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Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise
to goal-directed behavior through afferent and efferent connections with multiple
thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies
have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation
of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia
networks, ventral medial facilitation of integrative motor function, and hippocampal
functions supported by ventral midline and anterior nuclei. Large scale mapping studies
have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks
that provide a structural basis for understanding information processing and
functional heterogeneity within the basal ganglia. Behavioral analyses comparing
functional deficits produced by lesions or inactivation of specific thalamic nuclei or
subregions of mPFC or the basal ganglia have elucidated the interdependent roles
of these areas in adaptive goal-directed behavior. Electrophysiological recordings
of mPFC neurons in rats performing delayed non-matching-to position (DNMTP)
and other complex decision making tasks have revealed populations of neurons
with activity related to actions and outcomes that underlie these behaviors. These
include responses related to motor preparation, instrumental actions, movement,
anticipation and delivery of action outcomes, memory delay, and spatial context.
Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical
roles for mPFC in prospective processes that precede actions, MD for reinforcing
task-relevant responses in mPFC, and VP for providing feedback about action
outcomes. Synthesis of electrophysiological and behavioral results indicates that
different networks connecting mPFC with thalamus and the basal ganglia are
organized to support distinct functions that allow organisms to act efficiently to obtain
intended outcomes.

Keywords: prefrontal cortex, adaptive decision making, reward guided choice, action outcome contingency,
mediodorsal nucleus, intralaminar nuclei, anterior cingulate cortex, ventral pallidum

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 928610

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.928610
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbeh.2022.928610
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.928610&domain=pdf&date_stamp=2022-07-05
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.928610/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-928610 June 29, 2022 Time: 14:46 # 2

Mair et al. Where Actions Meet Outcomes

INTRODUCTION

The ability to act based on the current incentive value of action
outcomes is a defining feature of purposive or goal-directed
behavior, one that distinguishes goal-directed responses from
stimulus-elicited habits that are unaffected by changing outcome
values (Colwill and Rescorla, 1985; Balleine and Dickinson,
1998). Goal-directed actions entail prospective processes to
anticipate likely action outcomes, to select and maintain
adaptive goals until responses are executed, and to prepare
forthcoming motor responses; concurrent processes to guide,
coordinate, and monitor ongoing actions and outcomes; and
retrospective processes to update information and strategies to
guide future responding. These processes are modeled by delayed
conditional discriminations, like delayed matching (DMTP)
or non-matching (DNMTP) to position, where the rule for
selecting a correct (rewarded) choice is indicated by a preceding
sample stimulus and executed following a delay. In DMTP and
DNMTP the position of the correct choice is indicated by the
randomly selected position of the preceding sample response
(see Figure 1 for DNMTP example). The central thesis here
is that rodent medial prefrontal cortex (mPFC) acts through
afferent and efferent connections with multiple thalamic nuclei
(Mair et al., 2021) and recurrent networks involving basal ganglia
and thalamus (Alexander et al., 1986; Lee et al., 2020; Foster
et al., 2021) to control actions motivated by and directed toward
an intended outcome. The elaboration of these circuits during
vertebrate evolution has been linked to the development of
neural systems that underlie more abstract processes of human
cognition (Ginsburg and Jablonka, 2010, 2021; Koechlin, 2014;
Cisek, 2019).

We focus on behavioral and electrophysiological studies that
allow direct comparisons between mPFC, the basal ganglia,
and thalamus. Rodent mPFC corresponds to regions of primate
cingulate cortex (Vogt et al., 2013; Vogt and Paxinos, 2014). It
is at a crossroads between sensory, motor, and limbic systems
that give rise to goal-directed behavior (Figure 2). mPFC is
commonly divided into five interconnected regions from dorsal
to ventral based on anatomical and functional criteria: secondary
motor (M2), anterior cingulate (AC), prelimbic (PL), infralimbic
(IL), and medial orbital (MO) cortices. All areas of mPFC have
afferent and efferent connections with midline, anterior, rostral
intralaminar, and mediodorsal (MD) thalamic nuclei as well as
limbic or non-limbic cortices, amygdala, hypothalamus, basal
forebrain, midbrain, and pons/medulla (Figure 2; Vertes, 2002,
2004; Heidbreder and Groenewegen, 2003; Gabbott et al., 2005;
Hoover and Vertes, 2007). M2 receives prominent inputs from
sensory, motor, association, and limbic cortices and projects
heavily to areas involved with motor control in adjacent
motor (M1) cortex, dorsolateral striatum, superior colliculus,
oculomotor nuclei, and spinal cord. It has been implicated in
motor planning, mapping sensory cues and other antecedent
signals to motor actions, and integrating spatial information to
guide planned actions (Barthas and Kwan, 2017; Olson et al.,
2020; Duan et al., 2021). More ventral areas of mPFC receive
progressively less prominent projections from non-limbic cortex
and more prominent connections with amygdala and limbic areas

of cortex, including hippocampal and parahippocampal areas
(Heidbreder and Groenewegen, 2003; Hoover and Vertes, 2007).
These have been implicated in multiple functions required for
adaptive goal-directed behavior.

MEDIAL PREFRONTAL CORTEX
SUPPORTS PROSPECTIVE,
CONCURRENT, AND RETROSPECTIVE
PROCESSES THAT GIVE RISE TO
ADAPTIVE GOAL-DIRECTED BEHAVIOR

Anticipating Action Outcomes
Goal-directed responses are guided by the incentive value of
anticipated action outcomes (Colwill and Rescorla, 1985; Balleine
and Dickinson, 1998). Much of the evidence for this has been
obtained by outcome devaluation and instrumental contingency
degradation studies. In outcome devaluation animals are trained
to make distinct responses for particular outcomes. After initial
training one outcome is then devaluated by selective satiation or
pairing with lithium chloride to induce illness, and the tendency
to make that response is subsequently tested in extinction. If
the response is guided by the anticipated value of the outcome,
the tendency to respond in extinction should be reduced for
devalued outcomes. In instrumental contingency degradation,
distinct responses are paired with specific outcomes. After
initial training, one outcome is presented non-contingently. If
responding is guided by anticipated outcomes, the response
associated with the non-contingent outcome should decrease
when testing is conducted in extinction. PL lesions made
before (but not after) initial training interfere with both
outcome devaluation and instrumental contingency degradation
(Ostlund and Balleine, 2005; Tran-Tu-Yen et al., 2009; Hart
et al., 2018). These findings are consistent with evidence
from studies of fear conditioning and drug self-administration
that PL is important for encoding the current value of
action outcomes thus regulating sensitivity to reinforcement.
Earlier studies suggested that IL has effects opposite PL on
motivated behavior, with PL promoting goal-directed actions,
facilitating reward seeking and fear and IL promoting habit
expression, response inhibition, fear suppression, and extinction
(see Giustino and Maren, 2015; Moorman et al., 2015;
Gourley and Taylor, 2016). More recent results suggest a
more nuanced relationship between IL and PL. Shipman et al.
(2018) report that both PL and IL influence the expression
of goal-directed responses, albeit in distinct ways, with PL
affecting the expression of minimally trained and IL the
expression of extensively trained actions. Caballero et al.
(2019) report these areas both affect reward seeking, but in
ways that are inconsistent with the dichotomy of response
execution/inhibition.

Bradfield et al. (2015) showed that MO lesions impair
outcome-specific Pavlovian-to-instrumental transfer (PIT) and
devaluation tests when outcomes are not observable and thus
must be retrieved from memory, while sparing outcome-
selective reinstatement and contingency degradation conducted
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FIGURE 1 | Normalized population histograms for response types observed in mPFC for rats performing the dynamic DNMTP task. The task is illustrated above.
Trials begin with a randomly selected lever extending at one of four possible locations (90◦ apart) for the start response. The start lever retracted when pressed and a
lever was then extended 90◦ to the left or right (randomly selected) of the start lever. This retracted when pressed and water reinforcement delivered (indicated by
asterisk) through a spout immediately above the lever. The initial lever was then reinserted for the delay response. This was retracted with the first press after the
memory delay ended and levers 90◦ to the left and right inserted for the choice. These both were retracted when either one was pressed and reinforcement
delivered when the lever not extended for the sample was the one pressed (a correct non-matching response). Results are shown for all neuronal responses
recorded for each response type with a minimum of 40 trials completed in a 60 m session. These were averaged for individual neurons and normalized so that each
response recorded contributed equally to the population function. Error bars represent standard error of the mean. Results are shown for preparation (n = 44),
movement 1 (before all lever presses, n = 97), movement 2 (toward reinforced lever presses, n = 32), lever press (n = 28), base lever press (start and delay presses
only, n = 30), reinforcement anticipation (preceding delivery, n = 50), reinforcement (following delivery, n = 63), delay (n = 58), post-reinforcement (when rats
disengaged from spouts, n = 16), and error (n = 4). These population histograms were previously published online (Francoeur and Mair, 2018). ? Represents choice.
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in the presence of outcomes. Bradfield et al. (2018) replicated
these findings and localized them to anterior regions of MO.
Lichtenberg et al. (2021) used chemogenetic methods to show
that projections from MO to the basolateral amygdala (BLA)
are important for predicting rewards from environmental cues
in outcome-specific PIT and for inferring incentive value in
devaluation tests while projections from BLA to MO are needed
to infer incentive value but not to identify expected rewards.

