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ABSTRACT 

It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but 

the implications that this has for interpreting sedimentary outcrop has received little attention.  

Here we consider how time is preserved at outcrop using the Neogene-Quaternary Red Crag 

Formation, England.  The Red Crag Formation hosts sedimentological and ichnological 

proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, 

as ancient depositional environments fluctuated between states of deposition, erosion and 

stasis.  We use these to estimate how much time is preserved at outcrop scale and find that 

every outcrop provides only a vanishingly small window onto unanchored weeks to months 

within the 600-800 ka of ‘Crag-time’. Much of the apparently missing time may be accounted 

for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not 

been lost, but is hidden.  The time-completeness of the Red Crag Formation at outcrop 

appears analogous to that recorded in much older rock units, implying that direct comparison 

between strata of all ages is valid and that perceived stratigraphic incompleteness is an 
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inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful 

chronicle of Earth history. 

TIME AND OUTCROP 

It has been recognised for over a century that Earth’s stratigraphic record is time-incomplete, 

and that vertical successions of sedimentary strata are punctuated historical chronicles 

(Barrell, 1917; Dott, 1983).  Unconformities and diastems riddle the rock record at a variety 

of scales (Miall, 2016) and such gaps, of often unknown extent and duration, have 

implications for considering strata as a record of elapsed geological time.  They can skew 

estimates of ancient rates of sedimentation or climate change (Sadler, 1981; Miall, 2015; 

Kemp et al., 2015; Toby et al., 2019), can mean that allogenic signals have been shredded by 

autogenic processes (Jerolmack and Paola, 2010; Foreman and Straub, 2017; Hajek and 

Straub, 2017), and can add a further layer of incompleteness to a fossil record already 

rendered lacking by taphonomic filters (Kowalewski and Bambach, 2003; Holland, 2016; 

Saraswati, 2019).  Furthermore, the overwhelming proportion of ‘missing time’, relative to 

preserved stratigraphic time, has long raised fundamental questions about the veracity of 

strata as a historical archive and whether they can truly represent ancient processes and 

environments.   

A recent upsurge of developments in understanding the time-completeness of the 

stratigraphic record, particularly from a stratigraphic modelling perspective, is 

comprehensively discussed by Miall (2015) and Paola et al. (2018).  Recent advances can be 

summarized as pointing to three recurring themes, namely: 1) Ancient strata are dominantly a 

record of commonplace sedimentary processes and not exceptional events (Jerolmack and 

Paola, 2010; Paola, 2016); 2) The time-dominant sedimentation state under which the 

sedimentary-stratigraphic record accumulated was stasis – that is, ‘neither deposition nor 
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erosion’, rather than ‘either deposition or erosion’ (Tipper, 2015; Davies et al., 2017; 

Foreman and Straub, 2017); and 3) Any time-gaps in the deposition of one vertical 

stratigraphic section of basin fill can have been contemporaneous with deposition of strata 

elsewhere within the same depocentre (Runkel et al., 2008; Reesink et al. 2015; Gani, 2017). 

These emerging understandings have potentially major implications for the way we interpret 

the geological record (e.g., Miall, 2014; Hampson et al., 2015; Durkin et al., 2017; Davies 

and Shillito, 2018; Kocurek and Day, 2018). A better understanding of time-length scales that 

present at rock outcrop is needed because it is common practice for geologists to  focus 

attention at the scale of an individual outcrop or group of outcrops, which provide the most 

tangible point of contact for understanding the physical sedimentary records of ancient 

environments, and their intensive properties (e.g., palaeontological or geochemical 

signatures).   

The purpose of this contribution is to investigate time at outcrop by describing field 

observations that act as proxies for time-completeness, using examples from the Neogene-

Quaternary Red Crag Formation of eastern England; a sub-tidal sedimentary succession that 

is known from a number of discrete, small outcrops.   

THE RED CRAG FORMATION 

The Red Crag Formation is the second oldest unit of the late Cenozoic Crag Group, which 

crops out in eastern England (McMillan et al., 2011; Mathers and Hamblin, 2015; Lee et al., 

2015) and consists of four discrete transgressive formations (the others, from oldest to 

youngest, being the Coralline Crag, Norwich Crag, and Wroxham Crag formations) (Figure 

1). Each of the formations is separated by regional unconformities and all were deposited in 

open marine settings near the landward head of the Crag Basin, a localized embayment in the 

south-west corner of what is now the North Sea.  Although there is some uncertainty in the 
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Red Crag Formation’s precise age, the oldest parts of the unit are agreed to be latest Pliocene 

(Piacenzian) while the youngest are earliest Pleistocene (Gelasian), and the duration of Red 

Crag deposition is consistently reported to be between 600-800 ka (e.g., Zalaciewicz et al., 

1988; Hallam and Maher, 1994; Gibbard et al., 1998; Head, 1998; Maher and Hallam, 2005; 

Williams et al., 2009; Wood, 2009; Wood et al., 2009; McMillan et al., 2011; Riches, 2012; 

Mathers and Hamblin, 2015).  Additionally, it has long been recognised that the unit is 

diachronous and becomes older southwards (Riches, 2012); its oldest strata (an outlier at 

Walton-on-the-Naze, Essex) may be separated from the rest of the unit by an unconformity 

(e.g., Wood et al., 2009). 

