumors.
Herein, we will discuss preclinical and clinical findings that support
further investigation of Th17 cells in therapeutically modulating
tumor regression.

Adoptive cell transfer
Adoptive T cell transfer therapy (ACT) uses the patient’s own
T cells to target and kill tumor cells. In the clinic, T cells can be
obtained and logarithmically expanded from the tumor (called
tumor-infiltrating lymphocytes or TIL) or can be rendered antigen-
specific via genetically engineering peripheral blood T cells using
Chimeric Antigen Receptor (CAR) or T cell receptor (TCR)
constructs174. Much of ACT has focused on using CD8+ T cells
to treat cancer patients; however, CD8+ T cells tend to
progressively lose antitumor function as they expand, showing
reduced ability to persist and clear tumors in vivo175. Recent
clinical trials have now shown that CD4+ tumor-reactive T cells

polarized to a Th1 subset are able to regress tumors in humans176,
and in recently published work, human CD4+ T cells that express
high levels of CD26 were found to cosecrete IL-17 and IFN-γ and
be even more effective than CD8+ T cells when infused into mice
bearing large human tumors177. However, based on preclinical
work, efficacy may ultimately depend on the particular type of T
helper subset infused into the cancer patient178–181.
Numerous laboratories have now discovered that Th17 cells can

cause tumor regression to a greater extent than Th1 cells when
transferred into mice178,179,182,183. While the mechanism by which
Th17 cells regress tumors is not fully understood, they may kill
tumor cells through synergism with CD8+ T cells or by themselves
via direct lysis180,181. The enhanced ability of Th17 to ablate
tumors has been attributed to a variety of characteristics. In
culture, Th17 cell polarization is known to generate a more
differentiated effector memory phenotype (CD62Llo, CCR7lo);
However, paradoxically, after transfer, Th17 cells express high
CCR7, Lef1, and Tcf7, indicating a durable stem memory
phenotype179. In adoptive transfer therapy, it is interesting to
note that the ability of Th17 cells to convert to a Th1-like
phenotype and generate IFN-γ in vivo is critical for antitumor
response178,179. However, compared to their Th1 counterpart,
Th17 cells persist far longer and at greater frequencies in the
host179. Th17 cells are also resistant to apoptosis, which permits
them to oppose activation-induced cell death (AICD)184. Finally,
Bowers et al. recently reported that Th17 cells retain their
antitumor efficacy and resist senescence compared to Th1 cells
even after long term ex vivo expansion for nearly one month185.
Given that a large number of T cells are needed to mediate
curative responses in mice with large tumors, the fact that Th17
but not CD8+ T cells can expand to ample numbers without losing
their therapeutic potency has significant implications for clinical
translation.
Despite preclinical success with murine and human Th17 cells,

this powerful lymphocyte population has not yet been transferred
into patients. One current barrier to successful antitumor response
in the clinic includes use of exhausted T cells that do not persist in
the blood. Through use of Th17-polarizing conditions in vitro in
the clinic, Muranski et al.179 could generate a population that
displays improved persistence and long-lived immunity. As many
cytokines are needed to generate human Th17 cells, investigators
seek to find other methods to effectively enrich and expand these
cells without such cumbersome protocols. Most recently, it was
demonstrated that CD26, a multifunctional ectoenzyme with
costimulatory properties, was associated with enhanced Th17 cell
function and activation177. In this work by Bailey and team, high
levels of CD26 could be used to enrich human T cells with a type
17 phenotype177,186. T cells with a high expression of CD26 are
multifunctional, have enhanced migratory and stem-like proper-
ties, resist apoptosis, and have been shown to regress multiple
tumors177. Conversely, T cells with low CD26 expression were
regulatory T cells, as demonstrated by their high expression of
classic hallmark molecules such as high CD25, low CD127 and high
expression of Foxp3 and Helios177. While such characteristics of
CD26 could be capitalized upon therapeutically by inducing
CD26high Th17 cells while concomitantly ablating CD26low Tregs,
the possibility of Th17-induced autoimmunity dictates caution for
the safe translation of this putative exciting, and perhaps more
effective therapy.

Checkpoint blockade
Monoclonal antibodies that inhibit suppressive regulatory recep-
tors (checkpoints) on T cells regress various tumors in patients
including melanoma, bladder, breast, renal cell, ovarian, lung, and
colorectal cancers187. The role of Th17 cells or other IL-17-
producing immune cells has not been fully described in the
mechanism for checkpoint blockade therapy, yet immune-related
adverse events (irAEs) are frequent toxicities reported with this
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therapy. Anti-PD-1 therapy has been associated with exacerbated
degrees of colitis, pneumonitis, endocrinopathy, lichenoid reac-
tions, eczema, vitiligo, psoriasis, and pemphigoid in patients188–199.
Anti-CTLA-4 therapy with ipilumimab has been reported to induce
even more toxic side effects than anti-PD-1 therapy, including
colitis, arthritis, dermatitis, hepatitis, and endocrinopathies, with
less frequent incidence of uveitis, myopathy, and nephritis199–201.
Combination therapy with CTLA-4 and PD-1 blockade (ipilimumab
and nivolumab, respectively) can result in tumor regression with
concurrent autoimmune toxicities related to a secondary immune
response and epitope spreading202. PD-1 blockade with nivolumab
as a monotherapy in advanced melanoma has been shown to be
nearly as effective as combination therapy with ipilumumab; both
therapies show significantly increased overall survival compared to
ipilumumab alone203,204. Since the combination therapy induces a
higher frequency of adverse events, treatment benefits should be
weighed against risk of toxicity205.
For many patients, these toxicities are not without benefit.