Although questions remain about their precise roles it seems
clear that PL, IL, and MO are important for anticipating the
incentive value of potential action outcomes. Neurophysiological
recordings of brain activity have confirmed that neurons
in these areas fire in anticipation of action outcomes and
provided evidence that this information is also represented in
other areas that give rise to goal-directed behavior. Human
functional magnetic resonance imaging (fMRI) studies show
that anticipation of monetary awards is associated with cortical
activation in midcingulate/supplementary motor and insular
areas distinct from areas of anterior and posterior cingulate
cortices activated during award delivery (Jauhar et al., 2021).
Electrophysiological studies, primarily in rats and monkeys, have
described neuronal activity that signals reward prediction in
dorsal and ventral areas of mPFC as well as MO and BLA (Euston
et al., 2012; Bissonette and Roesch, 2016). Reward-predictive
sensory cues produce short latency responses in PL neurons
in trained rodents that are not observed for irrelevant stimuli
or for reward-predictive stimuli in naïve animals (Pinto and
Dan, 2015; Otis et al., 2017; Le Merre et al., 2018). A number
of reports have described neuronal responses that anticipate
reinforcement in mPFC of awake, behaving rats and monkeys for
several tasks (Pratt and Mizumori, 2001; Alexander and Brown,
2011; Rushworth et al., 2011; Gentry and Roesch, 2018).

Figure 3 shows normalized population histograms based
on all mPFC neurons recorded that fired in anticipation
of reinforcement (n = 50) in rats performing a dynamic
DNMTP task (Onos et al., 2016; Francoeur and Mair, 2018).
Neuronal firing increased on average 0.8 s prior to times
when reinforcement is normally delivered following sample and
correct choice responses. These responses persist throughout
the subsequent 1.2 s reinforcement event and then drop
within 0.2 s after the reward ends. When reward was not
delivered following errors anticipatory firing ended abruptly
within 0.2 s of the incorrect choice. Although neurons with
these anticipatory responses were observed throughout mPFC,
they were more concentrated in ventral areas of mPFC including
PL regions implicated in behavioral studies of instrumental
contingency degradation and selective reward devaluation as
important for anticipating the incentive value of action outcomes.
A separate population of mPFC neurons was observed that
fired in conjunction with reward delivery (Figure 3). These
neurons (n = 63) exhibited increased activity within 0.2 s
after reward delivery began and lasted until 1 s after it ended.
They did not respond following unrewarded incorrect choices.
It is unclear from timing data whether these responses are
related to consummatory activity or reward delivery. Other
studies have provided evidence that neurons in orbitofrontal
cortex and mPFC encode information about the identity and

FIGURE 2 | Schematic summarizing the main connections of medial
prefrontal cortex (mPFC), including interconnections with striatum and central
thalamus. Pathways are color coded to identify afferent and efferent
connections of the main subregions of mPFC: secondary motor (M2), anterior
cingulate (AC), prelimbic (PL), and infralimbic (IL) cortices. The weight of lines
indicates heavy, moderate, or light projections. Unidirectional or bidirectional
transmission is indicated by arrowheads. Projections are shown for
intralaminar (ILn), ventromedial (VM), mediodorsal (MD), midline (Mid), and
anterior medial (AM) nuclei in central thalamus. The division of cortex into
limbic and non-limbic regions follows Hoover and Vertes (2007). Estimates of
mPFC projection densities rely primarily on Vertes (2002, 2004) and Hoover
and Vertes (2007). See text for details.

subjective value of rewards (Wallis and Kennerley, 2010; Cai
and Padoa-Schioppa, 2012, 2021; Bissonette and Roesch, 2016;
Gentry and Roesch, 2018). Anatomical analyses showed that
neurons responding to reward delivery were more uniformly
distributed throughout mPFC than those with anticipatory
responses (Francoeur and Mair, 2018).

Prospective Decision Making
Dorsal mPFC lesions interfere with prospective decision making,
where a choice is made and the intention to respond held
in memory until intended actions can be carried out (Kesner,
1989; Goto and Grace, 2008; Kesner and Churchwell, 2011;
Umeda et al., 2011; Howland et al., 2022). This requires motor
response memory to encode, maintain, and retrieve an intention
to respond. Dorsal mPFC lesions impair motor response memory
in DMTP and DNMTP where choices are defined by egocentric
motor responses (R vs. L turns) so that correct responses are
defined prospectively before the choice is presented (Porter
et al., 2001; Kesner and Churchwell, 2011). This deficit cannot
be ascribed to a more general inability to perform conditional
discriminations. Complete lesions of mPFC, alone or combined
with lateral orbital lesions, impair recurring choice radial
maze DNMTP while sparing varying choice DNMTP trained
in the same apparatus with carefully matched varying choice
procedures (Figure 4). Recurring choice is trained using the same
three arms (in a T configuration) on every trial in a darkened
room with mazes covered to eliminate external cues and favor
an egocentric (response memory) solution. Varying choice uses
three arms randomly selected from eight possible arms for each

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 July 2022 | Volume 16 | Article 928610

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-928610 June 29, 2022 Time: 14:46 # 5

Mair et al. Where Actions Meet Outcomes

FIGURE 3 | Normalized population histograms responses related to reinforcement delivery in medial prefrontal cortex (mPFC; n = 63), the mediodorsal thalamic
nucleus (MD, n = 71), and ventral pallidum (VP, n = 101) and reinforcement anticipation in mPFC (n = 50) and MD (n = 46). Anticipatory responses were not observed
in VP. Anticipatory responses began on average 0.8 s before rewards were normally delivered and ended 0.2 s after reward delivery ended or 0.2 s errors when
rewards were not delivered. Reinforcement responses began 0.2 s after reward delivery began and lasted until 1.0 s after reward delivery ended. Results are shown
for all neuronal responses recorded for each response type with a minimum of 40 trials completed in a 60 m session. These were averaged for individual neurons
and normalized so that each response recorded contributed equally to the population function. Error bars represent standard error of the mean.

trial with many available external cues: procedures that favor an
allocentric solution and do not rely on prospective memory since
the location of the correct choice cannot be predicted until the
choice phase begins. These deficits also appear to be independent
of demands on working memory. They are little affected by
the length of the memory delay (Figure 4) and persist with no
memory delay in egocentric auditory match-to-position when
the discriminative auditory stimulus is present throughout the
choice phase (Stevens and Mair, 1998). By contrast, hippocampal
lesions produce delay-dependent deficits consistent with working
memory impairment for both the varying and recurring choice

DNMTP in which deficits increase significantly at longer memory
delays (Figure 4).

fMRI analyses show that prospective memory tasks recruit
distributed frontoparietal networks in human subjects (Burgess
et al., 2011; Cona et al., 2015; Hamm and Mattfeld, 2019).
Functional decoding analyses indicate that mPFC is involved
in storing delayed intentions to act at a subsequent time (Soon
et al., 2008; Momennejad and Haynes, 2013). These results are
consistent with well-established evidence that both premotor
(Weinrich and Wise, 1982; Pearce and Moran, 2012) and
prefrontal (Takeda and Funahashi, 2004; Markowitz et al., 2015)
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FIGURE 4 | Effects of mPFC, hippocampal, intralaminar thalamic (ILn), and striatal lesions on varying- and recurring-choice DNMTP trained in automated eight arm
radial mazes. In varying choice DNMTP arms were selected at random from all available options for start, sample, delay, and choice responses in a lighted room with
many visible external cues to favor an allocentric solution and to eliminate the possibility that a correct choice could be determined prospectively. In recurring choice,
the same three arms (in a T-configuration) were used on every trial for start/delay and left and right sample/choice responses and mazes were covered and the room
darkened to minimize external cues and favor egocentric choice and prospective decision making. mPFC lesions spared varying-choice and produced
delay-independent deficits for recurring-choice DNMTP. Hippocampal lesions produced delay-dependent deficits for both versions, consistent with rapid decay of
working memory. ILn lesions produced delay-independent deficits for both versions, consistent with the effects of dorsomedial striatal lesions. The ventral striatal
lesion group were impaired for recurring-choice DNMTP and were impaired compared to the dorsolateral but not the control group for varying-choice DNMTP. Error
bars represent standard error of the mean.
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neurons represent prospective information about forthcoming
sensory-guided choice responses. Sul et al. (2011) recorded M2
neurons in rats during a maze foraging task and found early
responses, 500 ms before rats approach the choice point, that
encode information about the forthcoming choice response.
Previous studies failed to find evidence for similar action
prediction signals in more ventral areas of mPFC for the same
task (Sul et al., 2010). These results suggest an important role for
M2 encoding response information about impending choices.