Lithologically, the Red Crag Formation consists of poorly-sorted, semi-consolidated, coarse-

grained shelly quartz and carbonate sands which are dark green and glauconitic at depth, but 

which have been weathered to an iron-stained orange-red colour at outcrop (Humphreys and 

Balson, 1985; McMillan et al., 2011).  The sediment usually has an extremely high content of 

aragonitic and calcitic shell debris, although at some locations the upper part of the unit has 

been decalcified to pure quartz sand as a result of later Pleistocene soil development (Kendall 

and Clegg, 2001). Variable palaeocurrent indicators, large-scale cross-bedding, bioturbation, 

and sedimentary structures including flaser bedding and bidirectional cross-strata indicate 

that the unit was primarily deposited by migrating large-scale subtidal sandwaves (Figures 2-

3) (Dixon, 1979, 2005, 2011, Mathers and Zalasiewicz, 1988, Zalasiewicz et al., 1988, 

Balson et al., 1991, Hamblin et al., 1997).   

Outcrops of the Red Crag Formation 

Outcrops of the Red Crag Formation are typically of limited extent, but of good quality for 

discerning its internal sedimentary architecture (Figure 4).  No individual outcrop approaches 

the full 40 metre thickness of the unit, but this can be ascertained from some of the hundreds 
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of boreholes that have been made across unexposed parts of the regional outcrop belt (Figure 

5; British Geological Survey, 2018).  Two primary types of exposed outcrop exist and have 

formed the focus of this study: 1) Crag pits (six outcrops; Figure 4A), which are static inland 

exposures formerly quarried for agricultural and aggregate purposes (O’Connor and Ford, 

2001); and 2) Coastal outcrops (two outcrops; Figure 4B-C), which comprise dynamic natural 

exposures of small cliffs, that are frequently reworked by wave activity along a highly 

erodible and recessive coastline (Environment Agency, 2015).  

Significantly for later discussion in this paper, the vertical cliff faces exposed in both types of 

outcrop are of limited extent: crag pits have a mean height and lateral extent of 5.5 metres 

and 93.5 metres respectively, while coastal outcrops have equivalent dimensions of 9 metres 

and 1555 metres.  

 Further details of the regional geology and specific information on outcrops is available as a 

supplementary file to this paper. 

SEDIMENTATION STATES AND THE PRESERVATION OF TIME 

The sedimentary-stratigraphic record has long been considered to be an archive of elapsed 

time: simplistically, deposited sediment ‘preserves time’ and erosion of that sediment 

‘removes time’.  A time interval is generally considered preserved when a sedimentary 

deposit representing any time from that interval remains in the stratigraphic column at the 

location of interest (Strauss and Sadler, 1989; Paola et al., 2018).  However, this definition of 

preserved time is complicated by the recognition that not all time at a given location would 

have equated to a period of deposition or erosion; in fact, many sedimentary systems will 

have existed in a condition of sedimentary stasis for the majority of the time they were active 

(Dott, 1983; Tipper, 2015; Foreman and Straub, 2017; Paola et al., 2018).   
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Tipper (2015) has suggested that time spent in stasis cannot be preserved because there is 

nothing to be preserved. Yet while this may be conceptually true for understanding how 

synthetic vertical stratigraphic columns record time, it is unsatisfactory for explaining real-

world sedimentary rock outcrops.  If a sedimentary surface, persisting for a duration of 

sedimentary stasis in an active environment, is not eroded, then that surface has the potential 

to accrue information generated by processes and events occurring as time passes during the 

stasis interval: for example as multiple generations of surficial ichnological, microbial, and 

abiotic sedimentary structures, or distinct geochemical or pedological vertical profiles (Miall 

and Arush, 2001; Barnett and Wright, 2008; Christ et al., 2011; Davies et al., 2017; Davies 

and Shillito, 2018; Paola et al., 2018; Shillito and Davies, 2019).  Where such signatures can 

be identified alongside signatures of erosion and deposition, it becomes possible to broadly 

estimate the duration of accrual of a package of sedimentary strata as preserved at a given 

outcrop, with implications for how representative that outcrop may be of ancient sedimentary 

environment. 

