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Where Best to Hold a
Drum Fast∗

Steven J. Cox†

Paul X. Uhlig‡

Abstract. Allowed to fasten, say, one-half of a drum’s boundary, which half produces the lowest
or highest bass note? The answer is a natural limit of solutions to a family of extremal
Robin problems for the least eigenvalue of the Laplacian. We produce explicit extremizers
when the drum is a disk, while, for general shapes, we establish existence and necessary
conditions, and build and test a pair of numerical methods.
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1. Introduction. We consider the fundamental mode of vibration of a drumhead
that is fastened along part of its boundary and free on the remainder. More precisely,
we study the least eigenvalue of

−∆u = ξu in Ω,
u = 0 on Γ,
∂u

∂n
= 0 on ∂Ω \ Γ,

where Ω is a smooth, open, bounded, connected, planar set and Γ is a measurable
subset of its boundary. We denote this least eigenvalue by ξ1(Γ) and seek its extremes
as Γ varies over subsets of ∂Ω of prescribed measure.

We begin the analysis of our model problem by expressing the two boundary
conditions in the single equation

1Γu+ (1− 1Γ)∂u/∂n = 0 on ∂Ω,(1.1)

where 1Γ denotes the characteristic function of Γ. With an eye toward a convenient
variational characterization of ξ1(Γ) we note that (1.1) is not a boundary condition of
the third (or Robin) type. To achieve this the coefficient of ∂u/∂n must be constant.
Before blindly dividing through by 1 − 1Γ we introduce a simple regularization. In
particular, we arrive at (1.1) in the limit as ε→ 0 in

1Γu+ (1 + ε− 1Γ)∂u/∂n = 0 on ∂Ω,
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or equivalently,

ε−11Γu+ ∂u/∂n = 0 on ∂Ω.(1.2)

Physically, the drumhead remains free on ∂Ω \Γ while on Γ it is elastically supported
by a fastener of stiffness 1/ε. We denote by ξε1(Γ) the least eigenvalue of −∆ subject
to (1.2). This boundary condition is indeed of the third type and so we may record
the weak formulation∫

Ω
∇u · ∇v dx+ ε−1

∫
∂Ω

1Γuv ds = ξ

∫
Ω
uv dx ∀ v ∈ H1(Ω),(1.3)

and the associated variational characterization

ξε1(Γ) = inf
u∈H1

1 (Ω)

∫
Ω
|∇u|2 dx+ ε−1

∫
∂Ω

1Γu
2 ds,(1.4)

where H1
1 (Ω) is the class of H1(Ω) functions with L2(Ω) norm 1. The advantage of

the chosen regularization lies in the fact that, in both (1.3) and (1.4), the underlying
function space does not vary with Γ.

We now fix a number γ ∈ (0, 1) (the Dirichlet fraction) and formulate the optimal
design problems whose solutions will determine the range of ξε1(Γ) as Γ varies over
those subsets of ∂Ω of size γ|∂Ω|. In particular, we study

inf
1Γ∈adγ(∂Ω)

ξε1(Γ) and sup
1Γ∈adγ(∂Ω)

ξε1(Γ),

where

adγ(∂Ω) ≡ {1Γ : Γ ⊂ ∂Ω, |Γ| = γ|∂Ω|},

and |Γ| denotes the one-dimensional Hausdorff measure of Γ. Generally speaking,
we shall see that minimal designs favor a connected Γ while maximal designs tend
to fragment or smear Γ. Accordingly, in section 2, we establish the existence of
minimizers and (relaxed) maximizers by showing that ξε1 is weak* continuous on the
weak* closure of adγ(∂Ω). In section 3 we characterize minimizers via first order
necessary conditions and provide an explicit minimal design for the disk. In section
4 analogous first order conditions lead to the uniqueness of the maximizer and its
characterization in terms of the normal derivative of the first eigenfunction of the pure
Dirichlet problem. In section 5 we construct distinct approaches to the numerical
minimization and maximization of ξε1. We test these methods on elliptical and L-
shaped drums in section 6.

Though isoperimetric inequalities for mixed and Robin problems have received
considerable attention (see, e.g., Bandle [1]), the paper of Buttazzo [5] appears to be
the first and only to consider an extremal Robin problem on a fixed domain. Upon
completion of our original work we learned that Denzler [14] had been simultaneously
pursuing the same set of questions. Via methods quite distinct from those invoked
here he showed that ξ1 attains its minimum on adγ(∂Ω) and that the supremum of
ξ1 is λ1(Ω), the least Dirichlet eigenvalue.

