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Where do inertial particles go in fluid flows?
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Abstract

We derive a general reduced-order equation for the asymptotic motion of finite-size particles in unsteady fluid flows. Our inertial equation is a

small perturbation of passive fluid advection on a globally attracting slow manifold. Among other things, the inertial equation implies that particle

clustering locations in two-dimensional steady flows can be described rigorously by the Q parameter, i.e., by one-half of the squared difference

of the vorticity and the rate of strain. Use of the inertial equation also enables us to solve the numerically ill-posed problem of source inversion,

i.e., locating initial positions from a current particle distribution. We illustrate these results on inertial particle motion in the Jung–Tél–Ziemniak

model of vortex shedding behind a cylinder in crossflow.

c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finite-size or inertial particle dynamics in fluid flows can

differ markedly from infinitesimal particle dynamics: both

clustering and dispersion are well-documented phenomena

in inertial particle motion, while they are absent in the

incompressible motion of infinitesimal particles. As we show

in this paper, these peculiar asymptotic features are governed

by a lower-dimensional inertial equation which we determine

explicitly.

Let u(x, t) denote the velocity field of a two- or three-

dimensional fluid flow of density ρ f , with x referring to

spatial locations and t denoting time. The fluid fills a compact

(possibly time-varying) spatial region D with boundary ∂D; we

assume that D is a uniformly bounded smooth manifold for

all times. We also assume u(x, t) to be r times continuously

differentiable in its arguments for some integer r ≥ 1. We

denote the material derivative of u by

Du

Dt
= ut + (∇u)u,

where ∇ denotes the gradient operator with respect to x.

∗ Corresponding author. Tel.: +1 617 452 3064.
E-mail address: ghaller@mit.edu (G. Haller).

Let x(t) denote the path of a finite-size particle of density

ρp immersed in the fluid. If the particle is spherical, its velocity

v(t) = ẋ(t) satisfies the equation of motion (cf. Maxey and

Riley [13] and Babiano et al. [2])

ρpv̇ = ρ f

Du

Dt
+ (ρp − ρ f )g

− 9νρ f

2a2

(

v − u − a2

6
∆u

)

− ρ f

2

[

v̇ − D

Dt

(

u + a2

10
∆u

)]

− 9ρ f

2a

√

ν

π

∫ t

0

1√
t − s

[

v̇(s) − d

ds

(

u + a2

6
∆u

)

x=x(s)

]

ds.

(1)

Here ρp and ρ f denote the particle and fluid densities,

respectively, a is the radius of the particle, g is the constant

vector of gravity, and ν is the kinematic viscosity of the

fluid. The individual force terms listed in separate lines on the

right-hand side of (2) have the following physical meaning:

(1) force exerted on the particle by the undisturbed flow, (2)

buoyancy force, (3) Stokes drag, (4) added mass term resulting
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from part of the fluid moving with the particle, and (5) the

Basset–Boussinesq memory term. The terms involving a2
∆u

are usually referred to as the Fauxén corrections.

For simplicity, we assume that the particle is very small

(a ≪ 1), in which case the Fauxén corrections are negligible.

We note that the coefficient of the Basset–Boussinesq memory

term is equal to the coefficient of the Stokes drag term times

a/
√

πν. Therefore, assuming that a/
√

ν is also very small,

we neglect the last term in (2), following common practice

in the related literature (Michaelides [14]). We finally rescale

space, time, and velocity by a characteristic length scale L ,

characteristic time scale T = L/U and characteristic velocity

U , respectively, to obtain the simplified equations of motion

v̇ − 3R

2

Du

Dt
= −µ (v − u) +

(

1 − 3R

2

)

g, (2)

with

R = 2ρ f

ρ f + 2ρp

, µ = R

St
, St = 2

9

( a

L

)2
Re,

and with t , v, u and g now denoting nondimensional variables.

Variants of Eq. (2) have been studied by Babiano, Cartwright,

Piro and Provenzale [2], Benczik, Toroczkai and Tél [5], and

Vilela, de Moura and Grebogi [20].

In Eq. (2), St denotes the particle Stokes number and

Re = U L/ν is the Reynolds number. The density ratio R

distinguishes neutrally buoyant particles (R = 2/3) from

aerosols (0 < R < 2/3) and bubbles (2/3 < R < 2). In the

limit of infinitely heavy particles (R = 0), Eq. (2) become the

Maxey–Riley equations derived originally in [13]. The 3R/2

coefficient represents the added mass effect: an inertial particle

brings into motion a certain amount of fluid that is proportional

to half of its mass. For neutrally buoyant particles, the equation

of motion is simply D
Dt

(v − u) = −µ (v − u), i.e., the relative

acceleration of the particle is equal to the Stokes drag acting on

the particle.

Rubin, Jones and Maxey [17] studied (2) with R = 0 in

the special case when u describes a two-dimensional cellular

steady flow model. They used a geometric singular perturbation

approach developed by Fenichel [8] to understand particle

settling in the flow. The same technique was employed by

Burns et al. [7] in the study of particle focusing in the wake

of a two-dimensional bluff body flow, which is steady in a

frame co-moving with the von Kármán vortex street. Recently,

Mograbi and Bar-Ziv [15] discussed this approach for general

steady velocity fields and made observations about the possible

asymptotic behaviors in two dimensions.