Fortunately, irAEs are often self-limiting or can be managed with
high dose corticosteroids or hormone replacement, and
especially with ipilumimab, may correlate with antitumor
response200,201. Toxicities with ipilumimab have been associated
with a greater likelihood of objective response in melanoma.
Importantly, it should be noted that use of corticosteroids
to treat irAEs has not significantly affected antitumor
response206–210. Thus, it is important to understand the under-
lying reason why irAEs may be associated with better treatment
outcome in cancer patients. These adverse events have
prompted the search for immune system biomarkers predictive
of therapy success. Interestingly, higher baseline IL-17 before
treatment with ipilumimab has been associated with more
advanced grade III irAEs211. Higher pretreatment serum levels of
Th17 lineage related cytokines TGF-β and IL-6 have been
associated with lack of melanoma progression and regression
free survival with ipilumimab and interferon-α2b treatments,
respectively211,212. Thus, autoimmune toxicities have been
correlated with IL-17 levels, while antitumor responses have
been associated with autoimmune toxicity. Mounting evidence
from these various findings warrants future investigations that
precisely uncover the role of Th17 cells in modulating these
toxic and antitumor events.
Two recent reports suggest that Th17 cells and IL-17 may play an

important role in both the efficacy and toxicity of checkpoint blockade
therapy in cancer patients. This concept was demonstrated in a 50-
year-old male with a history of mild psoriasis and Crohn’s disease who
received PD-1 blockade (pembrolizumab) for metastatic colon cancer.
The first two rounds of this therapy resulted in a remarkable 50%
reduction in CEA213. Interestingly, after the third cycle of pembrolizu-
mab, the patient displayed a severe psoriatic rash that covered 75% of
his body alongwith increased abdominal pain and stool frequency. To
resolve the skin manifestations, the patient was treated with
secukinumab, an FDA-approved IL-17A blockade indicated for
treatment of psoriasis. Although IL-17 blockade improved the
symptoms of psoriasis and gastrointestinal pain, the anti-tumor
activity was reduced as serum CEA returned to pretreatment levels213.
Similarly, in a recent analysis of melanoma patients receiving PD-1
therapy, the frequency of IL-17-producing T helper cells was increased
in responders to therapy versus non-responders, though monocytes
were most predictive of response to therapy214. Given that several
preclinical studies have suggested that Th17 cells and IL-17 may
enhance or support tumor immunity, these clinical reports underscore
the importance of studying the antitumor qualities of these effector
Th17 cells in treating human patients.
The ultimate goal of the immunotherapy field is to uncouple

toxicity from durable antitumor immunity. In the future, it is
possible that the Th17/Treg axis could be effectively manipulated
to augment tumor immunity while suppressing adverse immune
side effects to healthy tissue. For example, it is possible that low

dose IL-2 therapy following adoptive transfer of Th17 cells could
mitigate prolonged autoimmunity once tumors have been cleared
by elevating self-antigen-specific Tregs while still supporting
antitumor Th17 and CD8+ T cells. Additionally, depletion of Tregs
along with inhibition of the adenosine A2aR pathway could
empower infiltrating effector immune cells to overcome the
immunosuppressive tumor microenvironment. The potential in
this field to treat and cure patients could be further enhanced
through careful manipulation of both sides of this Th17/Treg
balance.

CONCLUSIONS
The balance between Th17 and Treg T cells is critical for
maintaining homeostasis. A Th17 dominance or dysfunctional
Treg surveillance is associated with autoimmune disorders such as
MS, psoriasis, RA, IBD, or SLE. Th17 cells and related cytokines can
promote either tumorigenesis or tumor suppression, although this
role is poorly understood. Future work in the field of immu-
notherapy in terms of adoptive transfer, vaccines and checkpoint
blockade may provide new insights into the power of Th17 cells in
regressing tumors, further enhancing our ability to harness the
immune system against cancer. Future clinical trials may also use
Tregs to quench immune responses to self-tissue without
disturbing antitumor Th17 or CD8+ T cell responses in order to
maximize efficacy and minimize toxicity in caring for cancer
patients. Indeed, these are exciting times in the field of cancer
immunotherapy and mounting evidence is converging on the
potential to exploit the Th17/Treg axis to profoundly impact the
life of patients with cancer and autoimmunity.
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