Our problem is but one example from the large class of problems in the field of
boundary “control” or “reinforcement.” Analytical work on the latter has benefitted
from the early studies of Brézis, Caffarelli, and Friedman [4], [6], [18]. These works,
as well as those in the engineering literature, e.g., Mroz and Rozvany [21] and Chuang
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and Hou [7], do not confine themselves to extremizing the principal eigenvalue. Ac-
cordingly, we note that the methods developed here were applied in Cox and Uhlig
[13] to the minimal compliance fastening of elastic bodies and plates. That is, under
a prescribed body force, f , we secure the boundary in a fashion that minimizes the
work done by f . For the plate problem, this amounts to minimizing the compliance∫

Ω
wf dx

over, as above, Γ ⊂ ∂Ω, |Γ| = γ|∂Ω|, where w is the displacement of the loaded,
partially clamped plate,

∆2w = f in Ω,
w = ∂w/∂n = 0 on Γ.

2. Existence. We shall denote by L(∂Ω, [0, 1]) those measurable functions on ∂Ω
that take values in the interval [0, 1]. With respect to the weak* topology on L∞(∂Ω),
Friedland [17] has shown the following proposition.

Proposition 2.1. The weak* closure of adγ(∂Ω) is

ad∗γ(∂Ω) ≡
{
θ ∈ L(∂Ω, [0, 1]) :

∫
∂Ω
θ(x) ds = γ|∂Ω|

}
.

In addition, adγ(∂Ω) is the set of extreme points of ad∗γ(∂Ω).
For θ ∈ ad∗γ(∂Ω) we denote by ξε1(θ) the first eigenvalue of −∆ subject to

ε−1θu+ ∂u/∂n = 0 on ∂Ω.(2.1)

The analogous variational characterization

ξε1(θ) = inf
u∈H1

1 (Ω)
Rε(u, θ) where Rε(u, θ) ≡

∫
Ω
|∇u|2 dx+ ε−1

∫
∂Ω
θu2 ds(2.2)

leads immediately to

0 < ξε1(θ) ≤ λ1(Ω) ∀ θ ∈ ad∗γ(∂Ω) and ∀ ε > 0,(2.3)

where λ1(Ω) is the first eigenvalue of −∆ subject to Dirichlet conditions over the
entire boundary. As Rε(u, θ) = Rε(|u|, θ) it follows from (2.2) that ξε1(θ) is simple
and may be associated with a nonnegative eigenfunction.

Proposition 2.2. The mapping θ �→ ξε1(θ) is continuous with respect to the
weak* topology on L(∂Ω, [0, 1]).

Proof. Suppose θn
∗
⇀ θ and that un is the positive first eigenfunction, associated

with θn, normalized such that∫
Ω
u2
n dx = 1 and

∫
Ω
|∇un|2 dx+ ε−1

∫
∂Ω
θnu

2
n ds = ξε1(θn).(2.4)

From (2.3) and (2.4) it follows that {un}n is bounded inH1(Ω) and hence that un ⇀ u
in H1(Ω) and un → u in L2(Ω) and the traces un|∂Ω → u|∂Ω in L2(∂Ω). In addition,
ξε1(θn)→ ξ. These observations permit us to pass to the limit in the weak form

∫
Ω
∇un · ∇v dx+ ε−1

∫
∂Ω
θnunv ds = ξε1(θn)

∫
Ω
unv dx,
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and so conclude that ξ and u constitute an eigenpair for θ. As u is positive it follows
that ξ = ξε1(θ).

As ad∗γ(∂Ω) is weak* compact, Corollary 2.3 now follows.
Corollary 2.3. inf1Γ∈adγ(∂Ω) ξ

ε
1(Γ) = minθ∈ad∗γ(∂Ω) ξ

ε
1(θ) and

sup
1Γ∈adγ(∂Ω)

ξε1(Γ) = max
θ∈ad∗γ(∂Ω)

ξε1(θ).

Our interest is in characterizing those θ at which ξε1 attains its extremes. A
number of previous studies have produced lower and upper bounds for ξε1(θ).

Regarding the latter, such bounds are typically achieved by replacing θ with a
constant and Ω with a disk. Pólya and Szegö accomplish this for starlike Ω via the
method of similar level lines; see Bandle [1, Thm. III.3.21]. Hersch uses conformal
transplantation and so requires that Ω merely be simply connected. More precisely,
he demonstrates (see [1, Thm. III.3.17]) that

ξε1(θ,Ω) ≤ ξε1(γ|∂Ω|/|∂DΩ|, DΩ) ∀ θ ∈ ad∗γ(∂Ω),(2.5)

where DΩ is the disk with radius equal to the conformal radius of Ω. Of course when
Ω is itself a disk this result states that θ ≡ γ is maximal. The construction of useful
lower bounds is considerably more difficult. All attempts to bound ξε1(θ) from below
apply only to the case of constant θ. We cite Philippin [22], Bossel [3], and Sperb [24].

We note that the reciprocal problem, namely, extremizing the least eigenvalue of
−∆ subject to

ε−1u+ θ∂u/∂n = 0 on ∂Ω,

arises naturally in Friedman [18] and Cox, Kawohl, and Uhlig [12].