Here we consider finite-size particle motion in general

unsteady velocity fields, extending Fenichel’s geometric

approach from time-independent to time-dependent vector

fields. Such an extension has apparently not been considered

before in dynamical systems theory, thus the present work

should be of interest in other applications of singular

perturbation theory where the governing equations are non-

autonomous. We construct an attracting slow manifold that

governs the asymptotic behavior of particles in system (2).

We also obtain an explicit dissipative equation, the inertial

equation, that describes the flow on the slow manifold. This

equation has half the dimension of the Maxey–Riley equation;

this fact simplifies both the qualitative analysis of inertial

dynamics and the numerical tracking of finite-size particles.

For two-dimensional steady flows, we use the inertial

equation to give a complete description of the asymptotic

behavior of aerosols, bubbles, and neutrally buoyant particles.

For general unsteady flows, we show how the inertial equation

can be used to locate the initial positions of dispersed

particles. Such source inversion is not possible using the full

Maxey–Riley equation, because for µ ≫ 1, the −µu term in

(2) causes numerical solutions to blow up quickly in backward

time. We illustrate the forward- and backward-time use of the

inertial equation on the von Kármán vortex-street model of

Jung, Tél and Ziemniak [12].

2. Singular perturbation formulation

The derivation of the equation of motion (2) is only correct

under the assumption µ ≫ 1, which motivates us to introduce

the small parameter

ǫ = 1

µ
≪ 1,

and rewrite (2) as a first-order system of differential equations:

ẋ = v,

ǫv̇ = u(x, t) − v + ǫ
3R

2

Du(x, t)

Dt
+ ǫ

(

1 − 3R

2

)

g. (3)

This formulation shows that x is a slow variable changing

at O(1) speeds, while the fast variable v varies at speeds of

O(1/ǫ).

To transform the above singular perturbation problem to a

regular perturbation problem, we select an arbitrary initial time

t0 and introduce the fast time τ by letting

ǫτ = t − t0.

This type of rescaling is standard in singular perturbation theory

with t0 = 0. The new feature here is the introduction of a

nonzero present time t0 about which we introduce the new fast

time τ . This trick enables us to extend the existing singular

perturbation techniques to unsteady flows.

Denoting differentiation with respect to τ by prime, we

rewrite (3) as

x′ = ǫv,

φ′ = ǫ,

v′ = u(x, φ) − v + ǫ
3R

2

Du(x, φ)

Dt
+ ǫ

(

1 − 3R

2

)

g, (4)

where φ ≡ t0 + ǫτ is a dummy variable that renders the above

system of differential equations autonomous in the variables

(x, φ, v) ∈ D × R × R
n ; here n is the dimension of the domain

of definition D of the fluid flow (n = 2 for planar flows, and

n = 3 for three-dimensional flows).
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Fig. 1. (a) The geometry of the domain D0. (b) The attracting set of fixed points M0; each point p in M0 has an n-dimensional stable manifold f s
0 (p) (unperturbed

stable fiber at p) satisfying (x, φ) = const.

Fig. 2. (a) The geometry of the slow manifold Mǫ . (b) A trajectory intersecting a stable fiber f s
ǫ (p) converges to the trajectory through the fiber base point p.

3. Slow manifold and inertial equation

The ǫ = 0 limit of system (4),

x′ = 0, (5)

φ′ = 0,

v′ = u(x, φ) − v,

has an n + 1-parameter family of fixed points satisfying v =
u(x, φ). More formally, for any time T > 0, the compact

invariant set

M0 = {(x, φ, v) : v = u(x, φ), x ∈ D, φ ∈ [t0 − T, t0 + T ]}

is completely filled with fixed points of (5). Note that M0 is a

graph over the compact domain

D0 = {(x, φ) : x ∈ D, φ ∈ [t0 − T, t0 + T ]};

we show the geometry of D0 and M0 in Fig. 1.

Inspecting the Jacobian

d

dv
[u(x, φ) − v]M0

= −In×n,

we find that M0 attracts nearby trajectories at a uniform expo-

nential rate of exp(−τ) (i.e., exp(−t/ǫ) in terms of the original

unscaled time). In fact, M0 attracts all the solutions of (5) that

satisfy (x(0), φ(0)) ∈ D× [t0 − T, t0 + T ]; this can be verified

using the last equation of (5), which is explicitly solvable for

any constant value of x and φ. Consequently, M0 is a compact

normally hyperbolic invariant set that has an open domain of

attraction. Note that M0 is not a manifold because its boundary

∂ M0 = ∂D × [t0 − T, t0 + T ]
⋃

D × {t0 − T }
⋃

D × {t0 + T }

has corners; M0 − ∂ M0, however, is an n + 1-dimensional nor-

mally hyperbolic invariant manifold.

By the results of Fenichel [8] for autonomous systems,

any compact normally hyperbolic set of fixed points on (5)

gives rise to a nearby locally invariant manifold for system

(4). (Local invariance means that trajectories can only leave

the manifold through its boundary.) In our context, Fenichel’s

results guarantee the existence of ǫ0 (t0, T ) > 0, such that for

all ǫ ∈ [0, ǫ0), system (4) admits an attracting locally invariant

manifold Mǫ that is O(ǫ)Cr -close to M0 (see Fig. 2). The

manifold Mǫ can be written in the form of a Taylor expansion

Mǫ =
{

(x, φ, v) : v = u(x, φ) + ǫu1(x, φ) + · · ·

+ ǫr ur (x, φ) + O(ǫr+1), (x, φ) ∈ D0

}

; (6)

the functions uk(x, φ) are as smooth as the right-hand side of

(3). Mǫ is a slow manifold, because (4) restricted to Mǫ is a



576 G. Haller, T. Sapsis / Physica D 237 (2008) 573–583

slowly varying system of the form

x′ = ǫv|Mǫ

= ǫ

[

u(x, φ) + ǫu1(x, φ) + · · · + ǫr ur (x, φ) + O(ǫr+1)

]

.

