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Abstract RNA editing describes targeted sequence

alterations in RNAs so that the transcript sequences differ

from their DNA template. Since the original discovery of

RNA editing in trypanosomes nearly 25 years ago more

than a dozen such processes of nucleotide insertions,

deletions, and exchanges have been identified in evolu-

tionarily widely separated groups of the living world

including plants, animals, fungi, protists, bacteria, and

viruses. In many cases gene expression in mitochondria is

affected, but RNA editing also takes place in chloroplasts

and in nucleocytosolic genetic environments. While some

RNA editing systems largely seem to repair defect genes

(cryptogenes), others have obvious functions in modulating

gene activities. The present review aims for an overview on

the current states of research in the different systems of

RNA editing by following a historic timeline along the

respective original discoveries.

Keywords RNA maturation � Base deamination �
Editosomes � PPR proteins � Cryptogenes � Pan-editing

Introduction

The genetic language of life has become common knowl-

edge more than 50 years after the discovery of the now

famous DNA double helix structure. The four nucleotide

letters of the DNA alphabet—adenosine (A), cytidine (C),

guanosine (G), and thymidine (T)—are familiar to every

high school student. Most students will also remember that

these four chemically stable deoxyribonucleotides of DNA

chains are transcribed into copies of corresponding ribo-

nucleotide chains of RNA with the important exception of

thymidine, which is replaced by uridine (U) in living cells.

Many RNA copies are made for the purpose of protein

biosynthesis in which nucleotide triplets, read as codons,

are translated into the 20-amino-acid alphabet of proteins

that make up the larger part of a cell’s functionality. This

process of translation, protein biosynthesis, takes place at

the cells’ ribosomes, which are themselves to a large part

made up of one dominating type of RNA in the cell, the

ribosomal RNAs (rRNAs). Ribosomes use transfer RNAs

(tRNAs) carrying amino acids by pairing their anti-codons

to the codon triplets in messenger RNA (mRNA) encoding

proteins. This is the simple version to understand life and,

by and large, understanding the functions of rRNAs,

mRNAs, and tRNAs to this day is a very good approxi-

mation for protein biosynthesis in the bacterial world of

prokaryotes.

When living cells become more complicated and

sophisticated and, as eukaryotes, develop a membrane-

bound nucleus to store their DNA, things become more

complicated. The concept of a strict 1:1 parallel co-line-

arity of a gene’s DNA sequence and its RNA copy received

a first major blow when introns were discovered in the late

1970s. For an RNA to become functional, these noncoding

intron stretches have to be properly spliced out and flank-

ing exons have to be joined; only the matured RNA can be

used for translation. Introns continue to complicate the

prediction of gene products when new genome data are

produced and alternative splicing adds another layer of

complexity.

Another major blow to the predictive power of DNA

sequences came with the discovery of RNA editing—you
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can’t always confidently trust gene sequences. The term

RNA editing was introduced by Rob Benne and colleagues

in Amsterdam in 1986 when they reported that four uridine

nucleotides were inserted into specific sites of the mito-

chondrial cox2 mRNAs (encoding cytochrome oxidase

subunit 2) of trypanosome species to reconstitute the

reading frame [1]. This major discovery in molecular

biology turned out to be the proverbial tip of an iceberg.

RNA sequence alterations due to different types of RNA

editing were subsequently identified in organisms separated

over wide phylogenetic distances. A timeline for these

discoveries is given in Table 1.

Difficulties of terminology: where to draw the line

for RNA editing

RNAs are subject to several further biochemical alterations

in the cell. The terms ‘‘maturation,’’ ‘‘processing,’’

‘‘modification,’’ and ‘‘editing’’ describe these phenomena

(Fig. 1). Similarly used in everyday language, the terms

are frequently also used interchangeably in the scientific

literature—most notably, RNA processing in a wider sense

is used instead of RNA maturation as an umbrella term for

the different biochemical processes with overlapping

functionality. In a narrower sense, RNA processing may be

restricted to describe those processes of RNA maturation

that invoke deletion (and occasionally also ligation) of

longer RNA sequence stretches. The term modification in

contrast is best reserved for biochemical alterations

introducing nonstandard nucleotides into RNAs, extending

the four-letter standard alphabet of A, C, G, and U. The

typical examples are dihydrouridine and pseudouridine in

tRNAs. Novel forms of such unique chemical modifica-

tions continue to be identified: a recently analyzed

base-modified cytidine in the first anticodon position of a

tRNA for isoleucine in archaea has been christened

agmatidine [2].

RNA editing in contrast describes sequence changes

introduced through selective nucleotide insertions, dele-

tions, and substitutions, which could alternatively be

directly encoded by the four standard nucleotides in the

gene. The term RNA editing was initially introduced to

label the uridine insertion type of RNA editing discovered

in trypanosomes but has subsequently been used to

describe all sequence modifications affecting the four

nucleotides of the standard RNA alphabet. Semantic

overlaps with processing and modification exist, however.

The polyadenylation of eukaryotic mRNAs, generally

considered as a processing event (Fig. 1), normally does

not interfere with genetic information but is involved in

termination of transcription, terminal intron splicing, and

nuclear mRNA export, and confers transcript stability. In

animal mitochondria, polyadenylation of 30 truncated

transcripts may alternatively serve to introduce stop codons

only by adding adenosines to their end. As another exam-

ple, the deamination of the adenine base in adenosine

nucleotides results in the nonstandard hypoxanthine base of

inosine nucleotides and is technically a modification. Given

that inosine, however, is subsequently read like guanosine

in the cell, this process is considered a phenomenon of

RNA editing, as I will discuss below.

1986: The kinetoplastid case—adding and deleting

uridines in mitochondrial transcripts

Trypanosomes belong to the kinetoplastid protozoa

(Excavata, Euglenozoa). Wide interest in this protist group

comes from the fact that many are pathogenic parasites.

Most widely known are the human pathogens Trypano-

soma brucei, the causative agent of sleeping sickness,

T. cruzi, causing Chagas disease, Leishmania spp., causing

leishmaniasis, and Crithidia spp., parasites of arthropods.

The kinetoplast is a defining cell biological feature of this

protist clade—a disk-shaped assembly of concatenated

mitochondrial DNA rings, the so-called maxicircles and

minicircles, in the single mitochondrion at the base of their

flagellum.

As in many of the subsequent cases, the initial discovery

of an RNA editing process came with the observation that

something is wrong with a gene. The mitochondrial cox2

gene in the trypanosomes Crithidia fasciculata and Try-

panosoma brucei showed reading-frame shifts, and it

turned out that these were corrected only at the transcript

level by inserting four uridine residues into the cox2

mRNAs [1]. This discovery opened a Pandora’s box of

genetic complexities to be elucidated over the next nearly

25 years (Table 1). Uridine nucleotides are not only

inserted into pre-mRNAs but also deleted in other instan-

ces. The extent of the RNA editing process in

kinetoplastids can be so immense that more than 90% of

codons within a reading frame are established through

editing. The long elusive cox3 gene of Trypanosoma brucei

is recognizable at the RNA level because editing affects

nearly 60% of the nucleotide positions through insertion of

550 uridines and deletion of 41 others [3]. The terms pan-

editing and cryptogenes were introduced for such excessive

RNA editing of the transcripts of genes that can hardly or

not at all be identified at the DNA level [4, 5]. Not only the

obligate parasitic trypanosomatoid taxa but also those of

the sister group of free-living bodonid taxa perform RNA

editing [6].