3. Minimizing ξε1. We show that θ �→ ξε1(θ) possesses a classical, i.e., adγ(∂Ω),
minimizer. We compute it in the case of the disk, while in the general case we produce
pointwise optimality conditions.

Returning to (2.2) we recognize that θ �→ ξε1(θ) is an infimum of affine functions
of θ. As a result, we have Proposition 3.1.

Proposition 3.1. θ �→ ξε1(θ) is concave on ad∗γ(∂Ω).
If we now recall (see, e.g., Bauer [2]) that a bounded concave function on a com-

pact convex set attains its minimum at an extreme point, we arrive at Corollary 3.2.
Corollary 3.2. θ �→ ξε1(θ) attains its minimum on adγ(∂Ω).
We now produce an explicit minimizer in the case that Ω is a disk, D. This is

accomplished through circular symmetrization, defined as follows.
Given v ∈ H1(D) we take u(r, t) = v(x), where x = r(cos t, sin t) and −π < t ≤ π.

Now, at each r we replace t �→ u(r, t) with its symmetrically increasing rearrangement

u∨(r, t) = inf {c : t ∈ {s : u(r, s) ≤ c}∗},

where A∗ is simply the interval (−|A|/2, |A|/2). One then takes v∨(x) ≡ u∨(r, t)
to be the circular (increasing about t = 0) rearrangement of v. The corresponding
symmetrically decreasing rearrangement is

u∧(r, t) = u∨(r, π − |t|).

As a simple example we note that if 1Γ ∈ adγ(∂D), then

1∧Γ(t) = 1Γ∗ =
{

1 if |t| ≤ γπ,
0 otherwise.
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We now recall (see, e.g., Cox and Kawohl [11]) that circular rearrangement cannot
increase the Dirichlet integral and that u∨ and 1∧Γ are oppositely ordered. As a result,

Rε(v, 1Γ) ≥ Rε(v∨, 1Γ∗) ∀ (v, 1Γ) ∈ H1
1 (D)× adγ(∂D),

and so we have Proposition 3.3.
Proposition 3.3. 1Γ �→ ξε1(1Γ) attains its minimum at 1Γ∗ .
As 1Γ∗ is clearly independent of ε we proceed to let ε approach 0. Our preliminary

result does not require the domain to be a disk.
Lemma 3.4. If Γ ⊂ ∂Ω, then ξε1(1Γ)→ ξ1(1Γ) as ε→ 0.
Proof. Let uε ∈ H1

1 (Ω) denote the eigenfunction associated with ξε1(1Γ). Now,
recalling (2.3), we find

∫
Ω
|∇uε|2 dx+ ε−1

∫
Γ
u2
ε dx = ξε1(1Γ) ≤ λ1(Ω).(3.1)

As a result, {uε}ε>0 is clearly bounded in H1(Ω), and moreover
∫

Γ
u2
ε dx = O(ε).

Hence (a subsequence of) uε converges weakly in H1(Ω) to some u0 ∈ H1
1 (Ω,Γ),

those functions in H1
1 (Ω) with vanishing trace on Γ. We now show that u0 is the

eigenfunction associated with ξ1(1Γ). Taking the limit inferior throughout (3.1) gives
∫

Ω
|∇u0|2 dx ≤ lim inf

ε→0
ξε1(Γ).

Now if there exists a u ∈ H1
1 (Ω,Γ) and a δ > 0 for which
∫

Ω
|∇u|2 dx ≤

∫
Ω
|∇u0|2 dx− δ,

then (3.1) implies Rε(u, 1Γ) < ξε1(Γ) for some ε, contrary to Rayleigh’s principle.
Hence,

ξ1(Γ) =
∫

Ω
|∇u0|2 dx ≤ lim inf

ε→0
ξε1(Γ).

The simple observation, ξε1(Γ) ≤ ξ1(Γ), completes the argument.
Corollary 3.5. 1Γ �→ ξ1(1Γ) attains its minimum at 1Γ∗ .
In Figure 1 we have plotted 1Γ∗ for γ = 1/2 on the disk of unit diameter, along

with the contours of the associated first eigenfunction, computed by the pdeeig rou-
tine in MATLAB [20] via a piecewise linear approximation on 259,328 triangles. The
computed value of ξ1(1Γ∗) is 4.86.

As the eigenvalue problem for such a design does not yield to separation of vari-
ables we return to the question posed at the close of the last section, namely, Can
one bound ξ1(1Γ∗) from below? Even in this simplest of all possible geometries our
best analytical bound requires the majority of the boundary to be Dirichlet. More
precisely, if Ω is the disk of radius R and γ > 1/2, then

ξ1(1Γ∗) ≥
2γ − 1
2R2 j20 ,
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Fig. 1 Minimal fastening of the disk.

where j0 is the first zero of the Bessel function J0. This follows from Bandle’s gener-
alization of a result of Nehari; see [1, Thm. III.3.9].