To understand the effects of DNMTP decision making on
neural activity in mPFC Francoeur and Mair (2020) compared
single neuron activity during dynamic DNMTP with a serial lever
press task (SLP) in which rats perform the same sequences of
actions in the same apparatus with comparable reinforcements
(including 30% unreinforced match-to-position “errors”), but
with no actual choice between response alternatives. Compared
to SLP, DNMTP was associated with enhanced activity of neurons
with task-related activity and suppressed activity of neurons
with activity unrelated to the task. DNMTP was also associated
with preparatory- and delay-related activity not observed with
SLP and more frequent responses related to movement and
reinforcement. Thus the occurrence of choice in DNMTP appears
to engage mPFC producing both adaptive changes in background
firing rates and recruitment of neurons with coding properties
specifically related to the choice response.

Preparing to Respond
Multiple brain areas involved in planning and executing
actions are active well before movement begins. In human
subjects simple self-initiated movements are preceded by a slow
rising negative motor-related cortical potential that originates
in supplementary and cingulate motor areas 1–3 s before
movement. This is followed by a later negative slope phase
400–500 ms before movement onset that originates in premotor
and motor areas and then a motor potential coincident
with movement initiation that originates in motor cortex
(Di Russo et al., 2017).

Motor preparation and learning can be studied with action
sequence learning tasks, where subjects perform a repeated
sequence of actions. Response time (RT) analyses have revealed
two levels of organization in learned action sequences: actions
initiating learned sequences or chunks of learned sequences
have elevated RTs reflecting the cost of planning an organized
sequence ahead of time while actions later in sequences (or
chunks) exhibit reduced RTs reflecting the benefits of performing
a practiced sequence (Rosenbaum et al., 1984; Kennerley et al.,
2004; Bailey and Mair, 2006). Bailey and Mair (2007) examined
effects of frontal cortical lesions in rats trained to perform
repeated sequences of five nose pokes guided by luminance cues
in an array of response ports. Sequence learning was assessed by
interference effects when training shifted from learned (repeated)
to random sequences of port entries. Lesions damaging M2
cortex alone or in combination with adjacent areas of M1 or AC
cortex increased RT for initial nose pokes, indicating an increased
planning cost, while sparing the benefits of sequence learning
reflected in decreased RT to complete later pokes in learned

sequences. Lesions of M1 cortex had no effect on performance.
None of the lesions had any effect on initial RT when planning
costs were minimized by comparing single nose poke responses
that were in repeated vs. randomized locations. Quantitative
histological analyses confirmed that the increased planning cost
for repeated sequences correlated significantly with damage to
M2, but not to M1 or AC cortices.

While fMRI analyses have revealed preparatory activity
in multiple brain regions, including motor, somatosensory,
and parietal regions, only signals originating in contralateral
supplementary motor and premotor regions consistently predict
the type of sequential finger movement executed (Nambu
et al., 2015). AC cortex has also been implicated in motor
intention when finger presses are cued by motor stimuli (Kuhns
et al., 2017). Single unit recordings in human subjects reveal
progressive recruitment of neurons with increasing activity
preceding self-initiated movements in supplementary motor area
and AC beginning 1,500 ms before subjects report making a
decision to move (Fried et al., 2011). Single neuron recordings
have found similar preparatory increases in activity preceding
self-initiated movements in monkey motor and premotor cortex
and shown that these responses encode specific movement-
related information (Riehle and Requin, 1989; Churchland et al.,
2010). Similar results have been observed in recordings of
large populations of neurons in premotor cortex in mice in
conjunction with perturbations of activity that demonstrate a link
to behavior (Li et al., 2015; Svoboda and Li, 2018). Totah et al.
(2009, 2013) have described synchronous preparatory activity in
rodent AC and PL related to stimulus presentation and motor
responses preceding stimulus-guided actions in the 5-choice task.
Similarly we have observed preparatory activity in mPFC prior
to start responses initiated by rats in the dynamic DNMTP task
(Onos et al., 2016; Francoeur and Mair, 2018). These responses
consist of activity ramping up beginning on average from 2.4 s
and ending 0.6 s prior to start lever presses at the beginning of
trials. A smaller response is also observed from 1.3 to 0.7 s prior to
delay lever presses, consistent with rats chunking DNMTP trials
into sample and choice phases. The time course of these responses
is consistent with motor-related cortical potentials and single
unit activity in human subjects observed before self-initiated
movements (Fried et al., 2011; Di Russo et al., 2017). Anatomical
analyses revealed a significant trend for preparatory responses to
be distributed in dorsal areas of mPFC including M2 and AC
cortices (Francoeur and Mair, 2018).

Sensory-Guided Responding
Adaptive responding requires constant updating of sensory
information to guide ongoing actions in dynamic environments.
M2 plays a critical role in flexibly mapping sensory signals
to motor actions, consistent with its prominent connections
to sensory and association cortices and motor control areas
(Barthas and Kwan, 2017; Olson et al., 2020; Duan et al.,
2021). Earlier studies showed that lesions of M2 cortex in
rats (Passingham et al., 1988) or premotor cortex in monkeys
(Petrides, 1982; Halsband and Passingham, 1985) impair
conditional discriminations where a visual cue indicates which of
two actions will be reinforced. The effects of mPFC lesions extend
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to simple sensory-guided responses in visuospatial reaction time
(VSRT) tasks (Figure 5). Here rats perform an observational
response (pressing a lever and traveling down a runway) and
then enter a test chamber facing an array of choice response
ports. Test chamber entry triggers a luminance cue (0.2–3.0 s in
duration) in the S+ port, indicating the location where reward
is delivered following a nose poke within 3.0 s of triggering the
cue (the limited hold). Lesions damaging dorsal or ventral mPFC
or adjacent areas of M1M2 motor cortices decreased accuracy for
brief cues (≤0.8 s) and increased RT for choice responses (Burk
and Mair, 2001b; Bailey and Mair, 2004, 2007). The increase in
choice RT cannot be explained by decreased accuracy. Choice
RT was increased at long stimulus durations where performances
had few errors and was not exacerbated when accuracy was
diminished by task manipulations. M1M2 lesions did not affect
runway RT where habitual responses involving comparable
movement distances are repeated without modification on each
trial. These results are consistent with other evidence that dorsal
mPFC is important for sensory-guided motor function and more
ventral mPFC for sensory attention (Brown et al., 1991; Muir
et al., 1996; Bussey et al., 1997; Birrell and Brown, 2000). The
effects of M1M2 lesions on VSRT are consistent with deficits
observed with lesions of dorsolateral striatal areas innervated by
these areas of cortex: impaired choice accuracy and RT without
significant effect on runway RT (Figure 5).

Coordinating and Monitoring Ongoing
Actions and Outcomes
Convergent evidence indicates that cingulate areas of mPFC
monitor current actions and outcomes, provide error feedback
and information about reward value and manage conflict when
there is competition between potential actions or strategies
(Ridderinkhof et al., 2004; Holroyd and Coles, 2008; Kennerley
et al., 2011; Heilbronner and Hayden, 2016; Li et al., 2019;
McLaughlin et al., 2021). Contingency degradation and reward
devaluation studies have confirmed the importance of mPFC
in monitoring information about current incentive value and
action-outcome contingencies (see above). Populations of mPFC
neurons exhibit activity modulated by ongoing actions and
outcomes consistent with a role in monitoring this information
during goal-directed behavior (Jung et al., 1998; Chang et al.,
2002; Euston and McNaughton, 2006; Totah et al., 2009,
2013; Hayden and Platt, 2010; Alexander and Brown, 2011;
Rushworth et al., 2011; Horst and Laubach, 2012). Figure 1 shows
normalized population histograms observed for mPFC neurons
during dynamic DNMTP trials. These include results from all
neurons firing during all periods of movement, movements
preceding rewards, lever press responses, reward delivery, delay
periods following rewards, errors when expected rewards are not
delivered, and disengagement from reinforcement. Importantly,
some of these responses occur in restricted spatial locations
and thus represent contextual information about locations
where the behavioral events occur (Onos et al., 2016). This
was demonstrated by concurrent spatial mapping of activity
and temporally defined event-related analyses using a dynamic
DNMTP task where trials began at randomly selected locations so

that behavioral events were disambiguated from spatial location
from trial to trial.