Stratigraphic signatures of sedimentation states in the Red Crag at outcrop 

Time spent in different sedimentation states is recorded in different ways in the sedimentary-

stratigraphic signatures of the Red Crag Formation at outcrop. By definition, the most 

obviously recorded sedimentation state is deposition: without deposition there is no sediment 

accumulation, and so time spent in this state is recorded as the sediment pile itself.  Likewise, 

erosion has left discernible stratal discordances within the sediment pile, which are readily 

apparent as bounding surfaces (Figure 6).  Erosional surfaces are primarily a negative record 

of time, recording the erasure of time records that once existed (Sadler, 1999).  Within the 

Red Crag Formation, none of the studied outcrops contain major erosional surfaces (i.e., 

extending the full width of an exposure), so there is little direct evidence of wholesale 

deletion of depositional records at outcrop scale (Figure 6).   
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Sedimentary stasis is revealed in the Red Crag Formation as bounding surfaces that record a 

synoptic topography from the time of deposition (Paola et al., 2018).  These can sometimes 

be recognised by the preservation of complete bedforms with convex top surfaces, often with 

evidence that later sediment was draped over the antecedent substrate morphology (Figure 7). 

More commonly, the extensive Red Crag ichnofauna (Figure 3, Table 1) gives clues to 

sedimentary stasis.  Every burrowed horizon in the unit provides evidence that intervals of 

stasis punctuated the deposition of the Red Crag Formation, because the colonization of a 

substrate requires time for organisms to excavate sediment without disturbance from erosion 

or deposition (Goldring, 1960; Buck, 1985; Frey and Goldring, 1992; Pollard et al., 1993; 

Davies and Shillito, 2018).  As complete vertical burrows may be impossible to distinguish 

from truncated burrows without bedding plane evidence (e.g., Hallam and Swett, 1966; 

Goldring, 1960; Buck, 1985; Wetzel and Aigner, 1990; Nara, 1997; Davies et al., 2009) 

(lacking in the unconsolidated Red Crag Formation), burrows can only be determined to be 

complete when they intersect with synoptic topographies (e.g., inclined burrows intersecting 

with foresets/ dune lee slopes: Figure 8; Pollard et al., 1993).  However, even where they are 

only preserved in truncated form, they are direct evidence that deposition was not continuous, 

and instead alternated with a state of stasis (+/- erosion) (Figure 8). 

Sedimentation states cannot be maintained in perpetuity so, at any given location, states of 

deposition (D), erosion (E) and stasis (S) will be in spatial and temporal flux while the 

sedimentation system is active.  Compound sedimentation states reflect this variability (i.e., 

D-E-D, D-S-E-D, D-S-D and D-E-S-D) and can be deduced by close scrutiny of signatures 

that mark the transition between two strata, which by definition must each record deposition 

(D).  Such signatures of compound sedimentation states are common and highly variable 

within the Red Crag Formation (Figure 9), as a direct result of their depositional environment 

and the narrow frame of reference provided by outcrop.   
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Why are signatures of compound sedimentation states common and variable in Red 

Crag outcrops? 

Tipper (2015) introduced the concept of ‘point sedimentation systems’ to explain time-

completeness in vertical synthetic stratigraphic columns: referring to a specific point (in a 

mathematical sense) within the space of a sedimentary environment, variably subject to 

erosion, deposition and stasis.  For the purpose of studying real-world strata, this concept can 

be practically extended to be applicable to the narrow spatial focus offered by all or part of an 

outcrop, which provides a sedimentary record of a ‘point’ within a much wider sedimentary 

environment, across which stasis, erosion and deposition can be happening simultaneously 

(Runkel et al., 2008; Davies and Shillito, 2018).  Within a depositional environment, the 

spatial frame occupied by a future outcrop could witness multiple compound sedimentation 

states over the time that it took to accrue vertically, resulting in high variability in signatures 

of compound sedimentation states.  This variability is particularly pronounced in the Red 

Crag Formation, because it was deposited in a tidal setting, where intervals of deposition and 

erosion are very often punctuated by stasis.  For example, in modern shallow tidal sediments, 

Reineck (1960) calculated that  < 0.0001% of geological time was recorded as deposited 

sediment layers at any given point.  Intertidal settings experience frequent stasis: following 

tidal stillstand (of as little as 10-20 minutes duration) an interval of erosion (or further stasis, 

if the reversed current is weak) can generate pause planes within bedforms (Boersma, 1969; 