We now return to a general domain and denote by θ̌ε the minimizer of ξε1 over
ad∗γ(∂Ω). We take ǔε ∈ H1

1 (Ω) to be the positive eigenfunction associated with θ̌ε

and record

ξε1(θ̌
ε) = Rε(ǔε, θ̌ε) = min

θ∈ad∗γ(∂Ω)
min

u∈H1
1 (Ω)
Rε(u, θ) = min

u∈H1
1 (Ω)

min
θ∈ad∗γ(∂Ω)

Rε(u, θ).

In other words,

Rε(ǔε, θ̌ε) = min
u∈H1

1 (Ω)
Rε(u, θ̌ε) and Rε(ǔε, θ̌ε) = min

θ∈ad∗γ(∂Ω)
Rε(ǔε, θ).

The former simply states that ǔε is an eigenfunction corresponding to θ̌ε. The latter,
however, informs us that∫

∂Ω
θ̌ε|ǔε|2 ds = min

θ∈ad∗γ(∂Ω)

∫
∂Ω
θ|ǔε|2 ds.(3.2)

We remove the integral constraint on θ̌ε at the cost of a Lagrange multiplier. More
precisely, from the Lagrange multiplier rule [8, Thm. 6.1.1], we deduce that (3.2)
implies the existence of ν1 ≥ 0 and |ν1|+ |ν2| > 0 such that

∫
∂Ω
θ̌ε(ν1|ǔε|2 + ν2) ds = min

θ∈L(∂Ω,[0,1])

∫
∂Ω
θ(ν1|ǔε|2 + ν2) ds.(3.3)

From ν1|ǔε|2 ≥ 0 we deduce from (3.3) that ν2 ≤ 0.
If ν2 = 0, then (3.3) implies that θ̌εǔε must vanish on the full boundary. Now the

boundary condition, (2.1), implies that ǔε is a Neumann eigenfunction. As ǔε does
not change sign, it can only be the constant eigenfunction. Now θ̌εǔε = 0 implies that
θ̌ε is identically zero, contrary to its integral constraint. Therefore, ν2 < 0.
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Now, if ν1 = 0, then, as ν2 < 0, (3.3) implies that θ̌ε is identically 1, contrary to
its integral constraint. Therefore, ν1 > 0.

With ν2 ≡ −ν2/ν1 we deduce from (3.3) the following pointwise necessary condi-
tions:

θ̌ε(x) = 0 ⇒ ǔε(x) ≥ ν,(3.4)
0 < θ̌ε(x) < 1 ⇒ ǔε(x) = ν,(3.5)

θ̌ε(x) = 1 ⇒ ǔε(x) ≤ ν.(3.6)

Recalling that θ̌ε may be assumed a member of adγ(∂Ω), it follows that θ̌ε jumps
across a level set of the trace of its corresponding eigenfunction, ǔε.

4. Maximizing ξε1. Recalling (2.5) we begin with a simple proof of the fact that
constant θ is maximal for the disk. Noting only that uγ , the eigenfunction corre-
sponding to θ ≡ γ on the disk, is radial we find

ξε1(θ) ≤ Rε(uγ , θ) = Rε(uγ , γ) = ξε1(γ) ∀ θ ∈ ad∗γ(∂D).(4.1)

With regard to general Ω we shall see that where the maximizing θ is neither zero nor
1 the trace of its corresponding eigenfunction is, like uγ , constant. In addition, we
establish uniqueness of the maximizer and show that when it lies everywhere between
zero and 1 it is (to lowest order in ε) proportional to the normal derivative of the first
Dirichlet eigenfunction on Ω.

The first step is the derivation of pointwise conditions analogous to (3.4)–(3.6).
These shall stem from knowledge of the gradient of θ �→ ξε1(θ).

Proposition 4.1. θ �→ ξε1(θ) is smooth and

〈∂ξε1(θ), ψ〉 = ε−1
∫
∂Ω
ψu2 ds,

where u ∈ H1
1 (Ω) is the nonnegative eigenfunction associated with θ.

Proof. The gradient of a simple eigenvalue of a self-adjoint operator is the gradient
of the Rayleigh quotient evaluated at the corresponding eigenfunction. See Cox [10]
for details.

If θ̂ε maximizes ξε1 over ad∗γ(∂Ω), then ∂ξε1(θ̂
ε) ∈ Nad∗γ(∂Ω)(θ̂ε), the cone of normals

to ad∗γ(∂Ω) at θ̂ε. As ad∗γ(∂Ω) is convex this means that

〈∂ξε1(θ̂ε), θ̂ε〉 = max
θ∈ad∗γ(∂Ω)

〈∂ξε1(θ̂ε), θ〉,

that is,
∫
∂Ω
θ̂ε|ûε|2 ds = max

θ∈ad∗γ(∂Ω)

∫
∂Ω
θ|ûε|2 ds,(4.2)

where ûε is the positive eigenfunction corresponding to θ̂ε. As above, in order to shed
the integral constraint, we invoke the Lagrange multiplier rule of Clarke. This gives
a ν1 ≤ 0 and ν2 for which |ν1|+ |ν2| > 0 and