Lesions or inactivation of mPFC affect the ability of organisms
to adapt when contingencies between stimuli, actions, and
outcomes are changed during extinction learning (Quirk and
Mueller, 2008; Peters et al., 2009; Caballero et al., 2019; Porter and
Sepulveda-Orengo, 2020; Green and Bouton, 2021; Russo et al.,
2021). Electrophysiological recordings have identified transient
post-decision signals in cingulate cortices of humans, monkeys,
and rodents that indicate when rewards are received, errors
are made, or expected reward not delivered (Gemba et al.,
1986; Ito et al., 2003; Botvinick et al., 2004; Matsumoto et al.,
2007; Totah et al., 2009; Horst and Laubach, 2012; Li et al.,
2019; Kao et al., 2020). Figure 1 shows error-related responses
recorded after unreinforced incorrect choice responses in the
DNMTP task. Francoeur and Mair (2020) observed an analogous
response during the SLP task. Here error-like responses were
observed for the 30% of trials when reward was not delivered
for the fourth press (to simulate DNMTP errors). This suggests
that error responses signal the lack of expected reward, not
the selection of an incorrect choice (since there was no choice
in SLP). DNMTP errors were also signaled by reinforcement
anticipation responses which ended abruptly (within 0.2 s) of
unreinforced errors, compared to 1.4 s following reinforced
correct responses (Figure 3).

Updating Memory
To respond adaptively in dynamic contexts organisms must
constantly update information about environmental conditions
and action-outcome contingencies across short and long
timescales. mPFC is interconnected with important memory
systems and has functional properties that seem well suited for
this purpose (see Euston et al., 2012; Monosov et al., 2020). mPFC
is necessary for both extinction learning when contingencies
change (Quirk and Mueller, 2008; Peters et al., 2009; Caballero
et al., 2019; Green and Bouton, 2021; Russo et al., 2021) and for
acquisition of new action-outcome associations in goal-directed
behavior (Ostlund and Balleine, 2005; Tran-Tu-Yen et al., 2009;
Hart et al., 2018). mPFC has also been linked to working
memory, promoting adaptive responding by allowing organisms
to hold and manipulate response-related information over brief
periods of time while monitoring and navigating dynamic
environments. Early treatments emphasized the role of prefrontal
cortex in working memory and identified prolonged neuronal
firing as a mechanism to represent information over short
memory delays (Fuster and Alexander, 1971; Goldman-Rakic,
1995). More recently questions have been raised about what
role this persistent firing plays in working memory, the extent
to which this represents retrospective sensory vs. prospective
motor information, and the extent to which working memory
is a function shared with other areas of neocortex (Funahashi,
2013; Constantinidis et al., 2018; Lundqvist et al., 2018; Miller
et al., 2018). Lesion studies (see above) have shown effects
of prefrontal lesions on some, but not all delayed conditional
discriminations used to measure working memory, consistent
with the view that working memory is not solely the province
of prefrontal cortex (Koger and Mair, 1994; Porter et al., 2001;
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FIGURE 5 | Effects of frontal cortical, striatal and thalamic lesions on visuospatial reaction time (VSRT). Rats performed an observational (runway) response, traveling
down a runway after pressing a lever to start the trial, so that they entered the test chamber facing an array of response ports. Entering the test chamber triggered a
brief luminance in one of the ports in which water reward was delivered if rats made a nose poke in that port first within a 3.0 s limited hold. Choice accuracy is
plotted as a function of stimulus duration (varied randomly from trial to trial). Response time (RT) is plotted for the observational runway response, performed without
modification at the start of each trial, and for the stimulus guided choice response. A similar pattern of impairment was observed for lesions of M1M2 motor cortex,
dorsolateral striatum, and intralaminar thalamic nuclei (IL): stimulus duration dependent impairment of choice accuracy coupled with an increase in choice, but not
runway, RT.

Kesner and Churchwell, 2011; Scott and Mishkin, 2016; Roussy
et al., 2021). Figure 1 shows normalized population histograms
for delay-related responses in mPFC of rats performing a
DNMTP task. These begin during reinforcement delivery and

are more substantial following reinforced sample responses
than correct choice responses. The sample-related response
corresponds to the critical period when information needs to be
remembered until a choice is selected, although it is not clear
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what specific information is represented by this activity. Similar
responses have been found for rodent mPFC neurons firing
persistently during memory delays without a clear correlation
with task-relevant discriminative information (Jung et al., 1998;
Baeg et al., 2003; Euston and McNaughton, 2006; Euston et al.,
2012; Horst and Laubach, 2012; Liu et al., 2014).

Longer-term memories promote adaptive responding by
gradually integrating information across time, a function that
allows organisms to adjust to lasting changes in the external
environment or response contingencies. All areas of mPFC
receive projections from the hippocampal-entorhinal cortex
network and the BLA (Figure 2; Hoover and Vertes, 2007),
important for gradual long-term memory consolidation. Systems
memory consolidation theory suggests that labile memories
are transformed into a more permanent and stable form
required for long-term memory by changes in brain circuitry
involving these three areas (Kitamura et al., 2017; Tonegawa
et al., 2018; Takehara-Nishiuchi et al., 2020). Bontempi et al.
(1999) first reported that metabolic activity was higher in
mPFC and other cortical areas following remote (25 days) than
recent (5 days) spatial memory testing, while activity in the
hippocampal formation showed the opposite trend. Subsequent
studies confirmed that reversible inactivation of mPFC affects
retrieval of remote, but not recent, memories for contextual
fear conditioning (Frankland et al., 2004), spatial memory
(Teixeira et al., 2006), trace eyeblink conditioning (Takehara-
Nishiuchi et al., 2006) and paired associate memory (Wang et al.,
2012). Although these retrieval deficits occur after a period of
weeks, mPFC undergoes rapid changes in neuronal activity, gene
expression, and synaptic structure beginning at the time of initial
training and lasting over a period of at least 2 weeks (Tonegawa
et al., 2018; Takehara-Nishiuchi et al., 2020). These results suggest
that systems consolidation is a lengthy, continuous process.
Recent evidence has also shown that mPFC is unique among
cortical areas activated during episodic memory formation
and retrieval, as a location where inhibition of hippocampal-
entorhinal inputs during learning blocks subsequent longer-term
learning-related changes in neuronal function (Kitamura et al.,
2017; Tonegawa et al., 2018). These results suggest that mPFC
plays a critical role in formation and retrieval of remote memories
while the hippocampal formation is more important for forming
rapid associations between ongoing events and stabilizing long-
term memory traces in mPFC and other areas of neocortex
(Tonegawa et al., 2018; Takehara-Nishiuchi et al., 2020).

CENTRAL THALAMIC NUCLEI
INTERACT WITH MEDIAL PREFRONTAL
CORTEX AND THE BASAL GANGLIA IN
LARGE SCALE NETWORKS THAT
UNDERLIE ADAPTIVE GOAL-DIRECTED
BEHAVIOR

All areas of mPFC have afferent and efferent connections
with multiple nuclei in central thalamus (Figure 2). These are
higher-order thalamic nuclei that receive their main driver inputs

from cortex and appear organized to serve as elements in large-
scale networks that support specific aspects of adaptive goal-
directed behavior (see above; Mitchell et al., 2014; Sherman,
2016). MD is strongly excited by driver (layer 5) and more
prominent modulatory (layer 6) projections from mPFC. It is
the main source of focal thalamic projections to middle layers
of mPFC and sparser diffuse projections to layer I. These
thalamocortical projections activate excitatory networks and
feedforward inhibition in mPFC (Groenewegen, 1988; Kuroda
et al., 1996, 1998; Xiao et al., 2009; Collins et al., 2018). Recent
evidence indicates that MD enhances cortical connectivity and
regulates signal processing properties of mPFC neurons through
genetically defined subpopulations of thalamocortical neurons
that compensate for uncertainty related to low signals or high
levels of noise (Schmitt et al., 2017; Mukherjee et al., 2021).

The central lateral (CL), paracentral (PC), and central
medial (CM) rostral intralaminar nuclei project to distinct areas
of mPFC and striatum that are connected by corticostriatal
projections. These appear organized to control cortical-basal
ganglia networks and thus the selection of goals, actions, and
sensory signals (Groenewegen and Berendse, 1994; Grillner et al.,
2005; Mannella et al., 2016; Kato et al., 2018). The ventral
medial (VM) nucleus has reciprocal connections with AC, M2,
and adjacent sensorimotor cortex consistent with initiation and
control of integrative motor responses (Vertes, 2002; Hoover
and Vertes, 2007; Collins et al., 2018; Takahashi et al., 2021).
The paraventricular (PV), paratenial (PT), reuniens (Re) and
rhomboid (Rh) midline nuclei and the interoanteromedial (IAM)
and anterior medial (AM) nuclei have afferent and efferent
connections with mPFC and with other cortical and subcortical
limbic structures. These have been implicated in limbic functions
including affective behaviors, spatial and non-spatial learning,
recent and remote memory, behavioral flexibility, and spatial
navigation (Aggleton and Nelson, 2015; Vertes et al., 2015;
O’Mara and Aggleton, 2019).