(7)

We find the functions uk(x, φ) using the invariance of Mǫ ,

which allows us to differentiate the equation defining Mǫ in (6)

with respect to τ . Specifically, differentiating

v = u(x, φ) +
r
∑

k=1

ǫkuk(x, φ) + O(ǫr+1)

with respect to τ gives

v′ = uxx′ + uφφ′ +
r
∑

k=1

ǫk
[

uk
xx′ + uk

φφ′
]

+ O(ǫr+1), (8)

on Mǫ , while restricting the v equations in (3) to Mǫ gives

v′ =
[

u − v + ǫ
3R

2

Du

Dt
+ ǫ

(

1 − 3R

2

)

g

]

Mǫ

= −
r
∑

k=1

ǫkuk(x, φ) + ǫ
3R

2

Du

Dt
+ ǫ

(

1 − 3R

2

)

g. (9)

Comparing terms containing equal powers of ǫ in (8) and (9),

then passing back to the original time t , we obtain the following

result.

Theorem 1. For small ǫ > 0, the equation of particle motion

(7) on the slow manifold Mǫ can be rewritten as

ẋ = u(x, t) + ǫu1(x, t) + · · · + ǫr ur (x, t) + O(ǫr+1), (10)

where r is an arbitrary but finite integer, and the functions

ui (x, t) are given by

u1 =
(

3R

2
− 1

)[

Du

Dt
− g

]

,

uk = −
[

Duk−1

Dt
+ (∇u) uk−1 +

k−2
∑

i=1

(

∇ul
)

uk−l−1

]

,

k ≥ 2. (11)

We shall refer to (10) with the ui (x, t) defined in (11)

as the inertial equation associated with the velocity field

u(x, t), because (10) gives the general asymptotic form of

inertial particle motion induced by u(x, t). A leading-order

approximation to the inertial equations is given by

ẋ = u(x, t) + ǫ

(

3R

2
− 1

)[

Du(x, t)

Dt
− g

]

; (12)

this is the lowest-order truncation of (10) that has nonzero

divergence, and hence is capable of capturing clustering or

dispersion arising from finite-size effects.

The above argument renders the slow manifold Mǫ over the

fixed time interval [t0 − T, t0 + T ]. Since the choice of t0 and

T was arbitrary, we can extend the existence result of Mǫ to an

arbitrary long finite time interval.

Fig. 3. Sudden changes in the velocity-field delay convergence to the slow

manifold.

Slow manifolds are typically not unique, but obey the

same asymptotic expansion (11). Consequently, any two slow

manifolds and the corresponding inertial equations are O(ǫr )

close to each other. Specifically, if r = ∞, then the difference

between any two slow manifolds is exponentially small in ǫ.

The case of neutrally buoyant particles (R = 2/3) turns out to

be special: the slow manifold is the unique invariant surface

Mǫ = {(x, φ, v) : v = u(x, φ), (x, φ) ∈ D0} ,

on which the dynamics coincides with those of infinitesimally

small particles. This invariant surface survives for arbitrary

ǫ > 0, as noticed by Babiano et al. [2], but may lose its stability

for larger values of ǫ (cf. Sapsis and Haller [18]).

4. Convergence to the slow manifold

The results of Fenichel [8] guarantee exponential conver-

gence of solutions of (4) to the slow manifold Mǫ . Translated

to the original variables, exponential convergence with a uni-

form exponent to the slow manifold is only guaranteed over the

compact time interval [t0 − T, t0 + T ].

Over finite time intervals, exponentially dominated conver-

gence is not necessarily monotone. For instance, if the velocity

field suddenly changes, say, at speeds comparable to O (1/ǫ),

then converged solutions may suddenly find themselves again at

an increased distance from the slow manifold before they start

converging again (cf. Fig. 3). Again, this is the consequence of

the lack of compactness in time, which results in a lack of uni-

form exponential convergence to the slow manifold over infinite

times.

Where do solutions converging to the slow manifold tend

asymptotically? Observe that for ǫ = 0, each solution

converging to M0 is confined to an n-dimensional plane

f s
0 (p) =

{(

xp, φp, v
)

: p =
(

xp, φp, u(xp, φp)
)

∈ M0

}

.

Fenichel refers to f s
0 (p) as the stable fiber associated with the

point p: each trajectory in f s
0 (p) converges to the base point of

the fiber, p. More generally, a stable fiber has the property that

each solution intersecting the fiber converges exponentially in

time to the solution passing through the base point of the fiber.

The collection of all fibers intersecting M0 is called the stable

foliation of M0, or simply the stable manifold of M0.

Fenichel [8] showed that the stable foliation of M0 smoothly

persists for small enough ǫ > 0. Specifically, associated with
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each point p ∈ Mǫ , there is an n-dimensional manifold f s
ǫ (p)

such that any solution of (4) intersecting f s
ǫ (p) will converge at

an exponential rate to the solution that runs through the point p

on Mǫ . The persisting stable fibers f s
ǫ (p) are Cr smooth in ǫ,

hence they are O(ǫ)Cr -close to the invariant planes f s
0 (p), as

indicated in Fig. 2(b).