∫
∂Ω
θ̂ε(ν1|ûε|2 + ν2) ds = max

θ∈L(∂Ω,[0,1])

∫
∂Ω
θ(ν1|ûε|2 + ν2) ds.(4.3)



82 STEVEN J. COX AND PAUL X. UHLIG

From ν1|ûε|2 ≤ 0 we deduce from (4.3) that ν2 > 0. Similarly, ν1 < 0. With
ν2 ≡ −ν2/ν1 we arrive at the pointwise necessary conditions

θ̂ε(x) = 0 ⇒ ûε(x) ≤ ν,(4.4)

0 < θ̂ε(x) < 1 ⇒ ûε(x) = ν,(4.5)

θ̂ε(x) = 1 ⇒ ûε(x) ≥ ν.(4.6)

From Proposition 3.1 we note that these conditions are also sufficient.
A further consequence of (4.2) is that (ûε, θ̂ε) is a saddle point of Rε, i.e.,

Rε(ûε, θ) ≤ Rε(ûε, θ̂ε) ≤ Rε(u, θ̂ε) ∀ (u, θ) ∈ H1
1 (Ω)× ad∗γ(∂Ω).

From this observation comes Proposition 4.2.
Proposition 4.2. θ̂ε is unique.
Proof. Suppose that θ1 and θ2 are both maximizers of θ �→ ξε1(θ) and that u1 and

u2 are the respective first eigenfunctions. We find

Rε(u1, θ2) ≤ Rε(u1, θ1) ≤ Rε(u2, θ1),
Rε(u2, θ1) ≤ Rε(u2, θ2) ≤ Rε(u1, θ2).

However, as Rε(u1, θ1) = Rε(u2, θ2) we find that u1 and u2 are both eigenfunctions
for θ1 and hence u1 = u2. Recalling the respective weak forms we find

∫
∂Ω

(θ1 − θ2)u1v ds = 0 ∀ v ∈ H1(Ω),

and hence θ1 = θ2 on the support of u1|∂Ω, the trace of u1. Off of the support of
u1|∂Ω it follows from (4.4) that θ1 = θ2 = 0.

From uniqueness we are able to ascertain symmetry. In particular, if Ω is symmet-
ric with respect to a line &, we may reflect θ̂ε across & to θ̂ε
 . By simply reflecting the
associated ûε it follows that ξε1(θ̂

ε) = ξε1(θ̂
ε

 ) and hence, by uniqueness, that θ̂ε = θ̂ε
 .

We have proven the following proposition.
Proposition 4.3. θ̂ε is symmetric about every line of symmetry of Ω.
This leads to a third proof of (4.1).
Proposition 4.4. If Ω is a disk, then θ̂ε ≡ γ. Disks are the only (smooth) sets

with a constant maximizer.
Proof. Full symmetry implies that θ̂ε must be constant. The only admissible

constant is γ. Given a constant maximizer, it follows from (4.5) that ǔε is identically
ν on ∂Ω. From the boundary condition, (2.1), we then find that ∂ǔε/∂n = −νγ/ε on
∂Ω. Serrin [23, Thm. 2] has shown that a disk is the only C2 domain on which one
may solve (∆ + ξ)u = 0 subject to constant Dirichlet and Neumann data.

If Ω = Da is a disk of radius a, then u(r) = J0(
√
ξr) is a radial solution of

−∆u = ξu. The best eigenvalue, ξε1(γ), is therefore the least positive ξ for which

γu(a) + εu′(a) = 0.

It follows immediately, then, that ξε1(γ)→ λ1(Da) as ε→ 0, where λ1(Da) is the least
positive root of λ �→ J0(

√
λa), i.e., the first Dirichlet eigenvalue of Da. This approach

to the Dirichlet eigenvalue holds in fact for every domain Ω.
Proposition 4.5. If θ̂ε maximizes θ �→ ξε1(θ) over adγ(∂Ω), then ξε1(θ̂

ε)→ λ1(Ω)
as ε→ 0.
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Proof. As ξε1(γ) ≤ ξε1(θ̂ε) ≤ λ1(Ω) it suffices to show that

λ1(Ω) ≤ lim inf
ε→0

ξε1(γ).(4.7)

Let us denote by uε1 ∈ H1
1 (Ω) the positive eigenfunction corresponding to ξε1(γ). As

‖uε1‖2 = 1 and ‖∇uε1‖22 ≤ λ1(Ω) it follows that there exists a u1 ∈ H1
1 (Ω) for which

uε1 ⇀ u1 in H1(Ω) as ε→ 0. Given the normalization of uε1 we find that

γ

∫
∂Ω
|uε1|2 ds = ε

∫
Ω
|∇uε1|2 dx+ εξε1(γ)→ 0

as ε → 0, i.e., uε1|∂Ω → 0 in L2(∂Ω). As uε1|∂Ω → u1|∂Ω in L2(∂Ω) it follows that
u1 ∈ H1

0 (Ω). Now, given the weak lower semicontinuity of u �→ ‖∇u‖22 and the
nonnegativity of the boundary term, we find

∫
Ω
|∇u1|2 dx ≤ lim inf

ε→0

∫
Ω
|∇uε1|2 dx+

γ

ε

∫
∂Ω
|uε1|2 ds = lim inf

ε→0
ξε1(γ).