Boersma and Terwindt, 1981; Allen et al., 1994).  Subtidal sandwaves are also variable: at 

any spatial point on the seafloor, a substrate may aggrade, degrade or remain in stasis over 

short timescales, even while the underlying sandwave remains in a net migratory state.  In a 

survey of 25 very large dunes at 26-30 metres water-depth in the modern North Sea, Van 

Dijk and Kleinhans (2005) monitored the change in elevation of the sea floor substrate over 

the course of a year.  They found that 8 sampling locations (all on the upper lee slope of 
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dunes) saw a decrease in elevation (i.e., experienced erosion), 33 saw an increase in elevation 

(i.e., experienced deposition), but that 6 saw no change in elevation (i.e., stasis). 

Estimating the duration of sedimentation states 

Red Crag Formation outcrops are amalgams of signatures of different sedimentation states 

and compound sedimentation states. By estimating how long each recorded sedimentation 

state lasted, it is possible to estimate the time it took to accrue the sedimentary strata that 

constitute a particular outcrop.  

Deposition  

Many Red Crag outcrops record the deposits of sandwaves, which, in modern tidal settings, 

can migrate a distance equivalent to their average height within a single tidal cycle of c. 12 

hours (Dalrymple, 1984).  The average height of ancient Red Crag sand waves is not directly 

discernible due to erosional truncation and limited outcrop size.  However, the minimum 

height (i.e., the vertical distance between the top and bottom of a foreset) of different 

bedforms is calculable.  For the largest cross-bedded units known, the rate of migration was 

likely in excess of 3 metres every 12 hours, meaning that the time taken to deposit the layer 

that extends for half the width of the present outcrop (Figure 4A) would have been at most 15 

days. 

Tipper (2016) suggested that herringbone cross-strata was another sedimentary structure that 

could be used to constrain instantaneous sedimentation rates, illustrating this by suggesting 

that such bidirectional cosets are deposited during one flood-ebb tidal cycle. This is flawed 

because there is no guarantee that such opposite-directed cross-strata were deposited during 

the same single semi-diurnal cycle (Kvale, 2012): deposition and erosion may occur only 

during stronger tides, and substrates may be stasic for considerable intervals of a tidal year 

(Allen et al., 1994). However, the bidirectionality seen in the Red Crag Formation does imply 
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that the agents of deposition (i.e., flood and ebb tidal currents) could feasibly have deposited 

paired sets over intervals of hours to months  (e.g., see examples in Figures 2B, 2C and 8C). 

Erosion 

While stratigraphic time lost to erosion may be unknowable, the duration of erosive events 

can be estimated. Certain erosional surfaces in the Red Crag Formation appear to be 

intrinsically linked to tidal timescales – for example, internal erosional surfaces within cosets 

of cross-bedding (Figure 10) most likely reflect erosional pause planes (Boersma and 

Terwindt, 1981). Like reversing cross-strata, the frequency of repetition of these could be 

semi-diurnal or longer term, but the duration of erosion for individual surfaces would have 

been accommodated within one tidal reversal (i.e., an interval of hours). 

Stasis 

We know very little about time represented by ordinary surfaces with no signs of stasis (Dott, 

1983).  As these are typically the most common surfaces, it is only possible to estimate the 

minimum duration of stasis for an outcrop succession.  In the Red Crag Formation, this is 

enabled by the consideration of burrowed surfaces.  The burrowing rate of different 

individual tracemakers in modern shallow marine settings has received only limited attention 

(Dafoe et al., 2006; Gingras et al., 2008), but a selection of quantified rates are shown in 

Table 1. These can be used to estimate the minimum time that the system was in stasis, by 

calculating how long it would take for the fastest-burrowing potential tracemaker to excavate 

the largest burrow along a given stasis-surface, where the internal volume of the burrows can 

be roughly approximated as one or more cylinders (πr2h, where r is burrow radius and h is 

burrow length).   

The time taken to excavate particular individuals of the known ichnogenera (Table 2) 

provides a very approximate and conservative minimum estimate of the time spent in stasis. 
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The most important conclusion here is that burrow formation is a geologically-rapid process 

that occurs only during sedimentary stasis, but there a number of caveats to these estimates, 

namely 1) it is impossible to unravel the temporal sequence of the generation of a suite of 

individual burrows along the same stasic surface; 2) the speed at which burrows are 

excavated depends on factors such as grain size; 3) estimates are made with reference to the 

limited data published on burrowing rates, and 4) very large dwelling burrows (e.g., 

Psilonichnus) are problematic because stasis is most likely to have persisted for an unknown 

interval after the burrow was excavated, and while the tracemakers were continuing to use the 

burrows as domiciles. Burrowing rates of modern crabs (the suspected Psilonichnus-

tracemakers (Balson and Humphreys, 1987)) have only been calculated as the time taken for 

an individual to fully bury their carapace in sediment (e.g., McLay and Osborne, 1985; Lastra 

et al., 2002), and estimates of excavation rates at depth (where overburden and compressive 

force chains of packed grains impede burrowing speed (Dorgan et al., 2006)) are not 

reported.  As an approximation of excavation speed for the largest Psilonichnus, we here use 

the maximum invertebrate rate reported in Table 1 of 10 cm3/hr, although the margins of 

error here may be large.   