5. Use of the slow manifold and inertial equation

5.1. Asymptotics of finite-size particle motion

A general particle motion (x(t), v(t)) is attracted to a

specific solution within the slow manifold Mǫ . This specific

solution runs through the base points of stable fibers intersected

by (x(t), v(t)). As a result, the forward-time asymptotic

behaviors seen on the slow manifold are the only possible

asymptotic behaviors for general inertial particle motion.

Rapid changes in the velocity field u(x, t) in time will lead to

rapid changes in the slow manifold, as seen from the definition

of Mǫ in (6). In that case, particles that have already converged

to the slow manifold may find themselves further away from the

slow manifold (whose location has rapidly changed). Particles

will converge exponentially to the new location of the slow

manifold, but may again find themselves temporarily at a large

distance from the manifold if a further rapid change occurs in

the velocity field.

5.2. Source inversion: Tracing particles in backward time

Finding a localized source of particle release based on

later observation of the particles is of interest in several

applications. Such a source-inversion problem appears, for

instance, in locating the source of airborne or waterborne

pollution from the observations of a dispersed pollutant

(Akcelik et al. [1], Boano et al. [6], Badia et al. [3], Katopodes

Chow et al. [11]). In such applications, locating the source

involves approximating the ill-posed backward-time solution of

the appropriate advection–diffusion equation.

Even without diffusion, however, source-inversion for

finite-size particles is challenging. Technically speaking, the

equations of motion (4) are well-posed in backward time: they

have unique solutions with continuous dependence on initial

data. Nevertheless, (4) generates strong exponential growth

with exponent 1/ǫ for decreasing t . This strong instability leads

to an inevitable and speedy numerical blowup in backward-time

integration.

By contrast, the inertial equation (10) is free from the above

instability, and hence can be solved in backward time without

difficulty. This enables us to recover the starting position x(t0)

of any solution (x(t), v(t)) as follows.

Theorem 2. Let ϕ(t; t0, x0) denote at time t the solution of

the inertial equation (10) that starts from x0 at time t0. Let

(x(t; t0, x0, v0), v(t; t0, x0, v0)) denote at time t the solution of

the full Maxey–Riley equation (3) that starts from (x0, v0) at

time t0. Then for any fixed (x0, v0) and for small enough ǫ > 0,

we have

|ϕ (t0; t, x(t; t0, x0, v0)) − x0| = O(ǫ).

Fig. 4. Source inversion for inertial particles using the slow manifold.

In other words, at any time t, we can recover the starting

position x0 of an inertial particle by first projecting the

corresponding solution of (3) onto the slow manifold along the

v direction, then solving the inertial equation (10) backwards

from time t to t0. This procedure leads to a point x̂(t0) =
ϕ (t0; t, x(t; t0, x0, v0)) that is O(ǫ) close to the starting point

x0 (cf. Fig. 4).

Proof. Our projection onto the slow manifold takes place along

the ( · ,t, x(t)) subspace, i.e., along an unperturbed stable fiber

through the point (x(t; t0, x0, v0), t, v(t; t0, x0, v0)). Therefore,

by the smoothness of fibers in ǫ, the resulting projected point

p on Mǫ is O(ǫ) close to the base point p̂ of the stable

fiber f s
ǫ ( p̂) that contains (x(t; t0, x0, v0), t, v(t; t0, x0, v0)).

Let q =
(

x̂(t0), v̂(t0)
)

be the point on the slow manifold

that we obtain by following the solution through the point

p from time t backwards to time t0. Note that x̂(t0) =
ϕ (t0; t, x(t; t0, x0, v0)). By the invariance and smoothness of

the stable fiber family, the fiber f s
ǫ (q) will be O(ǫ) Cr−1

close to f s
ǫ (q∗), the fiber containing the initial condition

(x(t0), t0, v(t0)) . Since f s
ǫ (q∗) is in turn O(ǫ) Cr−1 close to

an unperturbed stable fiber (the n-dimensional v-plane running

through q∗), we conclude that (x̂(t0), t0), the (x,t)-projection of

q , is O(ǫ)-close to (x(t0), t0). Therefore, backward-integration

after projection onto the slow manifold recovers the initial

condition of a trajectory with O(ǫ) error. Note that the initial

velocity v(t0) is not recovered by this procedure. �

6. Special case: Inertial particles in two-dimensional steady

flows

For 0 < ǫ ≪ 1, all finite-size particle trajectories tend

exponentially fast to the slow manifold. As a result, asymptotic

particle behavior in steady flows is governed by the steady

inertial equation

ẋ = u(x) + ǫu1(x) + · · · + ǫr ur (x) + O(ǫr+1), (13)

where the functions uk defined in (11) are computed from the

steady velocity field u(x).