As u1 ∈ H1
0 (Ω) and ‖uε1‖2 = 1 it follows from Rayleigh’s principle that the left-hand

side is larger than λ1(Ω). This establishes (4.7).
This proposition addresses the limiting behavior of the eigenvalue but says nothing

about the limiting optimal design. We shall now show that if the limiting design takes
values strictly between 0 and 1, then it is proportional to the normal derivative of the
first Dirichlet eigenfunction.

We begin at the necessary condition (4.5) and note that for constant ν and ξ <
λ1(Ω) one may solve

−∆u = ξu in Ω, u = ν on ∂Ω,

in terms of the Dirichlet eigenfunctions, {φj}, and Dirichlet eigenvalues, {λj}, of Ω.
In particular,

u = ν + νξ
∞∑
j=1

〈φj , 1〉
λj − ξ

φj .

The Robin condition (2.1) now suggests

θ = − ε
ν

∂u

∂n
= −εξ

∞∑
j=1

〈φj , 1〉
λj − ξ

∂φj
∂n
.(4.8)

Integrating this expression over ∂Ω we find

γ|∂Ω| =
∫
∂Ω
θ ds = −εξ

∞∑
j=1

〈φj , 1〉
λj − ξ

∫
∂Ω

∂φj
∂n

ds = εξ
∞∑
j=1

〈φj , 1〉2
λj − ξ

λj .(4.9)

We view this as an equation for ξ. As the right side is continuous and strictly in-
creasing from 0 (at ξ = 0) to ∞ (at ξ = λ1(Ω)), there exists a unique solution, ξε1,
depending smoothly on ε. Expressing ξε1 as a power series, identification of like powers
in (4.9) brings

ξε1 = λ1(Ω)− λ
2
1(Ω)〈φ1, 1〉2
γ|∂Ω| ε+O(ε2).(4.10)
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Substituting this into (4.8) we arrive at

θε = γ
∂φ1

∂n

/
∂φ1

∂n
+O(ε), where

∂φ1

∂n
=

1
|∂Ω|

∫
∂Ω

∂φ1

∂n
ds.(4.11)

Hence, if θ̂ε takes values strictly between 0 and 1 it must necessarily be of this form.
Moreover, as the necessary conditions are also sufficient, whenever the above deriva-
tion produces an admissible design this design is maximal. Regarding the admissibility
of θε we note that, by construction, it is nonnegative and has the correct average. It
remains only to check whether it is bounded above by 1. One scenario in which this
bound is assured is when Ω is smooth (in which case φ1 ∈ C1(Ω)) and ε and γ are
sufficiently small. Finally, we remark that (4.10) provides a nice refinement of Propo-
sition 4.5 in that it expresses, in terms of the Dirichlet fraction, γ, the rate at which
ξε1(θ̂

ε) approaches λ1(Ω).

5. Algorithms. We confine the design, θ, and the eigenfunction, u, to finite-
dimensional spaces and so arrive at optimization problems amenable to a computer.
We write ∂Ω as the closure of the disjoint union of m open edges, {Γj}mj=1, and then
restrict θ to

θ(s) =
m∑
j=1

Θj1Γj (s),

where Θ ∈ Rm satisfies the box constraints

0 ≤ Θj ≤ 1, j = 1, . . . ,m,(5.1)

and the integral constraint

m∑
j=1

Θj |Γj | = γ|∂Ω|.(5.2)

In order to compute ξε1 at such a θ we restrict our search to eigenvectors of the form

u(x) =
p∑
i=1

UiTi(x),

where p < ∞ and the Ti comprise a so-called Galerkin basis for a p-dimensional
subspace of H1(Ω). On substituting this expansion into the weak form (1.3) with v
running through the Ti we arrive at the p× p eigensystem

(K + ε−1Q(Θ))U = ΞMU,(5.3)

where K and M are independent of Θ while

Qij(Θ) =
∫
∂Ω
θTiTj ds =

m∑
k=1

Θk

∫
Γk
TiTj ds.(5.4)

Let us denote the least eigenvalue of (5.3) by Ξε1(Θ). As this approximation procedure
respects the symmetry of the original problem we retain a variational characterization,

Ξε1(Θ) = min
〈MU,U〉=1

Rε(U,Θ), Rε(U,Θ) ≡ 〈(K + ε−1Q(Θ))U,U〉.(5.5)
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As Θ �→ Q(Θ) is linear it follows from (5.5) that Θ �→ Ξε1(Θ) is concave. Now, denoting
by AD∗γ those Θ ∈ Rm satisfying (5.1) and (5.2), we may pose the finite-dimensional
optimization problems

min
Θ∈AD∗γ

Ξε1(Θ) and max
Θ∈AD∗γ

Ξε1(Θ).