A major early step to elucidate the mechanisms of

kinetoplastid RNA editing was the discovery of a new type

of small antisense RNA species, appropriately termed
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guide RNAs (gRNAs), which direct the editing process as

templates [7, 8]. Guide RNAs pair with small segments of

pre-mRNAs, and unpaired A (or G) residues in gRNAs

lacking complementary bases in the pre-mRNA provide

the information for the locations and the numbers of uri-

dines to be inserted at a given site (Fig. 2). Alternatively,

missing complementary bases in the gRNAs direct the

deletions of uridines at other sites. In fact, the discovery of

guide RNAs encoded on the kinetoplast minicircles [9, 10]

finally provided an explanation for the existence of these

smaller DNA circles accompanying the kinetoplast maxi-

circles, which represent the kinetoplastid equivalent of the

mitochondrial genome in other eukaryotes. The successive

pairing of gRNAs progresses from the 30 to the 50 end of

the maturing pre-mRNA. Stretches of non-encoded uri-

dines at the end of gRNAs were initially suspected of

directly providing uridines for insertion into editing sites

[11–13]. However, the oligo-U ends instead turned out to

participate in the editing process by less specific pairing

with the pre-mRNA around the editing site, whereas the

substrate for insertions is free UTPs (uridine triphosphates)

added to the 30OH end of the cleaved pre-mRNA [14]. The

trans-acting guide RNAs provide specificity in the case of

kinetoplastid RNA editing, but alternatives can exist, as

has been shown for cox2 editing, where the 30-UTR

(untranslated region) of the mRNA serves as a guide in cis

[15].

RNA modification
• Chemical alterations  

to the four standard 
nucleotides 

RNA editing 
• Nucleotide conversions 

• Nucleotide insertions 
and deletions 

A-to-I 
conversions  

RNA processing 
• Endo- and exonucleolytic trimming 

(RNA processing sensu stricto) 

• Splicing 

• Polyadenylation 
 Capping 

RNA maturation

Fig. 1 The term ‘‘RNA maturation’’ is used as an umbrella term for

different phenomena of biochemical transformations of RNA tran-

scripts. ‘‘RNA processing’’ is mostly used to describe changes

affecting sequence stretches of variable length through cutting and

rejoining processes such as intron splicing. It is generally also used

for the capping and polyadenylation processes at the 50 and 30 ends,

respectively, of eukaryotic nucleus-encoded mRNAs. The term

‘‘modification’’ in contrast is best reserved for biochemical alterations

resulting in nonstandard nucleotides (mostly identified in tRNAs and

rRNAs) such as pseudouridine, dihydrouridine, methylated nucleo-

tides, and many more. Finally, ‘‘RNA editing’’ comprises all sequence

changes in the four-letter RNA alphabet relative to the gene template

other than splicing and polyadenylation that could in principle be

encoded in the DNA directly. Overlaps in terminology exist, however:

the capping nucleotide is a methylated guanosine added in inverted

orientation, stop codons may emerge only after polyadenylation, and

inosine nucleotides (read as guanosine) result from deamination of

adenosines

Fig. 2 A highly simplified view of the uridine insertion type of RNA

editing in kinetoplastid mitochondria. Small, 30-oligo-uridylated

antisense guide RNAs (gRNAs) pairing with a given pre-mRNA

carry information on location and number of uridines to be inserted.

The (entirely hypothetical) example shown displays a case for

insertion of four uridines into the pre-mRNA that are ultimately

complementary to the initially unpaired adenosines of the gRNA. The

different enzymatic activities for RNA editing are assembled in 20S

editosome multi-protein complexes, which come in at least three

different variants of protein composition, also depending on the

location and mode (U insertion vs. deletion) of editing. The three

major biochemical activities for uridine insertion are an endonuclease

activity cleaving the pre-mRNA at the site of editing, a terminal

uridylyl transferase adding uridylates from UTPs to the free 30OH end

of the upstream part of the pre-mRNA, and a ligase rejoining the

transcript ends after editing. In the case of uridine deletion editing, a

30-uridine-exonuclease of the *20S editosome comes into play that

removes unpaired ‘‘extra’’ uridines from the pre-mRNA, which

remained unpaired in the hybrid with the respective gRNA

570 V. Knoop



Admirable progress to identify the details of the bio-

chemical machinery inherent in RNA editing in

kinetoplastids has been made in several laboratories

worldwide since the first in vitro systems were established

[13, 16–18]. Numerous studies involving the in vitro assay

systems, biochemical purifications, mass spectrometry,

crystallographic studies, and reverse genetics using RNA

interference have elucidated numerous facets of the kine-

toplastid editing process [19–25]. Over the years an ever

clearer picture of a kinetoplastid 20S ‘‘editosome’’ has been

drawn, which has grown from a biochemical concept into a

macromolecular structure described in increasing detail

[26–31]. Among the major biochemical activities involved

in kinetoplast RNA editing are an endonuclease, a terminal

uridylyl transferase (TUTase), and a ligase activity oper-

ating on the mitochondrial pre-mRNAs (Fig. 2). A uridyl-

specific 30–50 exonuclease [32] is important for uridine

deletions, and other additional or accessory biochemical

activities are also present, such as a 30 nucleotidyl phos-

phatase activity [33] or accessory RNA-binding proteins

[34]. More than a dozen core proteins exist in an RNA

editing core complex (RECC, also labeled L for ligase

complex). Three biochemically distinct editosome types

can be distinguished [35] in which, for example, different

types of RNA ligases are used after insertions or deletions

of uridylates have taken place [36, 37].

Observations that trypanosome RNA editing depends on

the developmental stage were made very early [38]. As in

the other editing systems outlined below, the issue of

regulation of gene activity is frequently discussed but often

remains problematic with respect to cause and effect. A

second issue generally associated with RNA editing is the

one of protein diversity created through differential editing.

The potential of creating protein diversity through alter-

native editing in kinetoplastids has recently been

emphasized [39, 40].

1987: The first metazoan case—C-to-U conversion

in mammals

The molecular explanation for two different forms of

apolipoprotein B being produced in the human body from

only one apoB gene—a long version of a 100 kDa protein

in the liver and a carboxy-terminally shortened version of

48 kDa in the intestine—was provided in 1987. A cytidine-

to-uridine substitution in the apoB mRNA converts a CAA

glutamine codon into a UAA stop codon in a tissue-spe-

cific manner [41–43]. Biochemically, this type of RNA

editing is much simpler than the kinetoplastid type of

editing, given that the RNA polynucleotide backbone can

remain intact and base conversion from cytidine to uridine

can simply be achieved through a deamination reaction.