Time taken to deposit individual outcrops of the Red Crag Formation 

Precisely determining the time taken to deposit an individual outcrop of the Red Crag 

Formation is impeded by 1) the inability to accurately determine sequences of events during 

stasis from their physical records, 2) the inability to confidently calculate original dune height 

from preserved foresets, and 3) a reliance on potentially imperfect modern analogues.  

Despite this, the lack of major erosional surfaces at outcrop suggests that little time has been 

destroyed and lost at outcrop-scale and is instead missing due to stasis.  Equally, that time 

spent in stasis appears to have been relatively short because there is a lack of complete 

bioturbation reworking of primary sedimentary structures or shell material, and no evidence 
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for palimpsesting of multiple generations of burrows at the same horizon, despite the Red 

Crag seas supporting an abundant infauna. The lack of evidence for prolonged bioturbation 

implies that horizons were likely in stasis on timescales no longer than hours to days (Table 

2), and probably reflect tidal current quiescence on semi-diurnal or synodic timeframes 

(Kvale, 2012). 

Figures 10 and 11 show how the entire sediment piles that comprise pit outcrops of the Red 

Crag Formation can reasonably be estimated to have accumulated over time intervals of days 

to months.  Thus, when we encounter the unit as an individual outcrop, we are dealing with 

sediment accrued over very minor time intervals, well within the range of human experience.  

This observation seems counterintuitive when we consider that the time taken to deposit the 

Red Crag Formation, as an entire stratigraphic entity, was 600-800 ka, equating to average 

sedimentation rates of 0.5-0.66 cm/ka to deposit the units full 40 metre thickness.  However, 

as noted by Miall (2015), such quantified average sedimentation rates are essentially 

meaningless: it is an understanding of the instantaneous sedimentation rate (taken to deposit a 

particular bedform or sedimentary component), which informs most on the nature of 

deposition.  The small spatial scale of the Red Crag Formation outcrops has discretized the 

time-length scale of visible strata to focus only on those features deposited over sub-annual 

sedimentation rate scales (Miall, 2015). 

WHERE DOES THE TIME GO? DISCUSSION 

As every individual outcrop of the Red Crag Formation reveals only a maximum of a few 

months in the life of the active sedimentary environment, they provide vanishingly small 

windows into the 600-800 ka of total ‘Crag-time’.  Two obvious questions arise from this 

understanding: 1) Where did the vast majority of Crag-time end up, if not preserved at 
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outcrop? and 2) If we have such small windows, how can we trust them to be representative 

of what was really happening during Crag-time? 

With respect to the first question, part of the answer lies in the time-length scale of the 

exposed outcrops that we are viewing: the window on time that we have is miniscule, but so 

is the window on space.  For example, the outcrop at Capel Green (Figure 10) may reveal as 

little as 35 days out of 292 million days (800 ka) of Crag-time – but then the spatial area of 

the outcrop is only 156 m2 out of approximately > 4 billion m2 of Crag Group (as mapped 

onshore).  When we consider that stratigraphic time is smeared laterally over an outcrop belt 

(Runkel et al., 2008; Reesink et al. 2015; Gani, 2017; Davies & Shillito, 2018), the null 

hypothesis is that it is highly improbable that any two outcrops record the exact same time 

interval: they are all floating pockets of preserved time with no hope of being accurately 

chronostratigraphically anchored within the 600-800 ka boundaries of net Crag-time (Figure 

12).  This opens the possibility that the fraction of preserved Crag-time may not be negligible 

after all: we simply cannot access the majority of the mapping unit as it is concealed as 

subcrop. In other words, time is not lost, but hidden. We can only see strata from the vantages 

of outcrop or core, but these are tiny windows relative to the bulk volume of sediment that is 

still preserved today (e.g., Figure 5).  It is simply impossible to see all of the internalized 

physical strata hidden behind cliff faces and between outcrop exposures or cores.  We 

contend that those ancient sedimentary products that can be witnessed today do not record 

temporally rare events, but rather that the observable outcrop exposure of sedimentary 

product is a spatially rare phenomenon: relative to the extent of (a) the ancient depositional 

environment and (b) the full extent of its unexposed lithostratigraphic corollaries.  