Eq. (13) is an autonomous ordinary differential equation

(ODE) for the particle trajectory x(s). The qualitative theory

of such ODEs is fairly complete in the two-dimensional case;

this fact leads to powerful general conclusions about the

asymptotics of finite-size particle dynamics in two-dimensional

flows. The results derived below use the inertial equation to
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make specific predictions about inertial particle motion in two-

dimensional steady flows (see also Mograbi and Bar-Ziv [15]

for some general observations about the same subject).
Let us first define the quantity

Q(x, t) = 1

2

(

|Ω(x, t)|2 − |S(x, t)|2
)

, (14)

with |·| denoting the Euclidean matrix norm, and with the

vorticity tensor Ω and the rate-of-strain tensor S defined as

Ω = 1

2

[

∇u − (∇u)T
]

, S = 1

2

[

∇u + (∇u)T
]

. (15)

For later use, we also define a specially weighted average of the

of Q along a closed streamline Γ0 of the velocity field u(x):

I (Γ0) =
∫

Γ0

(2 − 3R) Q

|u| ds.

Finally, we denote the interior of Γ0 by Int(Γ0).
We note that Q, the second scalar invariant of the velocity

gradient ∇u, is broadly used as an indicator of the stability

of two-dimensional fluid particle motion. Specifically, the

Okubo–Weiss criterion (Okubo [16], Weiss [19]) identifies

Q > 0 regions as elliptic (vortex-type) and Q < 0 regions as

hyperbolic (saddle-type). This classification is based on ad hoc

arguments that can only be justified near stagnation points of

steady flows (Basdevant and Philipovitch [4]); away from such

stagnation points, the criterion has been shown to be incorrect

(Haller and Yuan [9]).
While ill-justified for infinitesimal particle motion, Q turns

out to be a rigorous tool for predicting the asymptotic behavior

of finite-size particles. Specifically, we have the following

result.

Theorem 3. For ǫ > 0 small enough:

(i) A typical aerosol in a compact steady flow will converge

to a closed curve Γǫ that is O(ǫ) C1-close to a closed

streamline Γ0 of u(x). This Γ0 satisfies
∫

Int(Γ0)

Q dA = 0,

∫

Int(Γ−)

Q dA > 0 >

∫

Int(Γ+)

Q dA

(16)

for all closed streamlines Γ− and Γ+ close enough to Γ0

with the property Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). If Γ0

contains no fixed points, then Γǫ is stable limit cycle, and

condition (16) is equivalent to
∫

Int(Γ0)

Q dA = 0, I (Γ0) < 0. (17)

(ii) A typical bubble in a compact steady flow will converge to

either a center-type fixed point of (2) or a closed curve Γǫ

that is O(ǫ) C1-close to a closed streamline Γ0 of u(x).

This Γ0 satisfies
∫

Int(Γ0)

Q dA = 0,

∫

Int(Γ−)

Q dA < 0 <

∫

Int(Γ+)

Q dA

(18)

for all closed streamlines Γ− and Γ+ close enough to Γ0

with the property Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). If Γ0

contains no fixed points, then Γǫ is a stable limit cycle,

and condition (18) is equivalent to
∫

Int(Γ0)

Q dA = 0, I (Γ0) > 0.

(iii) A typical neutrally buoyant particle will converge to a

streamline of u(x).

(iv) A saddle-type fixed point of the two-dimensional steady

velocity field will act as a saddle for any finite-size particle

motion (i.e., for aerosols, bubbles, and neutrally buoyant

particles).

Proof. See the Appendix. �

The term typical in statements (i)–(iii) above is meant to

exclude atypical trajectories that are in the stable manifold of

a saddle fixed point of (10) and hence converge to that saddle.

7. Example: Inertial particles in the unsteady wake of a

cylinder

7.1. Model flow

To illustrate our results, we consider inertial particle motion

in the von Kármán vortex street model of Jung, Tél and

Ziemniak [12]. Finite-size particle motion in this flow has

already been studied numerically by Benczik, Toroczkai and

Tél [5], who showed the existence of attractors for certain

parameter values.
Assuming incompressibility for the vortex street, we have a

stream function for the flow, which Jung, Tél and Ziemniak [12]

assume in the form

Ψ(x, y, t) = f (x, y)g(x, y, t), (19)

with

f (x, y) = 1 − exp

(

−a−1/2

(

(

x2 + y2
)1/2

− 1

)2
)

. (20)

This form of f (x, y) ensures the correct no-slip boundary

behavior for the flow at the cylinder surface that satisfies

x2 + y2 = 1. The coefficient a−1/2 represents the width of the

boundary layer. The factor g in (19) models the contributions

of the shed vortices and the background flow u0 to the full flow.

More specifically,

g(x, y, t) = −wh1(t)g1(x, y, t) + wh2(t)g2(x, y, t)

+ u0 ys(x, y). (21)

The first two terms in (21) describe the alternating creation,

evolution and damping of two vortices of equal strength. The

quantities w and hi (t) represent the overall vortex strength and

amplitudes, respectively. Because of the alternating nature of

the vortices, we have a constant phase difference of half-period

Tc/2 between the strength of the two vortices, i.e. h2(t) =
h1 (t − Tc/2) . To describe the time evolution of the vortex

strengths, we choose

h1(t) = |sin (π t/Tc)| . (22)
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Fig. 5. Streamlines of the model flow at t = 0.4.

The vortex centers are assumed to move parallel to the x-axis

at a constant speed, satisfying

x1(t) = 1 + L [(t/Tc) mod1] , x2(t) = x1 (t − Tc/2) ,

y1(t) = −y2(t) ≡ y0.

The shape of the shed vortices is controlled by the factor

gi (x, y, t) = exp
(

−R0

[

(x − xi (t))
2 + α2(y − yi (t))

2
])

,

where R
1/2
0 is the characteristic vortex size, and α is an aspect

ratio parameter.