Similar to the kinetoplastid editing system, in vitro assays

played a major role for clarifying the biochemical mech-

anisms [44]. Given that apoB mRNA editing also occurs in

many well established mammalian model organisms such

as rats and mice [45], the enzymatic machinery was

quickly elucidated by the mid 1990s. It turned out that a

zinc-dependent cytidine deaminase named APOBEC-1 for

apoB editing catalytic subunit 1 played the central role

[see 46]. In contrast to the many different trans-acting

guide RNAs necessary to supply information on the

numerous editing sites in kinetoplastids, the sequence

specificity for apoB editing is supplied by the 11 nt.

mooring sequence (UGAUCAGUAUA) in the vicinity of

the edited site that is recognized by the editing machinery.

The RNA-binding ‘‘APOBEC-1 complementing factor’’

ACF plays the major role in editing site recognition and

together with APOBEC-1 forms the core editosome for

apoB editing.

In contrast to the kinetoplastid type of RNA editing

discussed above or the one operating in plant organelles to

be discussed below, the discovery of apoB editing in

mammals was not a finding with many more of its type to

be subsequently discovered in the nuclear genetic system

of mammals or other metazoa. Only a few additional RNA

targets for C-to-U editing have been identified in mammals.

An interesting case for functional modulation similar to the

apoB case is a proline-to-leucine codon change in a glycine

receptor modifying its properties as a chloride ion channel

[47, 48]. Other previously identified examples of this type

of editing are somewhat less clear and include an additional

downstream site in the apoB mRNA itself, changing an

ACA threonine codon into an AUA isoleucine codon at

low efficiency [49]. The NAT1 (novel APOBEC target)

mRNA [50] and the neurofibromatosis NF1 mRNA [51]

are edited as well. The precise roles of RNA editing in

these targets and potential correlations with pathological

phenotypes remain somewhat unclear [52]. Similarly, a

direct involvement of APOBEC-1 activity with tumor

formation could not be identified in many different carci-

noma samples [53].

The APOBEC-1 protein is one member of the small,

vertebrate-specific gene family of APOBEC-related/AID

(activation-induced deaminase), zinc-dependent cytidine

deaminases [54–56]. Interestingly, at least some of the

members (also) act on single-stranded DNA and perform

dC-to-dU ‘‘DNA editing’’ of the corresponding deoxynu-

cleotides [57]. The crystal structure of APOBEC-2, which

is differentially expressed in muscle tissue and necessary

for normal muscle development, has been determined [58],

but its precise mode of action is unclear at present [59].

The APOBEC-3 subfamily in its diversity (members A

through G) is unique to primates and its members appear to

have antiviral activity, notably also the ability to suppress
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retrovirus replication and retrotransposon mobility, e.g., by

editing of the DNA provirus [60–63].

1988: The viral cases—stuttering polymerases adding

purine nucleotides in paramyxovirus mRNAs

The introduction of additional nonencoded guanosine

nucleotides in P (phosphoprotein) transcripts of para-

myxoviruses was initially demonstrated in 1988 for the

simian virus SV5 [64] and subsequently in 1989 for the

measles virus [65] and in 1990 for the Sendai virus [66].

Either one (e.g., Sendai, measles) or two guanosine

nucleotides (e.g., SV5, mumps) were found inserted in the

respective viral mRNAs. The degree of editing determines

the expression ratio of protein P versus the alternative

reading frame expressing protein V. Soon after the dis-

covery, the mechanism for this co-transcriptional RNA

editing phenomenon was characterized as a stuttering of

the viral RNA-dependent RNA polymerase on extended

oligocytidine sequence stretches in the template [67].

Paramyxoviruses belong to the group of nonsegmented

negative strand RNA viruses (=NNV or order Mono-

negvirales). Interestingly, NNV generally polyadenylate

their mRNAs by stuttering on a stretch of oligouridine

sequences in the template RNA. The occurrence of G

insertion RNA editing in the paramyxovirus subgroup,

however, is enigmatically restricted to ‘‘polyhexameric’’

(6n ? 0) virus genome sizes, i.e., those that are a multiple

of six nucleotides [68]. A closely related viral editing

process was identified in the Ebola virus, in which a single

adenosine nucleotide is added to a run of seven adenosines

in the mRNAs encoding the Ebola virus glycoprotein in

the middle of its coding region [69]. RNA editing is the

prerequisite for translation into the full length structural

glycoprotein but takes place in only some 20% of tran-

scripts whereas an excreted soluble version is produced

from the unedited mRNA due to premature stop. It is

tempting to speculate that shifts in the degree of RNA

editing are related to virus infection cycles. An artificial

Ebola virus mutant constitutively expressing only the full-

length version of the structural glycoprotein reveals

increased cytotoxicity [70]. Studies on a set of different

measles virus strains, however, could not point out a

relation between the degree of editing and consequently

the variable protein P/V expression ratios and the viral

infection cycles [71]. Whereas the stuttering type of virus

RNA editing is clearly inherent in the viral RNA-depen-

dent RNA polymerase and primary sequence features,

other types of viral RNA editing, e.g., of hepatitis delta

virus (HDV) or human immunodeficiency virus (HIV)

RNA, rely on host-encoded ADAR-type adenosine de-

aminases targeting RNA secondary structures (see below).

1989–1991: The plant organelle cases—exchanging

hundreds of pyrimidines in mitochondria

and chloroplasts

Discovery of RNA editing in plants came in 1989 with

research groups from Canada, France, and Germany

reporting on C-to-U exchanges in mitochondrial mRNAs of

wheat (Triticum aestivum) and the evening primrose

Oenothera berteriana [72–74]. The pyrimidine exchanges

in the majority of cases affect first and second codon posi-

tion and change codon meaning (e.g., proline to leucine or

serine, serine to leucine, arginine to tryptophan) to recon-

stitute evolutionarily conserved amino acid positions. With

the investigations of larger cDNA samples, it soon became

obvious that some sites were only partially edited in mRNA

populations [75, 76]. Frequently these were ‘‘silent’’

exchanges affecting third codon positions, i.e., unnecessary

synonymous editing events leaving codon meaning

unchanged. Apparent similarities of editing site environ-

ments that could suggest common mechanisms were

reported occasionally [e.g., 77], but these similarities were

weak and encompassed only a few sites. In contrast to the

kinetoplastid RNA editing system, no directionality of

editing could be observed in plants, suggesting that RNA

editing sites are recognized and converted independently.

Very similar to the kinetoplastid case, however, RNA edit-

ing largely seemed to serve the purpose of repairing gene

functions. This is also apparent given that plant RNA editing

occasionally also affects tRNAs and intron sequences.

From a phylogenetic perspective (Fig. 3), it was

immediately suggestive that plant RNA editing would

affect at least the majority of flowering plants

 Angiosperms

 Gymnosperms
Seed plants

 Ferns

 Lycophytes

Vascular plants

 Hornworts

 Mosses

 Haplomitriopsida

 Marchantiopsida

 Jungermanniopsida

Liverworts

 Charophyte algae

Fig. 3 Modern insights on plant phylogeny place liverworts as the

sister clade to all other land plants (embryophytes) and hornworts as

the sister group to vascular plants. A most parsimonious explanation

for the evolution of the C-to-U type of plant organelle RNA editing

postulates a single gain in the ancestor of all embryophytes (filled
circle) and a secondary loss in the marchantiid liverworts (open
circle). The reverse type of U-to-C editing arises in the common

ancestor of hornworts and tracheophytes (upward triangle) and is

strongly decreased in frequency in the seed plant lineage (downward
triangle)
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(angiosperms) given the deep phylogenetic split between

the monocot wheat and the dicot Oenothera. It finally

turned out that RNA editing not only operates in flowering

plants but also in representatives of all other land plant

(embryophyte) clades, i.e., gymnosperms, ferns and fern

allies, mosses, hornworts, and (some) liverworts [78–82].