Lesion and inactivation studies have confirmed the
dependence of mPFC function on distinct contributions of
different thalamic nuclei (see Mair et al., 2021 for review). MD
supports learning and decision making, particularly tasks that
require rapid trial-by-trial learning and complex decision making
(see Mitchell and Chakraborty, 2013; Mitchell, 2015). MD lesions
produce deficits similar to mPFC lesions for the acquisition of
goal-directed actions but have limited effects on other measures
of mPFC function. Pre-training lesions of MD and PL cortex
have common effects on the acquisition of action-outcome
associations tested by outcome devaluation and contingency
degradation (Corbit et al., 2003; Ostlund and Balleine, 2008).
Alcaraz et al. (2018) used chemogenetic methods to show that
projections from mPFC to MD are necessary for adapting to
current incentive value in outcome devaluation but not action-
outcome contingencies while MD to mPFC projections are
needed for both. MD lesions have limited effects on egocentric
DNMTP and DMTP, producing delay-dependent decreases in
response accuracy without affecting response speed (Figure 6;
Bailey and Mair, 2005; Bolkan et al., 2017). By contrast mPFC
lesions produce more substantial, delay-independent deficits that
affect both response speed and accuracy for DMTP and DNMTP
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FIGURE 6 | Effects of mPFC, hippocampus, thalamic, striatal, and ventral pallidal lesions on DMTP trained in operant chambers with 3 retractable levers: two on the
front wall for sample and choice responses and one on the back wall to initiate trials and to force rats to disengage from front wall levers during memory delays.
Accuracy is plotted as percent correct as a function of memory delay and response time (RT) as cumulative functions showing the percentage of choice responses
made in 1 s bins after the end of the memory delay. Hippocampal and mediodorsal thalamic (MD) lesions produced delay-dependent impairment of accuracy and
had no effect on RT. Dorsolateral lesions had no significant effect on accuracy or RT. Dorsomedial and nucleus accumbens (Acb) core produced delay independent
deficits in accuracy, significantly and had no significant effect on RT. mPFC, ventral pallidum, ventral striatum, and Intralaminar (IL), ventromedial (VM), and combined
intralaminar/mediodorsal (ILMD) thalamic lesions produced delay-independent deficits in accuracy and increased median RT significantly.
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(Young et al., 1996; Mair et al., 1998; Porter et al., 2000). Like
mPFC lesions, MD lesions spare allocentric radial maze DNMTP
where the correct response is not revealed until the choice
phase begins (Bailey and Mair, 2005). Bolkan et al. (2017) used
optogenetic methods to demonstrate delay-dependent effects
of MD to mPFC projections on working memory in a T-maze
DNMTP task, which they related to suppression of delay-related
neuronal activity in mPFC by this treatment. Interestingly, while
inhibition of MD to mPFC projections disrupted performance
when applied during the delay, but not during the sample or
choice phases. By contrast inhibition of mPFC to MD projections
impaired performance during the choice phase only. While these
results support a role for MD to mPFC projections in working
memory it is also possible that they reflect the hypothesized role
of MD regulating signal processing properties of mPFC neurons
by enhancing uncertain signals at longer retention intervals
(Mukherjee et al., 2021).

Lesions damaging the rostral intralaminar nuclei (CL, PC, and
CM) have effects comparable to mPFC lesions on DMTP and
DNMTP: producing delay-independent deficits for egocentric
DMTP and DNMTP that affect both speed and accuracy of
choice responses with more limited effects on allocentric radial
maze DNMTP (Figure 6; Knoth and Mair, 1991; Young et al.,
1996; Burk and Mair, 1998; Mair et al., 1998; Bailey and Mair,
2005; Mitchell and Dalrymple-Alford, 2006). Intralaminar lesions
also resemble mPFC lesions in their effects on sensory-guided
responding in the VSRT task: decreased accuracy for brief cues,
increased RT for choice responses at all stimulus durations, and
relative sparing for RT of observational responses (Figure 5;
Burk and Mair, 2001b). Lesion studies have revealed parallel
effects of striatal lesions on DMTP, DNMTP, and VSRT tasks
(Figures 4–6; see below) in keeping with anatomical evidence
that the intralaminar nuclei are organized to regulate interactions
between mPFC and striatum (Groenewegen and Berendse, 1994).
Lesions of the VM nucleus also produce delay-independent
impairment of DMTP choice accuracy and speed and VSRT
accuracy (for short stimulus durations) and speed (Figures 5, 6).
Unlike intralaminar lesions, VM lesions had substantial effects on
VSRT RT for both observational and choice responses that were
significantly greater than for intralaminar lesions. These broad
and sizeable effects on RT are consistent with evidence that VM
is a critical node in motor preparation. It is strongly driven by
corticothalamic projections from mPFC (Collins et al., 2018) and
transmits an urgency or vigor signal from basal ganglia to layer I
of M2, AC, and adjacent sensorimotor cortex that facilitates the
initiation of cue-triggered motor responses (Bosch-Bouju et al.,
2013; Guo et al., 2017; Takahashi et al., 2021).

The anterior thalamic AM and IAM nuclei are important
nodes in pathways linking the hippocampal system with PL
and AC areas of mPFC (Aggleton and Nelson, 2015). AM and
IAM lesions affect measures of allocentric memory spared by
mPFC and MD lesions (Warburton et al., 1997; Porter et al.,
2000; Mair et al., 2003; Bailey and Mair, 2005; Wolff et al.,
2008), deficits that have been dissociated with the effects of
lesions damaging MD and intralaminar nuclei on egocentric
DMTP (Mitchell and Dalrymple-Alford, 2006) and a spatial
outcome devaluation task (Alcaraz et al., 2016). This suggests

that AM and IAM support spatial memory functions that are
presumably influenced by mPFC but not disrupted by mPFC
lesions. Re and Rh are reciprocally connected to mPFC and
send projections to hippocampus and subiculum hypothesized to
coordinate the synchrony of these areas during spatial memory
tasks (Vertes et al., 2015; Hallock et al., 2016). Behavioral
analyses have shown that lesions or inactivation of these nuclei
affect spatial memory tasks that depend on the integrity of
both mPFC and the hippocampal system (Hembrook and Mair,
2011; Hembrook et al., 2012; Cholvin et al., 2013), disrupting
both encoding and retrieval of spatial and contextual memories
(Ramanathan et al., 2018; Rahman et al., 2021; Schwabe et al.,
2021). Other studies have provided evidence that Re and Rh
are important for long-term and remote memory consolidation
and retrieval (Loureiro et al., 2012; Barker and Warburton,
2018; Ferraris et al., 2021), processes that also depend on
interactions of mPFC with the hippocampal formation (see
above). The dorsal midline nuclei, PV and PT, have prominent
connections with PL, IL, and MO cortices as well as agranular
insular and entorhinal cortices, subiculum, dorsal and ventral
striatum, and the extended amygdala (Vertes and Hoover,
2008). Lesion and inactivation studies indicate that these nuclei
support reward seeking behaviors and emotional processing
but not the spatial memory processes affected by Re and Rh
(Barson et al., 2020; McGinty and Otis, 2020; Mair et al.,
2021).

Miller et al. (2017) examined responses of MD neurons during
the same dynamic DNMTP task used earlier to characterize
response properties of mPFC neurons (Onos et al., 2016;
Francoeur and Mair, 2018). They found populations of neurons
with many of the same responses related to actions and outcomes
observed in mPFC (Figure 7), including subpopulations that

FIGURE 7 | The percentage of units recorded that meet the criteria for an
isolated neuron that also meet criteria for specific response types (see
Francoeur and Mair, 2018). Movement and lever press types are combined
into single categories. Results are compared for ventral pallidum (VP),
mediodorsal thalamus (MD), and medial prefrontal cortex (mPFC).
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represent contextual information by responding to specific
events in restricted spatial locations. These similarities are not
surprising given the strong reciprocal connections between
mPFC and MD. There were several important differences. MD
lacks neurons with responses related to preparation, memory
delay, and lever press responses and has a significantly larger
number in which activity is suppressed during reinforcement.
The large number of reinforcement suppression responses is
consistent with the robust GABAergic projection from VP
signaling reinforcement (see below). The lack of MD neurons
firing during preparation, prospective decision making delays,
and lever press responses suggest that there may be some
selectivity in the information transferred by corticothalamic
projections from mPFC to MD. VM may be a more likely
target for mPFC neurons exhibiting preparatory responses.
As noted above VM is strongly driven by mPFC and
facilitates the initiation of cue-triggered motor responses in
sensorimotor cortex (Bosch-Bouju et al., 2013; Guo et al., 2017;
Collins et al., 2018; Takahashi et al., 2021). Although similar
numbers of MD and mPFC neurons exhibit reinforcement
anticipation responses that signal impending reward, these
responses occur earlier and are more robust in mPFC than
in MD, trends not seen for other reward-related responses
(Figure 3; Miller et al., 2017). Taken together these results
are consistent with evidence (reviewed above) that prospective
signals related to predicting action outcomes, prospective
decision making, and motor preparation originate in cortical
networks involving mPFC.