Finally, the last term in Eq. (21) represents the contribution

of the background flow of uniform velocity u0. The factor

s (x, t) is introduced in order to simulate the shielding of the

background flow just behind the cylinder; it is taken to be of the

form

s(x, y) = 1 − exp
(

−(x − 1)2/α2 − y2
)

.

As in Jung, Tél and Ziemniak [12], we choose a set of

parameters for which the model has been shown to approximate

the Navier–Stokes solution for this geometry with Re ≈ 250.

More specifically, we set the nondimensional parameter values

α = 2, R0 = 0.35, L = 2, a = 1 and y0 = 2. For the

background flow velocity, we choose u0 = 14/Tc, while the

average strength of the vortices is taken to be w = 8 × 24/π

as in Benczik, Toroczkai and Tél [5]. As shown by Jung, Tél

and Ziemniak [12], the above set of parameters leads to a flow

period of Tc = 1.107. We show a representative snapshot of the

corresponding flow in Fig. 5.

7.2. Slow-manifold in the model flow

Here we show that the inertial equation (10) indeed gives

the correct asymptotic motion of finite-size particles in this

example. For particles, we choose bubbles with R = 1.55 and

ǫ = 0.01. Gravity is ignored in the model (g = 0). First, we

solve the full four-dimensional Maxey–Riley equation (3) on

the time interval [0, 1.12] using a fourth-order Runge–Kutta

algorithm with absolute integration tolerance 10−7. We release

several bubbles with their initial spatial location taken from the

grey circle shown in Fig. 6. The initial velocities of all particles

were taken much larger in absolute value than the velocities

corresponding to the same initial location on the slow manifold.

In the same figure, we also show the projection of the four-

dimensional solution of (3) onto the x = (x, y) plane. Note that

all bubbles converge to the same attracting fluid trajectory.

Fig. 6. Simulated bubble motion in the full Maxey–Riley equations.

Fig. 7. Simulated bubble motion in the truncated inertial equation (12).

By contrast, Fig. 7 shows the dynamics on the slow

manifold Mǫ . To generate this picture, we used the same

initial bubble locations on Mǫ to solve the truncated inertial

equation (12) over the same time interval. Over an initial

period of exponentially fast decay to Mǫ , the trajectories and

their projections on the slow manifold only show qualitative

similarities; the details of their geometries differ, especially

while they pass through a moving vortex behind the cylinder.

This is not surprising: even two very close initial positions on

the slow manifold will generate noticeably different trajectories

in regions with sensitive dependence on initial conditions.

In the present example, however, there exists a downstream

moving attractor on the slow manifold (cf. Fig. 7). This attractor

is a distinguished fluid trajectory that attracts all nearby

inertial trajectories and hence ultimately eliminates sensitive

dependence on initial conditions. Fig. 6 shows that solutions

of the full Maxey–Riley equation also cluster around this time-

varying attractor. By working on the slow manifold, we have

reduced the dimension of the particle tracking problem from

four to two, still reproducing the same asymptotic clustering

behavior seen in the full Maxey–Riley equation.

Both in Figs. 6 and 7, we use color to indicate the

instantaneous leading-order geometry of the slow manifold (6)

at time T = 1.2. Specifically, colors ranging from dark blue to

dark red indicate increasing values of |v| = |u(x, T )| , which is

a measure of the “height” of the slow manifold at leading order

in the (x, v) coordinate space.
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Fig. 8. Bubbles released and advected under the full Maxey–Riley equation

(red curves). Particles with the same initial condition released and advected on

the first-order approximation of the slow manifold under the truncated inertial

equation (black curves). Both the cylinder and the approximate slow manifold

are shown in the (x, y, |v|) space. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Final dispersed positions of the full particle trajectories (red curves) and

of their projections on the slow manifold (black curves). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)

7.3. Source inversion in the model flow

We now illustrate the use of the truncated inertial equation

(12) in identifying initial positions of dispersed finite-size

particles. Again, for particles, we choose bubbles with R =
1.55 and ǫ = 0.01. We launch a set of of particles and track

them using the full Maxey–Riley equation; we also track the

evolution of the projected initial locations of the particles on

the slow manifold. Once the particles have dispersed, we stop

them and attempt to trace them back to their initial conditions

by integrating the Maxey–Riley equation and the truncated

inertial equations, respectively, in backward time (the maximal

integration error tolerance is again 10−7 in the fourth-order

Runge–Kutta scheme we use).

Almost immediately, the backward computations for the full

Maxey–Riley equation blow up due to the numerical instability

caused by the −v/ǫ term. By contrast, the inertial equation

on the slow manifold leads us back to the initial locations of

the released particles. All this is documented in Figs. 8–10,

where we track the forward and backward integration projected

from the four-dimensional phase space of Eq. (3) to the space

(x, y, |v|); we also graph the cylinder and the approximate slow

manifold at select times.

Fig. 10. Backward integration from the final dispersed positions. The full

Maxey–Riley trajectories quickly blow up (red curves), while the truncated

inertial equations on the slow manifold yield a correct approximation for the

initial bubble locations (black curves). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this

article.)

8. Conclusions

In this paper, we have described a way to reduce the

Maxey–Riley equation to a slow manifold that captures the

asymptotics of inertial particle dynamics. The slow manifold

arises in a singular perturbation approach that is valid for small

particle Stokes numbers. We treat general unsteady flows, as

opposed to earlier applications of singular perturbation theory

in this context that were restricted to concrete steady flows.