RNA editing has to date not been identified in green algae

including taxa closely related to land plants and is also

suspiciously absent from the complex thalloid liverworts,

the Marchantiopsida [82]. Ironically, the mitochondrial

genome of Marchantia polymorpha was the first plant

mtDNA to be completely determined [83] soon after the

discovery of plant mitochondrial RNA editing and

remained the only one for 5 more years before the complete

mtDNA sequence of Arabidopsis thaliana became avail-

able [84]. The apparent exclusive absence of editing in the

liverwort subclade of marchantiid taxa remained puzzling

and suggested either two independent gains or alternatively

a secondary loss after a unique primary gain of RNA

editing with the emergence of land plants. The second

alternative turned out to be correct after unequivocally

finding the unique clade of haplomitriid liverworts as sister

clade to all other liverworts (including the ‘‘nonediting’’

marchantiids and ‘‘editing’’ jungermanniids) and the

observation of highly frequent C-to-U editing in Haplo-

mitrium [85]. Similarly, another aspect in the molecular

evolution of plant RNA editing can now be plotted rather

confidently onto the phylogeny of land plants. Whereas

‘‘reverse’’ uridine-to-cytidine editing is only very rarely

observed in seed plants [77, 86] and not in mosses and

liverworts, reverse U-to-C editing is strongly increased in

frequency in hornworts, ferns, and fern allies [82, 87–89].

Given that hornworts are now reasonably well supported as

sister clade to the vascular plants [90, 91], this suggests a

gain/increase of reverse editing in the common ancestor of

hornworts and tracheophytes and a subsequent decrease in

the ancestor of spermatophytes (Fig. 3).

Reports on the same type of pyrimidine exchange RNA

editing also operating in the other endosymbiotic organelle

in the plant cells, the chloroplasts, followed shortly after

the discovery in mitochondria [92]. The features of RNA

editing in chloroplasts seemed largely identical to the ones

in mitochondria, i.e., mainly serving to correct genetic

information at the RNA level. Similarly, the phylogenetic

distribution of RNA editing appears to be the same across

500 million years of land plant evolution with chloroplast

editing being identified in all groups except the marchantiid

liverworts [93]. The one major difference is that only some

20–50 RNA editing sites are identified in angiosperm

chloroplast transcriptomes [94–99], whereas an order of

magnitude more, i.e., around 400 RNA editing sites, are

found in the mitochondrial transcriptomes [100–104].

However, this rule of thumb for angiosperms cannot be

generalized for all land plants: some taxa showing high

amounts of mitochondrial editing such as the hornworts

and ferns may show similarly high amounts with hundreds

of instances of editing in their chloroplasts, too [105, 106].

The need for RNA editing to correct codon identities

may affect some 1,000 sites in taxa such as the gymno-

sperm Cycas taitungensis, a ‘‘fern palm’’ [107, 108], and

more than 1,500 sites in a quillwort, the lycophyte Isoetes

engelmannii [88]. The task of analyzing and cataloguing

vast numbers of editing sites identified in plant organelles

called attention to the need for a unifying nomenclature to

designate RNA editing sites as recently proposed [108,

109]. Ongoing transcriptome analyses actually suggest that

lycophytes hold the record for the amount of RNA editing,

exceeding 2,000 sites in a mitochondrial transcriptome (J.

Hecht, F. Grewe, S. Herres, and V. Knoop, unpublished

observation). On the other end of the spectrum (and not

considering the complete absence in marchantiid liver-

worts), the model moss Physcomitrella patens shows only

11 sites of RNA editing in its mitochondrial [109] and 2

sites in its chloroplast [110] transcriptome.

Discovery of pyrimidine exchange RNA editing not

only taking place in plant mitochondria but also in chlo-

roplasts had a major impact on subsequent research given

the amenability of the plastid genome for genetic trans-

formation and the phenotypes of plastome mutations

affecting photosynthesis [111, 112]. Early experiments

using transplastomic engineered tobacco lines confirmed

that editing is essential for protein functionality [113], as

had previously been shown for a mitochondrial protein

expressed in the nucleus and targeted to mitochondria

[114]. Further experimentation using chloroplast DNA

manipulation has shown that RNA editing site recognition

mainly relies on recognition sequences located 50 of the

editing sites extending for some 20 or more nucleotides

whereas sequences 30 of the editing site play a minor role,

although this may differ depending on the sites in question

[115–120]. By and large, the data from transplastomic

studies correspond excellently to the findings for mito-

chondrial editing based on circumstantial evidence [121],

experimentation with mitochondrial in organello electro-

poration [122, 123], and in vitro systems [124–130] that

have been established in the meantime.

Given the parallel progress in the kinetoplastid RNA

editing field, a search for gRNAs in plant organelles was

started in some labs but this was to no avail. The break-

through report on identification of a trans-acting factor

targeting a specific editing event came with the identifi-

cation of a so-called PPR protein labeled CRR4, which is

responsible for an editing event introducing the start codon

of ndhD in Arabidopsis thaliana chloroplasts [131]. The

RNA-binding PPR (pentatricopeptide repeat) proteins are

encoded by vastly extended gene families exceeding 400
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members in flowering plants, the majority of which are

targeted to the organelles [132, 133]. Moreover, plants

exclusively also encode specific PPR proteins labelled PLS

type, not present in other eukaryotes, which are charac-

terized by large (L) and small (S) variants of the 35 amino

acid PPR (P) motif [134–136]. Yet more importantly, PLS

proteins may carry carboxyterminal domain extensions

named the E, E?, and DYW domains (Fig. 4). The DYW

domain in particular (so labelled due to the highly con-

served terminal aspartate-tyrosine-tryptophan tripeptide at

the protein end) has been suggested to play a particularly

important role in RNA editing given its weak similarity to

cytidine deaminases and, equally importantly, due to its

exclusive presence in plant taxa that show RNA editing

versus its absence in those where editing appears to be

absent [137, 138]. Moreover, there is evidence for a cor-

relation in the number of organellar editing sites and the

diversity of the DYW subfamily of PPR proteins in a given

taxon [109, 135, 138]. Indeed, several DYW-type PPR

proteins were subsequently identified to be specifically

responsible for RNA editing events both in chloroplasts

and in mitochondria [139–150]. On the other hand, some

others, including the initially discovered CRR4, are PLS

proteins lacking the DYW-domain extension and ending

with the E or E? domain only [131, 151–154]. These cases

certainly shed doubt on the idea of the DYW domain

directly providing de- (or trans-)amination functionality.