As AD∗γ is compact and convex and Ξε1 is bounded and concave, it follows that Θ �→
Ξε1(Θ) attains its minimum at an extreme point of AD∗γ , i.e., on ADγ , those Θ ∈ AD∗γ
each component of which is either zero or one.

Let us now turn to the gradient of Θ �→ Ξε1(Θ). For well-chosen basis functions,
e.g., piecewise linear hats, it can be shown that Ξε1(Θ)→ ξε1(θ) as m and p approach
∞. In particular, Ξε1(Θ) is simple for sufficiently large m and p. As a result we may
apply the finite-dimensional analogue of Proposition 4.1,

∂Ξε1(Θ)
∂Θk

=
1
ε

〈
∂Q(Θ)
∂Θk

Uε1 , U
ε
1

〉
,(5.6)

where the associated eigenvector, Uε1 , is normalized according to 〈MUε1 , Uε1 〉 = 1.
The implementation of (5.6), in particular the application of ∂Q(Θ)/∂Θk, requires a
careful accounting of the assembly of Q. Recalling (5.4) we find

∂Qij(Θ)
∂Θk

=
∫

Γk
TiTj ds.

To begin, let us evaluate these integrals under the assumption that Γk is the interval
[a, b] and that this interval is partitioned by the first components of the grid points
xi = (si, 0), i.e.,

a = s1 < s2 < · · · < sn−1 < sn = b.

We also suppose Ti(xj) = δij and that Ti is piecewise linear. As a result,

∫
Γk
TiTj ds =

1
3




|s1 − s2| if i = j = 1,
|si−1 − si|+ |si − si+1| if 1 < i = j < n,
|sn−1 − sn| if i = j = n,
|si − sj |/2 if |i− j| = 1,
0 otherwise.

Substituting the above into (5.6) we find

∂Ξε1(Θ)
∂Θk

=
1
3ε

n−1∑
i=1

{
(Uε1 )

2
i + (Uε1 )i(U

ε
1 )i+1 + (Uε1 )

2
i+1
}
|si+1 − si|.

In the general case, i.e., where the Ti remain piecewise linear though Γk may be a
planar segment whose edges and grid points are ordered by a black-box grid generator
(as in MATLAB’s PDE toolbox), the gradient takes the form

∂Ξε1(Θ)
∂Θk

=
1
3ε

∑
i∈Ik

〈Uε1 〉i|ωi|, 〈Uε1 〉i ≡ (Uε1 )
2
ω+
i

+ (Uε1 )ω+
i
(Uε1 )ω−

i
+ (Uε1 )

2
ω−
i

,(5.7)

where Ik is the set of indices of mesh edges ωi contained in Γk and ω±i are the indices
of the grid points constituting the endpoints of ωi. From here it is a simple matter
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to derive the finite-dimensional analogues of our pointwise optimality conditions. In
particular, if each Γk corresponds to a single mesh edge and Θ̌ε ∈ ADγ is a classical
minimizer of Ξε1 and Ǔε1 its associated eigenvector, then there exists a ν such that

Θ̌ε
k = 0⇒ 〈Ǔε1 〉k > ν,

Θ̌ε
k = 1⇒ 〈Ǔε1 〉k < ν.

(5.8)

These conditions are reminiscent of those that arise in Krein’s problem of the optimal
distribution of mass; see, e.g., Cox [9]. As such we apply the simple alternating search
strategy of [9] to our minimum problem. More precisely, given Θ(j) ∈ ADγ ,

(I) compute U (j), the minimizer of U �→ Rε(U,Θ(j)); subject to 〈MU,U〉 = 1;
(II) compute Θ(j+1), the minimizer of Θ �→ Rε(U (j),Θ); subject to Θ ∈ ADγ ;
(III) if Θ(j+1) �= Θ(j), then set j = j + 1 and go to (I).

The implementation of (I) simply requires the solution of (5.3) with Θ = Θ(j). The
optimality conditions (5.8) animate the implementation of (II). More precisely, we
compute J ≡ {k : 〈U (j)〉k < ν}, where ν is chosen in such a way that

∑
k∈J
|Γk| = γ|∂Ω|,

and then define

Θ(j+1)
k =

{ 1 if k ∈ J ,
0 otherwise.

This completes our description of the minimization algorithm.
With respect to the maximization problem, recalling that we have a smooth,

concave function subject only to box and linear constraints, we may invoke any of a
number of standard optimization packages.

6. Numerical Results. For the maximization of Ξε1 we used the constr function
found in MATLAB’s Optimization Toolbox. The assembly of (5.3) and the computa-
tion of Ξε1 and Uε1 was carried out by the pdeeig function found in MATLAB’s PDE
toolbox. Given Uε1 we coded the gradient computation, (5.7), ourselves. We present
here the results of our computations for two representative domains.