Our main result is an explicit inertial equation for motions on

the slow manifold. For small enough Stokes numbers, particles

approach trajectories of this inertial equation exponentially fast.

It is therefore enough to understand the asymptotic features of

the inertial equation to understand the asymptotics of finite-size

particle motion. We have also shown that the inertial equation

can be used to tackle the numerically ill-posed problem of

source inversion. Finally, we have obtained a full classification

of possible asymptotic features of particle motion in steady

two-dimensional flows. The classification is based on the

Okubo–Weiss parameter Q, which (surprisingly) becomes a

mathematically exact predictive tool once particles are not

infinitesimally small. Specifically, we have derived formulae

involving Q that predict the locations of particle clustering at

points or along limit cycles.

We have illustrated the forward- and backward-time use of

the inertial equation on the vortex-shedding model of Jung, Tél

and Ziemniak [12]. Specifically, we have verified the accuracy

of the slow-manifold approximation in forward time, and that

of our proposed source-inversion technique in backward time.

Extension of our results on steady inertial motion from two

to three-dimensions would be challenging since even three-

dimensional steady flows can be nonintegrable. A natural

candidate class for the extension is nondegenerate steady Euler

flows that are known to be integrable. A further question of

interest is how the stability of the slow manifold changes as

the Stokes number is increased. Initial results in this direction

for neutrally buoyant particles appear in the works of Babiano

et al. [2] and Vilela et al. [20]. Specific results on instabilities

along the slow manifold will appear in Sapsis and Haller [18].
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Appendix. Proof of Theorem 3

A.1. Volume evolution in the inertial equation

For later use, we first compute the change of an infinitesimal

volume V (t) along a solution x(t) of (12). By Liouville’s

theorem, the volume V (t) satisfies

V (t) = V (t0) exp

{

∫ t

t0

∇ ·
[

u(x, s)

+ ǫ

(

3R

2
− 1

)[

Du(x, s)

Dt
− g

]]

x=x(s)

ds

}

(24)

for any choice of the initial time t0. In evaluating the above

expression, we assume that the fluid flow is incompressible,

which implies

∇ · u = 0,

∇ · ∂u

∂t
= ∂

∂t
∇ · u = 0,

∇ · [(∇u)u] = Trace[∇u∇u] = −2Q, (25)

∇ · u1 = ∇ ·
(

3R

2
− 1

)[

Du(x, s)

Dt
− g

]

= (2 − 3R) Q,

with Q defined in (14). Using (25), we rewrite the volume

evolution formula (24) as

V (t) = V (t0) exp

{

ǫ (2 − 3R)

∫ t

t0

Q(x(s), s)ds

}

. (26)

A.2. Fixed points of the inertial equation

As a general rule for steady flows, fixed points of the velocity

field u(x) are also fixed points of the inertial equation (10). This

can be concluded from (11) by noting that u(x0) = 0 implies

uk(x0) = 0 for all k ≥ 1. Also note that for small enough ǫ > 0,

a center-type fixed point of u becomes a center or a spiral of the

inertial equation, because the right-hand-side of (10) is a small

perturbation of u. For the same reason, a saddle-type fixed point

of u is a saddle-type fixed point of (10) for small ǫ > 0, which

proves the statement (iv) of Theorem 3.

To identify the stability of a spiral-type fixed point

perturbing from a center-type fixed point of u, we first recall

that Q > 0 holds at elliptic fixed points (centers) of u. If

x(s) ≡ x0 is a fixed point of the inertial equation, the time

evolution of a infinitesimal volume V (t0) based at x0 can be

computed from (26) as

V (t) = V (t0) exp {ǫ (2 − 3R) Q(x0) (t − t0)} .

Therefore, if x0 is an elliptic fixed point of u(x) (i.e., Q > 0),

then V (t) grows for aerosols (2 − 3R > 0), and shrinks for

bubbles (2 − 3R < 0). For neutrally buoyant particles, the

perturbation terms to u on the right-hand side of (10) are all

zero, therefore a center for u will remain a center for the inertial

equation in the neutrally buoyant case. In summary: center of a

two-dimensional steady velocity field will act as a source for

aerosols, as a sink for bubbles, and as a center for neutrally

buoyant particles.

A.3. Asymptotic dynamics on the slow manifold

Assume now that the steady velocity field u(x) is defined

on a compact two-dimensional planar domain or on a two-

dimensional surface diffeomorphic to a sphere. Then, the slow

manifold Mǫ , as a smooth graph over the domain of definition

of u(x), is also a compact two-dimensional invariant manifold

(with or without boundary). Applying the Poincaré–Bendixson

theorem to Mǫ , we conclude that all trajectories of (10) tend to

a limit cycle, a fixed point, or to a set formed by fixed points

and homoclinic or heteroclinic orbits connecting those fixed

points. Since heteroclinic and homoclinic orbits are structurally

unstable, we conclude that non-neutrally-buoyant particles in

generic compact flows tend to fixed points or limit cycles.