Further functional studies have similarly provided an as-

yet-inconclusive picture. In one case, a DYW domain has

been shown to have endonucleolytic rather that cytidine

deamination activity [155], but in this study His6 tags had

been added to the highly conserved DYW protein ends,

which may have interfered with its proper function. In

another study, DYW domains were shown to be dispens-

able for editing [146]. However, it is noteworthy that the

genome of the moss Physcomitrella patens showing RNA

editing (albeit at low amounts) encodes only DYW-type

but no E or E? type PPR proteins [109, 135, 156].

Several of the identified editing factors target multiple

editing sites. The recently described mitochondrial editing

factor 11 (MEF11) mutant is an example where a single

amino acid exchange (L48F) in the second of its 14 PPR

motifs abolishes editing at sites cox3eU422PL,

nad4eU124LL, and ccb203eU344PL [for nomenclature see

108, 149]. Interestingly, a second mutant allele of the

protein in which the terminal 25 amino acids are replaced

by 11 amino acids of a T-DNA insertion has a slightly

different molecular phenotype as this alteration abolished

editing of the former two sites but showed 60% residual

activity at ccb203eU344PL [157]. One possible model

accounting for the observations made thus far is that more

than one PPR protein may act simultaneously on certain

RNA editing sites (Fig. 4), which may also explain the

divergent and extended sequence requirements for recog-

nition of some editing sites. There is evidence that PPR

proteins bind to RNA on a one-repeat-per-nucleotide basis,

but the code for recognition is not yet identified [158, 159].

It is interesting to note that such a sequence recognition

code has recently been deciphered for a very similar case

of a protein repeat motif and nucleic acid binding. The

phytopathogenic bacterial transcription activation-like

(TAL)-III effectors active in plant cells carry highly con-

served tandem 34 amino acid motif repeats and a variable

dipeptide motif within each of these individually recog-

nizes DNA base pairs [160, 161].

Some publications in recent years have occasionally

pointed to potentially regulatory roles of RNA editing in

plant organelles [e.g., 162,163] or have reported on a

variation of RNA editing in response to environmental

changes [e.g., 164]. As with the case of the lavish kineto-

plastid editing, the question of cause and effect arises and

the aspect of correcting genetic information appears over-

whelming in any case.

1991: The myxomycete case—many types of RNA

editing coexisting in mitochondria

RNA editing in the plasmodial slime mould (myxomy-

cete) Physarum polycephalum was originally discovered

in the form of numerous cytidines inserted into the

mitochondrial atp1 pre-mRNA encoding subunit 1 of the

ATPase [165]. Not only mRNAs but also rRNAs [166]

and tRNAs [167, 168] were subsequently identified as

substrates for RNA editing. Like kinetoplastid mitochon-

dria and plant organelles, myxomycete mitochondria

proved to be similarly vast in the extent of RNA editing

in the transcriptome. Yet more impressive, there appear to

PLSPLSS--SPLSPLS E(+) 

E(+) DYWSSPL-PLS-PLSPLS 

X?

Fig. 4 Several plant-specific pentatricopeptide repeat (PPR) proteins

of the PLS subgroup with variable repeat motif lengths including

short (S) and long (L) variants of the classic 35-amino-acid-long PPR

motif (P) and carboxy-terminal protein domain extensions E, E?, and

DYW have been shown to be involved in plant organelle RNA editing

(bottom). The DYW domain has been proposed to carry the editing

(cytidine deaminase) activity, but some PLS proteins without the

DYW domain (top) have also been identified as RNA editing site

recognition factors. The PPR motifs are assumed to recognize RNA

primary sequences, presumably on a one-PPR-repeat-per-nucleotide

basis, although the exact binding code is currently unclear. Perhaps

more than one PLS protein and/or additional, currently uncharacter-

ized, factors (‘‘X?’’) are involved to provide sequence specificity and/

or enzymatic activities
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be four different and independent types of RNA editing

co-existing in myxomycetes [169, 170]. A single mRNA

such as the one encoding cox1 is affected by numerous C

insertions (59) similar to the originally discovered atp1

editing, but additionally also by one U insertion, three

mixed dinucleotide insertions, and four C-to-U conver-

sions [171]. Additionally a single A insertion has recently

been identified in the related myxomycete Didymium ir-

idis [172]. The different processes can be separated not

only phylogenetically according to their occurrence in

different myxomycete taxa but also functionally [173,

174]. Most interestingly, guide RNA-like molecules

responsible for the kinetoplastid type of insertional editing

seem to be absent, and in vitro studies clearly show that

the insertional type of editing occurs cotranscriptionally

[173, 175–177]. This makes the myxomycete insertional

type of editing the only non-viral cotranscriptional RNA

editing process hitherto identified, but interestingly not

relying on RNA polymerase stuttering on runs of identical

nucleotides. The mitochondrial RNA polymerase has been

cloned and shown to indeed add nonencoded nucleotides

to the 30 end of nascent RNAs [178, 179]. Investigating

the mechanisms that guide and control the cotranscrip-

tional insertions of nucleotides has revealed that

approximately 9 bp flanking the insertion sides on both

sides of the DNA template play important roles [180–

184]. How many further biochemically distinct and

independent activities of RNA editing (e.g., of a deami-

nation type for the C-to-U conversions) actually exist in

myxomycetes is currently an open question addressed

with different in vitro systems [185]. From a phylogenetic

perspective, it is interesting to see that a dynamic evo-

lution of editing sites among myxomycetes points to a

gain in editing activity with the diversification of this

clade. Exactly the opposite is true for editing among the

kinetoplastids where editing is more pronounced in

ancient lineages [169, 170, 186].

1991: The second metazoan case—A-to-I editing

The discovery of A-to-I editing in mRNAs of nuclear

genes in metazoa was first documented with the descrip-

tion of apparent CAG (glutamine) to CGG (arginine)

codon changes in glutamate receptors (i.e., glutamate-

gated ion channels) of mice [187]. Subsequently, it was

found that the adenosines are in fact not exchanged for

guanosines in the mature RNAs. Instead, a simple deami-

nation of the adenine base to hypoxanthine results in the

corresponding (nonstandard) inosine (I) nucleotide, which

is read as G upon translation. In fact, the process of

adenosine-to-inosine conversion had actually been dis-

covered before as an activity of unwinding RNA duplexes,

and the A-to-I base change had at that time been referred

to as a modification rather than editing [188]. The recog-

nition of sites for A-to-I RNA editing relies on

intramolecular base pairing in RNA secondary structures

of the respective target transcripts. The biochemical reac-

tion of A-to-I conversion is carried out by the so-called

ADAR enzymes, the ‘‘adenosine deaminases acting on

RNA’’ present in all metazoa. Possibly, the ADAR

enzymes have evolved from the ADATs, the ‘‘adenosine

deaminases acting on tRNA’’ [189], which will be dis-

cussed below. Whereas a single ADAR gene is encoded in

the fruit fly Drosophila melanogaster, three different

ADARs are present in mammalian genomes [190]. The

different ADARs of mammals obviously have different

RNA targets and a knockout of a single ADAR is

incompatible with life in the mouse model [191].