The outcrops of the Red Crag record exposures of ‘days’, but are they representative of 

‘every day’ process during the interval of deposition?  The null hypothesis must be that they 

are, because of the strong similarity between the different exposed outcrops, which all 
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contain a comparable array of tidal sedimentary structures and trace fossils (Figures 2-3).   

This attests to the likelihood that mundane, non-unique conditions were persistent for most of 

Crag-time (i.e., the ‘strange ordinariness’ discussed by Paola et al., 2018). Exposed outcrops 

are random samples of the net volume of a succession: if they are all telling the same story, 

despite having been deposited on month-timescales that are separated by unknowable 

intervals of time, then it is highly probable that they are preserving the ‘norm’ rather than 

exceptions.  

The bias of the present  

A present-to-past vantage point can skew and bias our perspective of a variety of geological 

phenomena (e.g., Budd and Mann, 2018), and this is particularly true when considering the 

Red Crag Formation from a time perspective: a relatively young formation, with relatively 

transient outcrops (i.e., due to coastal retreat). In this regard, the active reworking of coastal 

outcrops is informative, and sheds light on the remanie fossils that are common throughout 

the Crag Group as a whole.  

Remanie fossils are those which are reworked from significantly older deposits and end up 

forming a fraction of a population of much younger fossils within a given stratum (Craig & 

Hallam, 1963; Kowalewski & Bambach, 2003) and are common within the Red Crag 

Formation (Riches, 2012).  However, remanie assemblages of Red Crag fossil fauna are also 

presently being formed as cliff collapse along the Suffolk coast mixes Pliocene-Quaternary 

sediment and fossils into modern beach sands (Environment Agency, 2015): complete shells 

of the distinct, left-handed gastropod Neptunea contraria are commonly found in loose 

sediment of beaches such as Bawdsey (Figure 13), but are definitively reworked from the 

Red Crag Formation as the modern range of this species is much further south (Bay of Biscay 

to Morocco) (Nelson & Pain, 1986).  Once on the beach, many of the reworked fossil shells 
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re-enter circulation as sedimentary particles and, if fortuitously buried with sand, could – like 

recent shell debris – have thousand-year plus longevity within the active beach environment 

(e.g., Flessa, 1993).  Significantly, the environments into which these future remanie fossils 

and their host sediment are being eroded are extant nearshore and shallow marine 

environments (Figure 14), with direct analogy to the ancient crag environments.  This appears 

to be the latest stage in a historical continuity of fossil-recycling between crag units: the Red 

Crag contains reworked shelly fossils from the Pliocene Coralline Crag, and the Norwich and 

Wroxham crags contains reworked shelly fossils from the Plio-Pleistocene Red and Coralline 

crags.  If the Red Crag Formation is presently being reworked into extant crag-like 

environments, this begs the question: are we still living in Crag-time?   

We propose a perspective where the present coastline is considered to be the boundary of an 

active ‘North Sea Crag’ (Figure 15), stacked on top of the extent of the depositional 

environments of the previous crags.  Each of the older units is separated by an unconformity 

that marks intermittent disruption in the continuity of shallow marine deposition: in the case 

of the unconformity between the most recent crag (Wroxham) and the present, this is 

associated with glacioeustatic relative sea-level fall.  The unconformities, corresponding to 

the Group 2 unconformities (104–105 years) of Miall (2016), only reflect retreat of crag 

deposition away from our present-biased frame of reference (i.e., the onshore outcrop belt), 

and offshore parts of the North Sea will have seen continuous deposition throughout some of 

the unconformity intervals.  As such, the received perspective that we are now “post-crag” 

may be a bias from living in the present, and onshore, and could be no different from the 

apparent post-crag conditions that would have been perceived had we been undertaking 

geological investigations on land during the interval of unconformity generation between, 

say, the Red and Norwich crags.  The extensive, inter-formation unconformities are 

distinguished from the intensive, intra-formation discontinuities  (e.g., Figure 6) because: 1) 
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their trigger was external to the depositional system (e.g., sea-level change rather than 

autogenic recyling of sediment piles within a sedimentary environment); and 2) they diminish 

time-completeness regionally, while intensive unconformities remain most important in 

diminishing time-completeness within individual outcrops. 