Combining this last observation with the discussion above

on fixed points of the inertial equation, we obtain the following

conclusions:

A.3.1. Aerosols

Aerosols cannot cluster around fixed points: as we have seen

above, fixed points for aerosol dynamics are unstable spirals

or saddles, neither of which can create clustering. As a result,

aerosols will cluster around closed curves Sǫ that are either

limit cycles, or connected sets composed of some combination

of fixed points, homoclinic orbits, and heteroclinic orbits. For

ǫ > 0 small enough, such a closed curve Γǫ is O (ǫ) C1-closed

to a closed streamline Γ0 of the velocity field u(x).

The phase-space volume bounded by Γǫ does not change in

time, therefore
∫

Int(Γǫ)

∇ ·
[

u(x) + ǫu1(x) + · · · + ǫr ur (x) + O(ǫr+1)

]

dV

= ǫ

∫

Int(Γǫ)

∇ ·
[

u1(x) + · · · + ǫr−1ur (x) + O(ǫr )

]

dV = 0.

Dividing by ǫ, taking the ǫ → 0 limit, and using the last

equation in (25), we obtain that
∫

Int(Γ0)

Q dV = 0

must hold for the compact streamline Γ0 of u(x). The closed

curve Γǫ is an attractor if the areas of closed streamlines of

u(x) inside Γ0 increase under the flow of the inertial equation,

and the areas of closed streamlines of u(x) outside Γ0 decrease

under the flow of the inertial equation. This is the case (by (26))

if
∫

Int(Γ−)

Q dV > 0 >

∫

Int(Γ+)

Q dV
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for all closed streamlines Γ− and Γ+ of u(x) that are close

enough to Γ0 and satisfy Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). This

proves formula (16).

Assume now that Γǫ is a nondegenerate (i.e., exponentially

attracting or repelling) limit cycle of the inertial equation. We

recall from Haller and Iacono [10] that in coordinates tangent

and normal to Γǫ , the fundamental matrix solution for the

linearized flow along Γǫ can be written as

Ψ(t, t0) =







e

∫ t
t0

S‖(τ )dτ
∫ t

t0

e
∫ t

s S‖(τ )dτ e

∫ s
t0

[−S‖(τ )+δ(τ )]dτ
a(s)ds

0 e

∫ t
t0

[−S‖(τ )+δ(τ )]dτ






,

(27)

where

v = u + ǫ

(

3R

2
− 1

)[

Du

Dt
− g

]

+ O(ǫ2), (28)

S‖ = 1

2

(

v,
[

∇v + (∇v)T
]

v
)

|v|2

∣

∣

∣

∣

∣

x=x(t,x0)

,

δ(t) = ∇ · v|x=x(t,x0)
,

with x(t, x0) denoting a T -periodic solution on Γǫ . As shown

in Haller and Iacono [10], the parallel strain rate S‖ satisfies

∫ T

0

S‖(t)dt = 0 (29)

along any T -periodic closed orbit of v.

By (27), under one period, infinitesimal perturbations

initially orthogonal to Γǫ grow in the direction normal to Γǫ

by the factor

e
∫ T

0 [−S‖(τ )+δ(τ )]dτ = e
∫ T

0 δ(t)dt = e
∫ T

0 ∇·v|x=x(t,x0)dt
, (30)

where we used (28) and (29). Now, for small ǫ, we can write

x(t, x0) = x̄(t, x0)+ǫx̂(t, x0; ǫ) and T = T̄ +ǫT̂ where x̄(t, x0)

in an unperturbed periodic solution of period T̄ on Γ0. By (24)

and (25), we then have

∫ T

0

∇ · v|x=x(t,x0)
dt =

∫ T

0

∇ ·
[

u(x)

+ ǫ

(

3R

2
− 1

)

Du(x)

Dt
+ O(ǫ2)

]

x=x(t,x0)

dt

= ǫ

(

3R

2
− 1

)∫ T

0

∇ ·
[

Du(x)

Dt

]

x=x(t,x0)

dt + O(ǫ2)

= ǫ (2 − 3R)

∫ T

0

Q (x(t, x0)) dt + O(ǫ2)

= ǫ (2 − 3R)

∫ T̄

0

Q (x̄(t, x0)) dt + O(ǫ2). (31)

Since the arclength s along the closed streamline Γ0 satisfies

ds/dt = |u(x̄(t))| , we finally obtain from (31) the relation

∫ T

0

∇ · v|x=x(t,x0)
dt = ǫ

∫

Γ0

(2 − 3R) Q

|u| ds + O(ǫ2). (32)

We conclude that by (30) and (32), the stability of Γǫ is

determined by the integral

I (Γ0) =
∫

Γ0

(2 − 3R) Q

|u| ds

along Γ0 for small enough ǫ. Specifically, Γǫ is attracting for

I (Γ0) < 0, which proves formula (17), and hence completes

the proof of (i) of Theorem 3.

A.3.2. Bubbles

Based on our earlier discussion on fixed points, bubbles will

either cluster around center-type fixed points of u(x), or around

a closed curve Γǫ that is O (ǫ) C1-close to a closed streamline

Γ0 of u(x). Repeating the above proof for bubbles (2−3R < 0),

we obtain statement (ii) of Theorem 3.

A.3.3. Neutrally buoyant particles

Neutrally buoyant particle dynamics on the slow manifold

is governed by the area-preserving inertial equation ẋ = u(x).

Therefore, typical neutrally buoyant particles will not converge

to fixed points or limit cycles; rather, for small enough ǫ > 0,

such particles will approach streamlines of u(x) exponentially

fast. This proves statement (iii) of Theorem 3.
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