Somewhat in contrast to the C-to-U RNA editing of the

apoB type, A-to-I editing was found to take place in

numerous transcripts in the nucleocytosolic genetic sys-

tems of animals, in fact possibly affecting literally

thousands of sites in transcriptomes [192–195]. A-to-I

editing also appears to have a wider phylogenetic distri-

bution in the animal kingdom, and this opened up a yet

wider array of experimentally amenable model organisms

in which to investigate this RNA editing system, e.g.,

Drosophila [196]. The initial discovery of glutamate

channel A-to-I editing was seminal for many more editing

events identified subsequently, which similarly affect

mRNAs encoding neurologically important membrane

channels and receptors. Hence, the investigation of A-to-I

editing has in fact become an important component of

neurobiological studies on nervous functions and psycho-

logical disorders [197–202]. Strikingly, some of these

editing sites are conserved across very wide phylogenetic

distances, e.g., ranging from insect to squid in the case of a

potassium channel [203]. Among the notable other targets

of the ADAR-based A-to-I editing machinery are the

transcripts of the primate-specific Alu repeats [204] and

genes of the immune system [205], as well as viral RNAs,

e.g., of HDV or HIV [206, 207]. Even micro RNAs

(miRNAs) may be edited, hence suggesting a ‘‘crosstalk

between editors and silencers’’ for gene regulation via the

RNA interference machinery [208]. Hence, the A-to-I type

of RNA editing affecting a wide spectrum of RNAs in

metazoa is not only the one showing the most obvious

signs of massive regulatory influence on gene activities but

at the same time also the one with the most immediate

impact on human life and health. As a very interesting

addendum in the light of the multifarious roles of RNA

editing in modulation of neuronal channel activities, it was

recently shown that adenosine-to-inosine editing is

strongly increased in humans versus nonhuman primates

[209].

Systems of RNA editing 575



1993: The case of mitochondrial 50 tRNA editing—

Acanthamoeba and chytridiomycete fungi

Acanthamoeba castellanii is an amoeboid protozoon. The

initial discovery of RNA editing in this protist reported

U-to-A, U-to-G, and A-to-G exchanges in one or more of

the first three nucleotides in the 50 half of the acceptor

stems of mitochondrial tRNAs (Fig. 5), all of which

restored canonical base pairings [210]. It was shown that

13 out of a total of 16 tRNAs encoded in the complete

mtDNA of Acanthamoeba castellanii require a total of 23

RNA editing events of this type to reconstitute proper base

pairing in tRNAs [211, 212]. As expected, these nucleotide

exchanges cannot be accomplished by simple biochemical

transformation of the bases but require nucleotide

replacement and indeed such a novel biochemical activity

for nucleotide incorporation (operating 30–50 instead of the

canonical 50–30 direction) could be identified [213]. Very

similar to the Acanthamoeba case, RNA editing of this type

was also identified in mitochondrial tRNAs of the chy-

tridiomycete fungus Spizellomyces punctatus [214].

Congruently, the editing events were identified among the

first three nucleotides of the 50 half of the mitochondrial

tRNA acceptor stems. Chytridiomycetes represent the most

ancient lineages of the fungal kingdom predating the split

of the evolutionary younger clades ascomycetes, basidio-

mycetes, and zygomycetes. Subsequently, the 50-acceptor

stem type of tRNA editing was also discovered in Hyalo-

raphidium curvatum [215], a previously enigmatic taxon

believed to be a colorless alga but now clearly placed

among the chytridiomycetes [216]. The biochemical

activities of tRNA editing in Spizellomyces punctatus have

recently been characterized using an in vitro system and

proved to be remarkably similar to the Acanthamoeba

system [217]. The phylogenetic distribution of the acceptor

stem 50 nucleotide exchange type of tRNA editing may

suggest this to be an ancient mechanism, possibly to be

identified in many more protist and basal multicellular

eukaryote lineages although independent origins of the

tRNA editing activity can equally well be considered [218].

1993: The marsupial case—editing the anticodon

in a mitochondrial tRNA

When the mtDNA sequence of several marsupials (Meta-

theria) was analyzed, it became clear that the apparent

mitochondrial trnD gene encoding the tRNA for aspartate

carried a GCC, instead of the expected GUC anticodon,

which would decode GGY glycine instead of GAY aspar-

tate codons. Sequencing the corresponding cDNAs revealed

that about 50% of the tRNAs carry the appropriate GUC

anticodon sequence, obviously introduced by a C-to-U

editing event [219]. Interestingly, the unedited version of

tRNA-Asp was proven to be charged with glycine to read, as

may be expected, GGY glycine codons [220]. Hence, one

mitochondrial tRNA gene serves to produce two differently

aminoacylated tRNA species. Strikingly, a second trnG

Fig. 5 In the different domains of life, several different types of RNA

editing act on tRNA molecules, here shown in the general tRNA

consensus structure featuring the acceptor stem (top), the dihydro-

uridine (D) arm (left), the anticodon arm (bottom), the pseudouridine

(W) arm (right), and the size-variable arm between the latter two.

Pseudouridine and dihydrouridine are only two examples of the more

than 100 different types of nucleotide modifications, besides frequent

base methylations, described for tRNAs (and rRNAs); many of these

also occur in the tRNA acceptor stems [264]. The deamination type of

C-to-U and A-to-I nucleotide conversions obscures the boundary in

the definition of modification versus editing. Anticodon positions in

the tRNA consensus are 34, 35, and 36; the 30 terminal (discriminator)

nucleotide is number 73 to which the CCA (italics) end for

subsequent aminoacylation is normally added after tRNA 30-process-

ing. Main size variations are introduced by the size-variable arm and

occasional additional nucleotides in the dihydrouridine arm. The

nucleotide replacement type of editing in the 50 half of the acceptor

stem has been identified in the protist Acanthamoeba castellanii and

in chytridiomycete fungi. RNA editing of the A-to-I deamination type

in the anticodon (bold) altering codon recognition appears common;

the C-to-U deamination type of editing was initially observed in

marsupials. Cytidine-to-uridine base exchanges of the deamination

type may affect many different tRNA positions in plant organelles,

the most prominent example being 18 C-to-U exchanges in the

mitochondrial tRNA-Pro in the lycophyte Isoetes engelmannii [88].

Similarly, the cytidine or uridine insertion type of editing in

myxomycetes can affect all regions of a tRNA molecule. Correction

of acceptor stem base pairing in the 30 half of the stem seems to

involve different biochemical activities in different organisms,

including oligo-adenyl-transferase, terminal CCA-transferase, or

RNA-directed RNA polymerase. Editing of cytidine to the universally

conserved uridine nucleotide in position 8 (bold underlined) has

recently been shown for the majority of tRNAs in the archaeon

Methanopyrus kandleri
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gene exists in the marsupial mtDNAs with a UCC anticodon

potentially reading all GGN codons. This tRNA species,

however, is restricted to decode only GGR codons due to a

C-to-U mutation two nucleotides upstream of the anticodon

(position 32 of the tRNA consensus structure, see Fig. 5).

The example of the marsupial tRNA anticodon editing was

hence taken as an example to explain evolutionary fixation

of RNA editing [221].