One marked difference between the interval between the Wroxham Crag and today 

(compared with the unconformity intervals bounding the Red Crag), is that sediments that 

post-date the Wroxham Crag Formation currently exist onshore: most notably the 0.4 Ma 

Anglian glacial deposits (Lee et al., 2015).  However, a large fraction of the Crag Group 

outcrop belt has negligible or patchy cover from younger sediments, so a future rise in 

relative sea-level could theoretically transplant subtidal sandwave deposits immediately on 

top of similar facies of the ancient crag formations.  The extensive erosional unconformity 

separating the ‘future crag’ from the ancient crag would, in many places, be indistinguishable 

in its character from the preceding unconformities that separate the formations of the Crag 

Group (although would potentially be marked in places with spatially restricted alluvial and 

glacial ‘members’).  

Implications for the preservation of time in older formations 

The notion that crag deposition may be a work in progress is speculative but geologically 

rational, and has implications time-preservation in older strata.  The duration of crag 

deposition, whether finished or not, corresponds to the persistence or persistent reappearance 

of marine conditions in the south-western North Sea region over the last c. 5 Ma (Lee et al., 

2018): an interval of time inferior to the duration of many stratigraphic formations in the 

geological record.  Significantly, the sedimentological characteristics of the Red Crag 

Formation which show its outcrops were deposited on human timescales are also common in 

much more ancient strata, deposited in similar sedimentary environments (Figure 16).  
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Lithified ancient strata may differ from the crag through forming much thicker successions 

(formed over longer intervals, in tectonic settings more prone to subsidence), and sometimes 

being exposed at vertical scales in which extensive unconformities are more apparent, but 

fundamentally they are comprised of similar building blocks, with potentially similar spatial 

extent of outcrop and time significance, to the Red Crag Formation. 

This understanding shifts how we understand the chronostratigraphic fidelity of ancient 

strata.  Ager (1986) ended a paper concerning the time significance of a 10 metre-thick debris 

flow deposit in Jurassic strata with the conclusion that “it all happened one Tuesday 

afternoon”.  Notwithstanding that Ager’s (1986) sentiment has been widely disputed (e.g., 

Fletcher et al., 1986; Sheppard, 2006), in the Red Crag Formation it seems more likely that 

any individual outcrop all happened one “February going into March” – a subtle but key 

difference revealing strata not as dramatic events, but sediment piles deposited both quickly 

and unexceptionally.  This removes a level of perceived incompleteness from the ancient 

record and suggests that any given outcrop is most likely representative of normal conditions, 

particularly when similar facies signatures are replicated in multiple discrete outcrops of the 

same unit.   

This ‘bias towards the boring’ in preserved strata means that we can trust the fidelity of the 

signatures within such outcrops more than is commonly perceived.  The intensive properties 

of even Precambrian strata at outcrop should be just as time-complete as the Red Crag 

Formation at outcrop: any outcrop can still be a monthly or sub-annual record which is 

unanchored, within a given time frame (Figure 17).  The implication of this is that, if we 

bracket Earth’s sedimentary record by geological period, the first appearance (followed by 

persistence thereafter) of sedimentary or ichnological (or, in some instance, palaeontological) 

features at a number of worldwide outcrops, probably reflects genuine evolutionary origin, 
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and cannot be dismissed as being unreliable due to the “incompleteness of the sedimentary 

record”.   

CONCLUSIONS 

Observing the Red Crag Formation from a temporal perspective supports recent 

understanding of strata and time and attests that stasis was the dominant sedimentation state, 

ordinariness is the dominant signature, and Crag-time is smeared laterally across exposed and 

unexposed parts of the Red Crag outcrop belt.  

Outcrops of the Red Crag Formation are discrete pockets of sediment that was deposited on 

monthly to subannual timescales, related to the tidal rhythms of its depositional environment. 

The duration of outcrop accrual can be estimated with sedimentological and ichnological 

proxies for rates of deposition, erosion and sedimentary stasis. These reveal that miniscule 

fractions of elapsed geological time can be seen at outcrop (relative to the 600-800 ka 

duration of deposition of the formation), but this is only because outcrops provide windows 

onto miniscule areas of space (relative to the area of original deposition). We suggest that 

outcrops of sedimentary strata of any age are directly comparable, recording mundane, sub-

annual-timescale, sedimentation. In other words, although the rock record is unavoidably 

incomplete, when it is viewed at outcrop and considered from a time perspective it can be 

seen to be intricately detailed, surprisingly high-resolution, and, in many instances, there may 

be no reason to doubt its veracity as a historical chronicle. 
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LIST OF FIGURES 

Figure 1 – Stratigraphic context and regional outcrop extent of the Crag Group, with detailed 

geological maps showing selected study sites and the local extent of Red Crag Formation 

exposure (BC: Bawdsey cliffs; BK: Buckanay Farm; BM: Boyton Marshes; CG: Capel 

Green; CH: Chillesford; NF: Neutral Farm; NZ: Walton-on-the-Naze; SH: Shottisham). Note 

that ages on stratigraphic column are approximate and maximum thicknesses are from 

borehole data only.  Individual Crag Group formations considered to have internal 

unconformities.  No outcrop exists where a full transect through the known stratigraphy 

occurs. 