Francoeur et al. (2019) examined the influence of central
thalamus on mPFC by inactivating central thalamus while
recording mPFC neurons in rats performing the dynamic
DNMTP task used earlier to characterize response properties
of mPFC and MD neurons (Onos et al., 2016; Miller et al.,
2017; Francoeur and Mair, 2018). Thalamus was inactivated
by microinjecting muscimol at sites and doses shown to
impair speed and accuracy of responding for DMTP (Mair
and Hembrook, 2008) and VSRT (Newman and Mair, 2007)
when administered bilaterally. Single cells were recorded across
three consecutive days so that activity could be compared for
day 2 inactivation with days 1 and 3 when thalamus was not
inactivated. Inhibition and recording were done unilaterally
to avoid disrupting behavioral performance during recording
studies. Thalamic inactivation decreased spontaneous activity
for some mPFC neurons and increased it for others, consistent
with the well-established excitatory and inhibitory effects of
central thalamic inhibition on mPFC activity (Cruikshank et al.,
2010, 2012; Delevich et al., 2015; McCormick et al., 2015;
Hu and Agmon, 2016). Quantitative analyses revealed a broad
suppression of event-related responses in mPFC that did not
interact with response type analyzed, effect on spontaneous firing
(increased, decreased, or unchanged), dorsal vs. ventral location
in mPFC, or muscimol dose tested. These results provide direct
evidence that behavioral impairments observed for DMTP (Mair
and Hembrook, 2008) and VSRT (Newman and Mair, 2007)
with comparable inactivation treatments (applied bilaterally) are
associated with a general suppression of mPFC responses related
to actions and outcomes.

THE BASAL GANGLIA INTEGRATE
CORTICAL, LIMBIC, AND THALAMIC
INPUTS THROUGH MULTIPLE
SUBNETWORKS

Striatum, the input side of the basal ganglia, receives projections
from virtually all areas of cerebral cortex and the limbic system
(Figure 2; McGeorge and Faull, 1989; Sesack et al., 1989;
Groenewegen et al., 1990). These converge with projections
from intralaminar thalamic nuclei on dendrites of medium spiny
neurons, which make up about 90% of striatal neurons and
provide striatopallidal and striatonigral projections that transmit
information about motor commands, sensory data, and incentive
value of action outcomes (Groenewegen and Berendse, 1994;
Smith et al., 2004, 2011, 2014; Doig et al., 2010; Graybiel and
Grafton, 2015; Johansson and Silberberg, 2020; Foster et al.,
2021). In rodents AC, PL, IL, and MO areas of mPFC have
dense projections to specific areas of dorsomedial and ventral
striatum that overlap with each other and with dense projections
originating in other areas of prefrontal cortex. M2 stands out
as having relatively segregated dense projections to dorsolateral
striatum with only a 5% area of overlap with dense projections
from AC. Interactions between corticostriatal projections from
M2, AC, PL, IL, and MO are expanded by diffuse terminal fields
that surround areas receiving dense projections from each of
these areas (Mailly et al., 2013; Haber, 2016; Heilbronner et al.,
2016; Hintiryan et al., 2016). Large-scale mapping has revealed
numerous functional domains in rodent striatum based on
convergence and divergence of corticostriatal and thalamostriatal
projections (Hintiryan et al., 2016; Hunnicutt et al., 2016).
These are organized as subnetworks that are preserved through
pallido/nigral and thalamic nodes and back as parallel closed loop
circuits to the mPFC corticostriatal neurons from which they
originate (Alexander et al., 1986; Lee et al., 2020; Foster et al.,
2021). The evidence of multiple cortico-basal ganglia-thalamic
subnetworks suggests that there is a high degree of functional
heterogeneity within striatum.

Lesion studies have demonstrated functional specialization
at the level of the broad channels of information flow in
dorsolateral, dorsomedial, and ventral striatum. Mair et al. (2002)
found a double dissociation in striatum where dorsolateral
striatal lesions increase RT to respond to the trial-specific
location of visual stimuli in VSRT while sparing radial maze
DNMTP. By contrast, ventral and dorsomedial striatal lesions
spare VSRT and impair radial maze DNMTP (Figures 4, 5).
Importantly dorsolateral lesions do not significantly affect RT for
observational responses which are performed in a stereotyped
fashion at the start of each VSRT trial. These results are
consistent with evidence that ventral striatal and ventral pallidal
lesions increase RT and decrease accuracy for an operant (lever
press) DMTP task that is spared by dorsolateral striatal lesions
(Figure 6; Burk and Mair, 2001a; Zhang et al., 2005) and that
dorsolateral lesions increase RT for visually guided responding in
other tasks (Brasted et al., 1999; Rogers et al., 2001). These deficits
are of note because of evidence linking them to corticostriatal
projections from mPFC and thalamostriatal projections from the
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intralaminar nuclei. Thus, lesions of mPFC or of the intralaminar
thalamic nuclei produce similar delay-independent deficits for
recurring choice DNMTP and operant DMTP, increase RT for
DMTP, and increase choice RT for the VSRT task (Figures 4–
6; Burk and Mair, 1998, 2001b; Porter et al., 2000). Mediodorsal
thalamic lesions adjacent to the intralaminar nuclei have distinct
effects on DMTP, producing smaller delay-dependent deficits for
accuracy with no effect on RT (Figure 6; Burk and Mair, 1998;
Bailey and Mair, 2005). Comparison of more discrete mPFC
lesions reveal topographically specific effects: lesions damaging
PL or AC produce deficits like ventral or dorsomedial striatal
lesions affecting recurring choice radial maze DNMTP and
sparing VSRT choice RT. By contrast lesions of M1M2 cortex
produce deficits like dorsolateral striatal lesions increasing VSRT
choice RT and sparing recurring choice DNMTP (Figures 4, 5;
Bailey and Mair, 2004).

Dorsolateral and dorsomedial striatum have also been
dissociated for tasks used to distinguish goal-directed and
habitual action control. Treatments disrupting dorsolateral
striatum increase sensitivity to outcome devaluation and
contingency degradation, interfere with execution of species-
specific and learned sequential actions, and bias animals toward
spatial rather than response-related cues in navigation while
disruption of dorsomedial striatum blocks sensitivity to outcome
devaluation and contingency degradation, decreases dependence
on spatial navigation cues and increases reliance on habit learning
(Cromwell and Berridge, 1996; Graybiel and Grafton, 2015;
Amaya and Smith, 2018; Turner et al., 2022). These findings
are often described as functional specializations of dorsomedial
striatum for goal-directed behavior in early stages of instrumental
conditioning that shifts to dorsolateral control if conditions
lead to more automatic habitual responding. Seen through the
lens of recent large-scale mapping studies, it may be more
parsimonious to reframe this hypothesis in terms of multiple
parallel pathways connecting the basal ganglia with thalamus and
cortex. Thus dorsolateral striatum, with prominent inputs from
motor and sensory cortices and return closed loop projections
to M1 and M2 (Hintiryan et al., 2016; Aoki et al., 2019; Lee
et al., 2020; Foster et al., 2021) seems organized to support
M2 in guiding movements and actions based on information
about environmental conditions, including antecedent sensory
cues (Barthas and Kwan, 2017; Olson et al., 2020). While linking
actions to antecedent cues is integral to habitual S-R learning,
it is also important for non-habitual functions related to motor
planning, sensory-guided choice, and navigation.

The multiple striatal subnetworks revealed by large-scale
mapping studies indicate that striatal specialization extends
beyond the broad division into dorsomedial, dorsolateral, and
ventral domains. Hintiryan et al. (2016) identified 29 distinct
functional domains in mouse dorsal striatum that represent
extensive integration and interaction of inputs from previously
identified intracortical networks. Although patterns of cortical
afference provide important clues about functions mediated by
different striatal subnetworks these remain to be fully elaborated.
The auditory domain in posterior dorsal striatum provides a
good example of a functional subnetwork. This area receives
projections from auditory neurons in cortex and thalamus that

have distinct effects on responses of striatal neurons to sound and
have both been shown to be critical for auditory discrimination
learning and associated changes in plasticity of synapses on
medium spiny neurons (Znamenskiy and Zador, 2013; Xiong
et al., 2015; Chen et al., 2019). In contrast to other areas of
dorsal striatum, optogenetic stimulation of auditory striatum
does not produce movements outside the trained discrimination
task: rather it results in a choice bias consistent with a role
encoding task-relevant information about the value of auditory
stimuli (Guo et al., 2018).