1995: The cases of mitochondrial tRNA acceptor stem 30

editing in metazoa and a protist

Yet a different type of tRNA editing in metazoan mito-

chondria was discovered after base-pairing mismatches in

the acceptor stems and a substitution of the adenosine dis-

criminator nucleotide at the tRNA 30-end (see Fig. 5) were

observed in several tRNA genes of land snail mitochondria

[222]. As shown by cDNA analysis of tRNAs for glycine (G),

tyrosine (Y), and lysine (K) in the Japanese land snail Eu-

hadra herklotsi, these mismatches turned out to be corrected

by base exchanges among the five terminal acceptor stem

bases and the discriminator nucleotide on the 30 side of the

acceptor stem [223]. All nucleotide exchanges were con-

versions of C, G, or U into adenosines to reconstitute U–A

base pairs with the single exception of an A–C mismatch

converted into an A–A mismatch in tRNA-Tyr (Fig. 3). The

process seems to be the outcome of the densely packed

mitochondrial genomes, which result in overlaps with the

respective downstream genes (4 bp in trnG, 6 bp in trnK).

Obviously, very similar or even identical mechanisms

seemed to operate in the squid Loligo blekeri, where the

terminal guanosine nucleotides of tRNA-Tyr are replaced by

adenosines during maturation [224]. Again this phenomenon

is obviously a result of gene overlap, in this case of the

terminal 2 bp of trnY with the downstream trnC gene. The 50

processing of tRNA-Cys leaves the two terminal nucleotides

lacking in tRNA-Tyr. The same observation was made in

chicken mitochondria (Gallus gallus) although the trnY-

trnC overlap is only 1 bp [225]. The observations suggested

a possibly rather unspecific terminal adenylyltransferase

(poly-A-polymerase) activity introducing the adenosines

after a 30–50 exonuclease activity had removed the mis-

matched bases as the underlying mechanism [226]. The case

of 30 acceptor stem tRNA editing in the platypus Ornitho-

rhynchus anatinus (Monotremata) appeared to be slightly

different, given that not only adenosines but also cytidines

replaced mismatched bases [227], possibly suggesting that

the CCA-adding terminal nucleotidyl transferase activity

(the ‘‘CCAse’’) normally producing the CCA acceptor ends

of tRNAs is involved.

A much more extensive editing process correcting tRNA

ends was observed in mitochondria of the centipede

Lithobius forficatus, where a full 21 of 22 mtDNA-encoded

tRNAs need correction at their 30 ends. Confirmation of the

expected changes at the cDNA level included the intro-

duction of all four RNA nucleotides [228] and suggested

that this process relies on an RNA-dependent RNA poly-

merase activity using the 50 acceptor stem as a template.

Finally, a process of 30 tRNA editing similar to the one in

Lithobius, although not as extensive, was described in the

jakobid protist Seculamonas ecuadoriensis [229]. A total of

seven nucleotides in the 30 acceptor stem half of two

tRNAs (for glutamate and serine) are affected, mostly

introducing A or C but partially also U and G. Whether the

Seculamonas editing more closely resembles the one in

Lithobius or the ones in the other metazoa including the

platypus is unclear at present. The wide phylogenetic dis-

tance between the jakobid protist and the metazoa suggests

convergent evolution in any case.

1999: The case of A-to-I tRNA anticodon editing—

kinetoplastids linking the purine and pyrimidine

deamination types of RNA editing?

All mitochondrial tRNAs are imported from the cytosol in

kinetoplastid mitochondria. The standard tRNA for tryp-

tophan carries a CCA anticodon to decode the UGG

tryptophan codon, but in kinetoplastid mitochondria the

standard UGA stop codon exceptionally also encodes

tryptophan and a corresponding tRNA is missing. It turns

out that the imported tRNA for tryptophan is specifically

altered in the wobble anticodon position 34 (Fig. 5) in

kinetoplastid mitochondria to yield a UCA anticodon able

to decipher both tryptophan UGR codons [230]. Hence, a

second RNA editing activity (most likely cytidine deami-

nation similar to the plant organelle or marsupial case)

exists besides the frequent U insertion and deletion type of

editing in kinetoplastid mitochondria [231]. Kinetoplastids

also turned out to reveal the first event of C-to-U RNA

editing in a nonmitochondrial, nucleocytoplasmic genetic

environment. The tRNA for threonine shows C-to-U edit-

ing in position 32 of the anticodon arm, 2 nt. upstream of

the anticodon (Fig. 5). This editing event is not necessary

but is stimulating for a second deamination type of editing

event taking place in the same tRNA, an A-to-I editing

event in the wobble position 34 [232]. Interestingly, the

C-to-U event appears to be a nuclear editing event whereas

A-to-I editing takes place in the cytosol [233].

Adenosine deaminations introducing inosine in the first

anticodon position of tRNAs have been known for a long

time in many organisms as an essential aspect of the wob-

bling concept (increasing freedom for third-codon position

recognition). The A-to-I base conversion has largely been

considered as one of the many chemical base modifications
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occurring in tRNAs without labeling the phenomenon as

RNA editing (Fig. 1). This has changed with the increased

awareness of the other phenomena of RNA editing affecting

tRNAs and notably also of the A-to-I editing in nuclear

mRNAs of metazoa. Consequently, the recently cloned

plant chloroplast adenosine deaminase acting on tRNAs

(ADAT) and the Escherichia coli equivalent identified

earlier are now considered editing enzymes [234–236]. In

bacteria and plant chloroplasts the enzyme converts only the

ACG anticodon of the tRNA for arginine into ICG, whereas

more such conversions exist in tRNAs of the nucleocyto-

plasmic genetic systems of eukaryotes.

2002: The dinoflagellate cases—weird editing in weird

mitochondrial and chloroplast DNAs

Yet another nucleotide exchange type of mitochondrial RNA

editing that features diverse co-existing nucleotide changes

was initially discovered in the dinoflagellate species Pfiesteria

piscicida, Prorocentrum minimum, and Crypthecodinium

cohnii [237]. Not only pyrimidine transitions, similar to the

plant organelle case, but also purine transitions in both

directions of exchange and the transversions of guanosine to

cytidine as well as singular examples for conversions of uri-

dine into the purine nucleotides were observed. RNA editing

of the transcripts of genes encoded in the dinoflagellate

minicircles (representing chloroplast DNA) was demon-

strated shortly thereafter in Cerratium horridum [238]. The

DNA minicircles normally carrying only one gene each,

which only in their entity represent a chloroplast genome

equivalent, are a striking peculiarity of dinoflagellates [239].