In the first case we consider the drumhead whose boundary is an ellipse. Recalling
the discussion at the close of section 4 we expect the maximizer, Θ̂ε, as ε → 0, to
coincide with

Φ ≡ γ ∂φ1

∂n

/
∂φ1

∂n
,

the product of γ and the normalized normal derivative of the first Dirichlet eigenfunc-
tion of the ellipse. For the purpose of illustration we have, in Figure 1, plotted the
underlying ellipse, the contours of the associated eigenfunction, φ1, and the graph of
its corresponding maximal fastener, Φ, with γ = 1/2. The eigenfunction was com-
puted at the p = 96,545 vertices of 191,488 triangles. The boundary was partitioned
into m = 100 edges and the associated Dirichlet eigenvalue was 20.45. Next, we set
ε = 10r, let r range from 0 to −6, and denote by Θ̂10r the maximizer returned by
constr on the grid quoted above using the default stopping criteria. We measured
the pointwise distance from Θ̂10r to Φ via

R(r) ≡ ‖Φ− Θ̂10r‖∞ ≡ max
k
|Φk − Θ̂10r

k |
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Fig. 2 ‖Φ− Θ̂ε‖∞ as ε→ 0.

Fig. 3 The limiting maximal fastener, Φ.

and have recorded its graph in Figure 2. That no improvement is seen for ε < 10−3 is
most likely due to the fact that our computed Φ is itself only accurate to 10−2. It is
clear from Figure 3 that the maximal fastener is inversely related to the curvature of
the boundary. Grieser and Jerison [19] have developed tools with which to quantify
this last statement.
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Fig. 4 Maximal fastening of the L.

As a nonconvex example, we pursue the maximizer over the L-shaped region
familiar to users of MATLAB. It is well known (see, e.g., Fox, Henrici, and Moler [16])
that the gradient of the first Dirichlet eigenfunction is not bounded in a neighborhood
of the reentrant corner. As a result, we may not expect (4.11) to hold along the
entire boundary. In Figure 4 we have plotted Θ̂ε, the maximizer returned by constr
along with the level sets of its corresponding eigenfunction. Working over a grid of
p = 49,665 vertices, 97,792 triangles, and m = 192 boundary segments with ε = 10−3

and γ = 1/2, we found ξε1(Θ̂
ε) ≈ 9.59. Note that the level sets indeed resemble those

of the first Dirichlet eigenfunction and that Θ̂ε behaves like a clipped version of its
normal derivative.

We now consider maximal fastening of both convex and nonconvex solids or “res-
onators.” We do not invoke an optimization scheme here but simply rely on (4.11),
the representation of the maximal fastener in terms of the normal derivative of the
first Dirichlet eigenfunction. We present in Figure 5 plots of the normal derivative of
the first Dirichlet eigenfunction for a cube, a torus, and a cone. Blue corresponds to
small values, while red denotes large. These plots were achieved in FEMLAB [15], a
three-dimensional PDE solver for MATLAB. The cube and the cone, as in the planar
case, require the greatest fastening in the center of their “flattest” faces, and very
little fastening in regions where the faces meet. The torus mimics the planar “L”
in the sense that the greatest fastening is required in the region of negative Gauss
curvature.

Finally, we wish to present numerical results for the minimization problem. As
above, we concentrate on the ellipse and the L. With respect to the former we offer
in Figures 6 and 7, respectively, the initial iterate supplied to, and final iterate deliv-
ered by, the alternating search minimization algorithm presented at the close of the
previous section. The domain was approximated by 13,374 triangles with p = 7288
vertices. Its boundary was partitioned into m = 1200 edges. With γ = 1/2 and
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Fig. 5 Maximal fastening of three solids. Blue ≈ Neumann and red ≈ Dirichlet.

ε = 0.1 the algorithm came to rest in 69 iterations. The eigenvalue, 6.68, of the initial
iterate was diminished to 3.07. In both cases we have also plotted the contours of the
associated eigenfunction.

The initial and final iterates, along with the contours of their associated eigen-
functions, for the L-shaped drum are depicted in Figures 8 and 9. In this case the
domain was approximated by 18,238 triangles with p = 9936 edges. Its boundary was
partitioned into m = 1632 edges. With γ = 1/2 and ε = 0.01 the algorithm came to
rest in 31 iterations and reduced the eigenvalue of the initial iterate, 4.08, to 0.88. We
note that the final iterate pulled the Dirichlet data away from the reentrant corner
and wrapped it around the outer corner. The resulting eigenvalue is indeed less than
1.09, the eigenvalue of the L with Dirichlet data on the three legs above the diagonal
x = y.
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Fig. 6 Initial iterate.

Fig. 7 Final iterate.
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Fig. 8 Initial iterate.

Fig. 9 Final iterate.
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