Ventral striatum is considered an important link between
limbic systems encoding reward and aversion and motor circuits
(Mogenson et al., 1980; Carlezon and Thomas, 2009). It receives
afferents from ventral areas of mPFC, the basal amygdaloid
complex, hippocampus, and limbic areas of cortex and thalamus
and sends efferents to ventral pallidum and substantia nigra
(Groenewegen et al., 1996). Activation of ventral striatum
reduces, while inhibition increases consumption of palatable
foods, consistent with a role for ventral striatum in control of
feeding based on emotional salience or hedonic value of food
(Kelley et al., 2005; Krause et al., 2010). Electrophysiological
studies have shown that ventral striatal neurons respond to
delivery of action outcomes, stimuli predicting them, and
probability and vigor of actions associated with outcome delivery
and consumption (Roitman et al., 2005; Taha and Fields, 2005;
Morrison et al., 2017; Wright and Wesson, 2021). Ventral pallidal
neurons also respond to action outcomes, predictive stimuli,
and vigor of outcome-related actions, neuronal responses that
are earlier and more robust than ventral striatum (Richard
et al., 2016; Ottenheimer et al., 2018; Lederman et al., 2021).
This suggests that ventral pallidal responses reflect sensory
and motivational signals from other mesocorticolimbic sources.
A subset of ventral pallidal neurons encode reward prediction
errors indicative of a role computing feedback signals influencing
adaptive reward seeking (Ottenheimer et al., 2020).

Lesions or inactivation of ventral pallidum produce delay-
dependent impairment of RT and accuracy of DMTP, comparable
to effects of mPFC, central thalamic, and ventral striatal lesions
(Figure 6; Zhang et al., 2005). Cross-inactivation studies indicate
that this impairment is related to disruption of ventral striato-
pallido-thalamic pathways (Porter et al., 2001). We recently
recorded neural activity in ventral pallidum in rats performing
the dynamic DNMTP task using the same methods in earlier
studies of mPFC and MD (Onos et al., 2016; Miller et al.,
2017; Krell et al., 2019). We found a predominance of neurons
exhibiting excitation during delivery of reinforcement with
smaller numbers excited during lever press responses and
movement toward reinforcement and still fewer with suppressed
activity during reinforcement (Figure 7). The timing of these
reinforcement-related responses is consistent with populations
of neurons exhibiting similar responses in mPFC and MD
thalamus (Figure 3). Lever press responses were earlier in
mPFC than in ventral pallidum (VP; Figure 8), suggesting a
role for mPFC initiating these responses and for VP providing
a feedback signal. Interestingly, no neurons were observed
with reinforcement anticipation, preparatory, or delay-related
responses. These results are consistent with results for simpler
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FIGURE 8 | Normalized population histograms comparing responses of neurons with elevated activity during each lever press in mPFC (n = 28) and ventral pallidum
(VP; n = 22) and neurons with elevated activity during movements toward each lever press for mPFC (n = 97) and mediodorsal thalamus (MD; n = 91). Results are
shown for all neuronal responses recorded for each response type with a minimum of 40 trials completed in a 60 m session. These were averaged for individual
neurons and normalized so that each response recorded contributed equally to the population function. Error bars represent standard error of the mean.
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discrimination tasks (Richard et al., 2016; Ottenheimer et al.,
2018, 2020; Lederman et al., 2021) that VP provides feedback
about action outcomes and affects the vigor of outcome-related
responses but is not related to prospective processes anticipating
incentive value of action outcomes, selecting motor goals, or
preparing conditions to execute action sequences.

MULTIPLE NEURAL NETWORKS
INTERACT TO SUPPORT ADAPTIVE
GOAL-DIRECTED BEHAVIOR

Medial prefrontal cortex is organized as a hub for multiple large-
scale neural networks that give rise to prospective, concurrent,
and retrospective processes that support adaptive goal-directed
behavior (Figure 2). Electrophysiological results suggest that
prospective processes that anticipate action outcomes, represent
goal information during delays preceding actions, and prepare
forthcoming motor actions originate in cortex. We compared
neuronal activity in rats performing the same DNMTP task
and found mPFC neurons with preparatory and delay-related
responses not observed in MD as well as earlier and more
robust responses anticipating reinforcement than in MD
(Figures 3, 7). None of these responses were observed in
ventral pallidum. Other studies have described populations of
mPFC neurons with activity related to reward anticipation,
prospective memory delays, and action preparation in primates
and rodents performing other behavioral tasks (see above).
Both electrophysiology and neuroimaging studies indicate that
activity related to motor action preparation originates in motor,
prefrontal, parietal, and sensory areas of cortex (Churchland
et al., 2010; Fried et al., 2011; Di Russo et al., 2017).
Delay-period activity has been observed in MD for monkeys
performing oculomotor delayed response tasks (Fuster and
Alexander, 1971; Watanabe and Funahashi, 2004). Population
vector analyses indicate that oculomotor delay-period activity
in both dorsolateral PFC and MD shifts from encoding
antecedent sensory information to prospective motor signals
during the memory delay and that this transition occurs
earlier in MD (Funahashi, 2013). These results have been
interpreted as evidence that reciprocal interactions between
primate MD and dorsolateral PFC underlie this transformation
of antecedent sensory to prospective motor information and
its representation in working memory. Given the lack of a
clear homolog of primate dorsolateral PFC in rodents (Vogt
et al., 2013; Vogt and Paxinos, 2014) and questions about what
information is represented by delay-related activity in rodent
mPFC (Euston et al., 2012) it is not clear if these results
are relevant to MD function in the rat. Bolkan et al. (2017)
have shown that optogenetic inhibition of MD terminals in
mPFC in the rat suppresses delay-period activity in mPFC and
impairs behavioral performance of a T-maze DNMTP task.
Recordings of neuronal activity in ventral pallidum provide
an interesting comparison for mPFC. Here, neurons exhibit a
subset of responses observed in mPFC (Figure 7), representing
information about reward delivery, stimuli that signal outcomes,
outcome-related responses, and reward prediction errors and not

outcome anticipation, prospective motor goals, or movement
preparation (see above). This suggests a role for ventral pallidum
providing feedback or a learning signal distinct from prospective
functions associated with mPFC (Smith et al., 2009; Ottenheimer
et al., 2018, 2020).

Anatomical evidence indicates that mPFC is organized along
a dorsal to ventral gradient, with more dorsal areas closely linked
to sensory and motor cortices and ventral areas of mPFC receive
more prominent connections with amygdala and limbic areas
of cortex, including hippocampal and parahippocampal areas
(Figure 2; Heidbreder and Groenewegen, 2003; Hoover and
Vertes, 2007). Lesion and inactivation studies have described
parallel patterns of behavioral impairment that reflect these
anatomical specializations (see Dalley et al., 2004; Chudasama,
2011; Kesner and Churchwell, 2011). Hardung et al. (2017)
have extended this to adjacent areas of orbital frontal cortex,
describing a gradient from proactive motor control in PL
to reactive control in ventral and lateral orbital subareas.
Electrophysiological studies have not revealed sudden transitions
in behavioral event-related response properties of neurons as
electrodes are driven ventrally in awake, behaving rats. Systematic
mapping analyses have revealed significant trends for more
neurons to respond during motor preparation, lever press
actions, and non-specific movements in dorsal mPFC and more
in ventral mPFC related to reinforcement anticipation, memory
delays, and movement toward rewards in rats performing a
DNMTP task (Francoeur and Mair, 2018).

Medial prefrontal cortex has reciprocal connections with
multiple central thalamic nuclei that have distinct effects on
adaptive goal-directed responding (Figure 2). This includes
spatial memory functions that are spared by mPFC lesions,
but impaired by treatments disrupting anterior, ventral midline,
and rostral intralaminar thalamic nuclei as well as dorsomedial
striatum (Figure 4; see above). Lesions of anterior thalamic
nuclei have delay-dependent effects on varying choice radial maze
DNMTP consistent with the effects of hippocampal lesions and
indicative of rapid decay of working memory (Figure 4; Mair
et al., 1998, 2003). By contrast treatments disrupting intralaminar
or ventral midline thalamic nuclei produce delay-independent
deficits for this task, consistent with the effects of dorsomedial
striatal lesions (Figure 4; Mair et al., 1998, 2002; Hembrook et al.,
2012): impairments not observed with intralaminar lesions that
spare anterior regions of the intralaminar nuclei (Bailey and Mair,
2005). These results are consistent with evidence that the anterior
thalamic nuclei specifically affect hippocampal-dependent spatial
memory (Aggleton and Nelson, 2015; O’Mara and Aggleton,
2019) while midline and intralaminar nuclei affect processing
of information by medial spinal neurons in striatum (Doig
et al., 2010). Although mPFC has substantial projections that
presumably influence the activity of dorsomedial striatum and the
anterior, ventral midline, and rostral intralaminar nuclei, mPFC
lesions spare varying choice DNMTP (Figure 4). Thus mPFC
appears to have a modulatory effect on the activity of these areas
but is not a critical part of circuits required to perform this task.