RNA editing in the C. horridum chloroplast mRNAs and the

small (16S) chloroplast rRNA was, as in the mitochondrial

transcripts, shown to include many pyrimidine (C-to-U)

exchanges in both direction, i.e., analogous to plant organ-

elles. Even more purine exchanges were found in both

directions and additionally, the transversions of both purine

nucleotides into cytidines and, in the case of the 16S rRNA, of

a uridine into a guanosine. As expected, the many types of

editing were also identified in other dinoflagellates [237, 240–

242] but interestingly not in Oxyrrhis marina representing a

very basal lineage [243]. The transition types of editing (A-to-

G, C-to-U) dominate in both organelles, possibly accompa-

nied by a superset of U-to-R and R-to-C transversions

(Table 1). Hence, very similar to the observations in land

plants, congruent RNA editing processes seem to operate in

both endosymbiotic organelles in parallel. It is obvious to

speculate that the (many) transition types of RNA editing may

be introduced by base conversions through de- or trans-ami-

nation processes similar to other eukaryotes and that the rarer

transversions are introduced through processes rebuilding

phosphodiester bonds similar to the kinetoplastid or

Acanthamoeba/chytridiomycete cases. However, experi-

mental data are lacking so far [242].

2009: The placozoa case—a U-to-C pyrimidine

exchange in a basal metazoan

The placozoa (genus Trichoplax) are currently understood to

represent one of the most basal lineages in the phylogeny of

metazoa, if not in fact representing the sister lineage to all

other animals. The mitochondrial DNA of Trichoplax ad-

haerens featuring a complex cox1 gene structure and cox1

mRNA maturation was deciphered only recently. The Tri-

choplax cox1 gene turned out to possess a trans-splicing

group I intron [244], interestingly only the second known

example of such an intron, with the other just discovered

in parallel in the mtDNA of the lycophyte Isoetes engel-

mannii [88]. Furthermore, an editing event converts a

genomically encoded tyrosine UAU codon into an evolu-

tionarily conserved CAU histidine codon in the cox1 mRNA.

This is a very striking observation, simultaneously as a first

editing event in an animal mitochondrial mRNA and a first

event of U-to-C exchange in metazoan mitochondria. It will

be highly interesting to see whether RNA editing events of C-

to-U (similar to the metazoan mitochondrial tRNA editing)

and U-to-C (similar to the one now identified in Trichoplax)

exist in other basal metazoan lineages.

2009: The archaeal case—true RNA editing

in prokaryotes

As outlined above, the line between RNA editing and RNA

modification may be hard to draw. The deamination of

adenine to hypoxanthine in nucleotides leading to the

corresponding conversion of adenosines to inosine is a case

in point. Technically a modification given that a nonstan-

dard nucleotide is created, the A-to-I conversions today

qualify as RNA editing although the base modification

process has long been known to operate in tRNAs also of

bacteria including Escherichia coli. This semantic trans-

formation is certainly associated with the many A-to-I

conversions identified in metazoan nuclear genetic systems

affecting mRNAs that more clearly qualify as RNA editing.

A novel case of tRNA editing in the stricter sense was

described recently in Archaea [245]: A universally con-

served uridine in position 8 of tRNAs between the acceptor

and the dihydrouridine stems is a hallmark of the tRNA

consensus structure but is lacking in 30 out of 34 tRNAs in

the archaeon Methanopyrus kandleri, where a cytidine is

found in this position in the corresponding genes (Fig. 5).

The cytidines were found to be converted to uridines and

the simple genetic system allowed for straightforward
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identification of the responsible enzyme named CDAT8 for

cytidine deaminase type 8. This enzyme essentially only

needs the acceptor stem of tRNAs for recognition and

biochemical transformation of its target.

Further cases with less clear status

Some further phenomena of RNA editing in addition to

those discussed above have been reported in the literature

but not confirmed or followed up with subsequent publi-

cations. These include an enigmatic U-to-A conversion in a

human a-galactosidase mRNA [246], a C-to-U transition in

the small subunit mitochondrial rRNA of the cellular slime

mold (mycetozoa) Dictyostelium discoideum [247], and a

guanosine introduced (or converted) at the beginning of a

poly-A-tail in the 30-UTR of a cytochrome b5 gene in the

fungus Mortierella alpina [248]. Similarly, a unique

U-to-C editing has been reported in the mRNA of the

Wilms’ tumor susceptibility gene WT1 [249]. However,

this apparent U-to-C transition could only be reproduced at

very low levels in different samples and using different

techniques [250] and had previously also not been identi-

fied in 15 independent tumor samples [251]. Possibly, the

editing of interleukin IL-12 introducing an alanine-to-

valine codon change is a similar case [252] given that it

could not be re-identified in a subsequent study [253]. In

other cases, claims for RNA editing phenomena have been

explicitly refuted with subsequent work, e.g., for a sele-

nocysteine tRNA [254] or the tRNA-Asp in rats [255].

Summary

Speaking in analogies one could state that RNA editing

may be for transcriptomes what epigenetic mechanisms are

for genomes. The vastly expanding field of epigenetics

currently delivers an ever increasing understanding of the

added layer of complexity between the genes and their

expression, introduced via biochemical modification of

DNA by cytidine methylation of target motifs and of

DNA-binding histones, largely by acylation or alkylation

(dominantly methylation) but also other modifications.

Shortly after the seminal discovery of RNA editing by

Benne and colleagues [1], RNA editing made it to the

cover of the March 1988 issue of Cell, when the over-

whelming pan-editing of the cox3 cryptogene in

Trypanosoma brucei, creating more than half of the open

reading frame in the matured transcript, was reported [3].

Many other processes of RNA editing have been discov-

ered over the more than 20 years since then (Table 1), and

it is more than likely that even those that are mechanisti-

cally analogous have arisen independently in evolution,

given their disjunct occurrence over the broad spectrum of

genetic systems that have evolved over 3.5 billion years on

earth—ranging from archaea to plants and including viru-

ses, animals, and fungi. Explanations as to why RNA

editing has come into being may appear evident for some

genetic systems due to the obvious regulatory effect as,

e.g., the C-to-U and A-to-I editing in animals, but remain

largely elusive for others where literally thousands of RNA

editing events mainly serve to re-establish proper reading

frames and evolutionarily conserved functions such as the

trypanosome or plant mitochondrial types of RNA editing.

Evolutionary thinking is misunderstood by many to

address the ‘‘why’’ questions in biology, hoping for

answers pointing out functional gains or apparent advan-

tages. Concepts of neutral evolution with a less prejudiced

look into things, not necessarily asking for meaning or

regulation, are frequently overlooked. Rare articles such as

one recently published on the two evolutionarily separate

protist groups showing heavy RNA editing and pointing

out quite some convergent evolution are highly recom-

mended in this respect [256]. Several interesting

speculations about the evolution of RNA editing have been

proposed and discussed previously. Some of these contri-

butions have focused on particular editing systems [257–

259], whereas some have explicitly highlighted general

concepts of neutral evolution [260–262]. It will be very

interesting to see whether a universal model on the evo-

lution of RNA editing will explain not only the many

disparate systems of editing already known but also those

yet to be discovered. The extra efforts for a genetic system

to assemble elaborate editosomes and the many factors

providing specificity very obviously outweigh the gain in

regulatory potential that could have been achieved by other

means much more easily. Francois Jacob nicely pointed out

long before the discovery of RNA editing [263] that evo-

lution is more of a tinkerer than an engineer (or a designer,

for that matter, one may add).
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of a chloroplast mRNA by creation of an initiation codon.

Nature 353:178–180

93. Freyer R, Kiefer-Meyer M-C, Kössel H (1997) Occurrence of
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