Mediodorsal is the main source of focal thalamic projections
to middle layers of mPFC and accordingly is often emphasized
in treatments analyzing the role of thalamus in mPFC function.
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Recent studies have elucidated a role for MD regulating
signal processing properties of mPFC neurons and stressed
its importance for rapid trial-by-trial learning and complex
decision making (Mitchell and Chakraborty, 2013; Mitchell,
2015; Mukherjee et al., 2021; see above). The rostral intralaminar
nuclei are organized to control cortico-cortical and corticostriatal
interactions (Groenewegen and Berendse, 1994; Saalmann, 2014;
Phillips et al., 2021). Lesions of these nuclei have more
widespread effects on behavior than MD lesions, more closely
resembling effects of mPFC and striatal lesions (Mair et al.,
2021; Figures 4–6; see above). Reversible inactivation of central
thalamus, with treatments producing behavioral impairments
comparable to intralaminar or mPFC lesions (Newman and
Mair, 2007; Mair and Hembrook, 2008) has a broad effect
diminishing the expression of neuronal responses related to
actions and outcomes in mPFC for rats performing a DNMTP
task (Francoeur et al., 2019). Individually central thalamic
nuclei have distinct effects on adaptive goal-directed behavior.
Collectively they can account for deficits produced by mPFC
lesions and additionally include effects on spatial memory
associated with hippocampal, but not prefrontal, pathology.

Dorsal and ventral areas of striatum are comprised of
distinct subdomains defined by open loop projections from
functionally specific areas of cerebral cortex and the limbic
system, closed loop projections from subregions of prefrontal
cortex, and thalamostriatal projections primarily from midline
and intralaminar nuclei. Both electrophysiological and behavioral
findings (reviewed above) are consistent with the hypothesized
distinction between ventral striatum processing reward signals
and facilitating the motivational control of performance and
dorsal striatum forming associations between sensory, motor,
and limbic inputs to guide action selection and support the
acquisition of goal-directed actions (Hart et al., 2014; Koechlin,
2014). Large-scale mapping studies, primarily in mice, have
revealed parallel circuits that interconnect nodes in striatum,
pallidum/substantia nigra, thalamus, and mPFC that appear
organized to mediate distinct aspects of adaptive behavior
(Alexander et al., 1986; Lee et al., 2020; Foster et al., 2021). Like
central thalamus, lesions in discrete areas of striatum produce
deficits comparable to the effects of lesions in anatomically related
areas of mPFC (see above). Thus, at the level of broad channels
of information flow in dorsolateral, dorsomedial, and ventral
striatum there is very good evidence that pathways involving
the basal ganglia and central thalamus are critical for mediating
specific aspects of mPFC function. It should be emphasized,
however, that striatum does not represent a simple topographic
map of mPFC function. Dense projections from subdomains
of mPFC overlap considerably in striatum and this overlap
is undoubtedly increased by diffuse areas of corticostriatal
projections that surround these dense projections (Mailly et al.,
2013; Haber, 2016; Heilbronner et al., 2016; Hintiryan et al.,
2016). Large-scale mapping studies have revealed complex
patterns of convergence, divergence, and reconfiguration of
corticostriatal projections: findings that indicate considerable
integration in striatum of information originating from different
cortical networks (Hintiryan et al., 2016; Hunnicutt et al.,
2016).

Thalamus serves as an important integrative center for
cortico-basal ganglia networks as nodes connecting basal ganglia
to cortex and as the source of thalamostriatal projections that
terminate on medium spiny neurons in striatum (Groenewegen
and Berendse, 1994; Haber and Calzavara, 2009; Doig et al., 2010;
Foster et al., 2021). MD is an important target of ventral striatum
via projections to VP and VP projections directly and indirectly
(via the thalamic reticular nucleus) to MD (O’Donnell et al.,
1997). A further level of complexity is added by thalamostriatal
projections from midline and intralaminar nuclei that appear
organized to control the integration of cortical and limbic inputs
by medium spiny neurons in striatum (Doig et al., 2010).
The importance of these thalamostriatal projections has been
revealed by behavioral evidence that intralaminar and striatal
lesions produce comparable deficits. Thus, intralaminar lesions
produce delay-independent impairment of RT and accuracy
for operant DMTP, consistent with lesions of ventral and
dorsomedial striatum (Figure 6; Burk and Mair, 1998, 2001a);
delay-independent impairment of varying- and recurring-choice
radial maze DNMTP consistent with lesions of ventral and
dorsomedial striatum (Figure 4; Mair et al., 1998, 2002; Bailey
and Mair, 2004); and VSRT deficits consistent with dorsolateral
striatal lesions (Figure 4; Burk and Mair, 2001b; Bailey et al.,
2002; Mair et al., 2002). Similarly, Kato et al. (2011, 2018) used
selective immunotoxic methods to demonstrate distinct roles
for thalamostriatal projections originating in the parafascicular
and central lateral intralaminar nuclei on the acquisition
and performance of a visual discrimination task, consistent
with functions mediated by dorsal striatal regions innervated
by these nuclei.

CONCLUSION

(1) Medial prefrontal cortex (mPFC) interacts with the
basal ganglia and thalamus to support functions that
allow organisms to control actions intended to obtain
desired outcomes (or goals). These include prospective
anticipation of potential action outcomes, selection and
maintenance of motor goals, and motor preparation;
concurrent control and monitoring of ongoing actions;
and retrospective updating of information and strategies to
guide future behavior.

(2) Medial prefrontal cortex is organized with dorsal regions
prominently connected with sensory and motor cortices
controlling motor planning, prospective decision making,
motor response memory, and flexible responding based
on trial-specific sensory cues. Ventral areas have more
prominent connections with hippocampus, amygdala, and
limbic areas of cortex and are important for anticipating
action outcomes, fear learning and extinction, and systems
memory consolidation.

(3) Electrophysiological recordings during DNMTP reveal
neurons with responses related to actions and outcomes
distributed throughout mPFC. Although there is no
sudden transition apparent when electrodes are driven
ventrally through mPFC, there are significant trends for
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neurons with responses related to motor preparation,
lever press actions, and movements between levers
to be distributed in dorsal mPFC and neurons with
responses related to reward anticipation, movements
toward reinforcement, and memory delay to be more
frequent in ventral mPFC. Inactivation of central thalamus
affects the expression of action- and outcome-related
responses in mPFC. The inclusion of choice responses
during DNMTP trials engages mPFC neurons to respond
to task-relevant information.

(4) Lesion studies indicate that dorsal striatum is important
for associative and sensorimotor control and ventral
striatum for reward and motivational control of goal-
directed behaviors. Deficits produced by striatal lesions
parallel the effects of lesions damaging anatomically
related areas of mPFC. Large scale mapping studies have
described extensive reconfiguration and integration of
corticostriatal projections into striatal subnetworks that
provide a structural basis for information processing and
functional heterogeneity within striatum.

(5) Multiple thalamic nuclei have afferent and efferent
connections with mPFC that appear organized to
control different aspects of goal-directed responding.
The mediodorsal nucleus (MD) is the main source of
focal thalamic input to middle layers of mPFC. Recent
evidence indicates that MD amplifies and sustains
activity in mPFC neurons that encodes information
about actions and outcomes important for rapid trial-
by-trial learning, complex decision making, and working
memory. The intralaminar nuclei have thalamostriatal and
thalamocortical projections that control transmission of
information in cortico-basal ganglia networks. Behavioral
studies have confirmed that intralaminar lesions have
broad effects on functions that depend on mPFC and
striatum. The ventral medial nucleus has prominent
connections with dorsal regions of mPFC and adjacent
sensorimotor cortex that support integrative motor
responses. The ventral midline reuniens and rhomboid
nuclei provide a critical link between mPFC and
hippocampus and play a critical role in spatial and

contextual memories and systems memory consolidation.
The interoanteromedial (IAM) and anterior medial
(AM) nuclei are nodes in pathways linking mPFC
with hippocampus important for allocentric spatial
learning and memory. While lesion studies indicate that
mPFC lesions do not impair allocentric spatial memory,
reciprocal connections with AM and IAM provide a link
between mPFC and hippocampal-related systems that
mediates this function.

(6) Comparisons of neuronal activity in mPFC, MD thalamus,
and ventral pallidum (VP) reveal important similarities
and differences for information represented in these areas
in rats performing a dynamic DNMTP task. Neurons in
mPFC exhibit responses related to motor preparation,
reward anticipation, and prospective memory delays not
observed in VP. Responses related to motor preparation
and prospective memory delays are also not observed
in MD. Although reward anticipation responses are
observed in MD, these are delayed and less robust. This
suggests that mPFC exerts top-down control of prospective
processes anticipating action outcomes, selecting motor
goals, and preparing to execute action sequences. VP, by
contrast, is dominated by neurons with responses related to
reward delivery and reward-related actions consistent with
evidence that VP provides feedback about action outcomes
and affects the vigor of outcome-related responses.
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