Figure 2 – Selected sedimentary characteristics of the Red Crag Formation.  A) Heterolithic 

wavy tidal bedding: muddy horizons record deposition during tidal stillstands.  Boyton 

Marshes.  Visible part of ruler is 90 cm. B) Small-scale reversing cross-stratification.  

Palaeoflow shown for sets highlighted in red and green (depiction of palaeocurrent direction 

after Davies et al., 2018).  Shottisham.  Scale bar is 10 cm. C) Large-scale reversing cross-

stratification. Palaeoflow shown for sets highlighted in red and green (depiction of 

palaeocurrent direction after Davies et al., 2018).  Neutral Farm.  Person is 185 cm. D) 

Reworked phosphatic pebbles (e.g., within circled area) within shell-rich lithofacies.  

Buckanay Farm. Scale bar is 10 cm. E) Typical shell-rich lithology predominantly composed 

of variably-complete shelly fragments of bivalves and gastropods. Buckanay Farm. Scale bar 

is 10 cm. F) Decalcified quartz rich lithology at top of exposed Red Crag Formation, 

exhibiting evidence of cryoturbation. Walton-on-the-Naze. Scale bar is 10 cm. 

Figure 3 – Trace fossils of the Red Crag Formation. A) Cylindrichnus isp. Buckanay Farm. 

Visible ruler is 20 cm. B) Diopatrichnus isp. Capel Green. Scale bar is 10 cm. C) 
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Macaronichnnus segregatis Buckanay Farm. Visible ruler is 20 cm. D) Detail of M. 

segregatis. Boyton Marshes. Scale bar is 1 cm. E) Polykladichnus irregularis. Capel Green. 

Scale bar is 10 cm. F) Psilonichnus upsilon. Note large form – example in yellow box is 120 

cm long.  Boyton Marshes. Visible ruler is 80 cm. G) Skolithos linearis. Shottisham. Scale 

bar is 10 cm. H) Teichichnus rectus. Walton-on-the-Naze. Scale bar is 10 cm. I) 

Thalassinoides isp. Walton-on-the-Naze. Scale bar is 10 cm. 

Figure 4 – Outcrop style of the Red Crag Formation. A) Largest crag pit visited in this study: 

Buckanay Farm, exposing c. 8 metres of vertical section over an area of c. 200 m2. B) Coastal 

outcrop near Bawdsey Manor (south end of Bawdsey cliffs). 10 metre-high cliffs which are 

no longer retreating due to sea defences, and are increasingly overgrown with vegetation.  C) 

Coastal outcrop near East Lane (north end of Bawdsey cliffs).  Dynamic coastline with c. 5 

metre-high cliffs.  Photograph was taken in January 2014; since when (at the time of the most 

recent visit, October 2018) there has been c. 3 metres of cliff retreat in places, and beach 

sediment has built up to a height of 3 metres in front of the cliff face.   

Figure 5 – Stratigraphic cross-section of eastern Suffolk, showing the limited spatial extent of 

Crag Group knowable from core and outcrop, relative to its inferred abundance at depth.  

Thickness of Crag varies due to underlying topography and later incision/erosion. Location of 

outcrops is approximate relative to line of section (BC: Bawdsey cliffs; BK: Buckanay Farm; 

SH: Shotisham; CG: Capel Green; NF: Neutral Farm; BM: Boyton Marshes).  Core data used 

to construct section from British Geological Survey (2018a).  Cores shown are: 1: 

TM34SW21; 2: TMSW20; 3: TM34SW23; 4: TM24SW19; 5: TM34SW18; 6: TM34SW17; 

7: TM34NW24; 8: TM34NE11A; 9: TM34NE16; 10: TM34NE20; 11: TM34NE23; 12 

TM35SE75.  Point A is located at 51°59’41.1”N, 01°24’51.2”E; Point B is located at 

52°04’04.9”N, 01°25’16.2”E; Point C is located at 52°07’04.8”N, 01°24’53.6”E. 
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Figure 6 – Erosional surfaces (shown in pink) indicating where previously recorded time has 

been erased (identified by discordance of laminae), and acting as bounding surfaces between 

sedimentary records of deposition.  Note the small scale of these features: they are instances 

of intensive erosional diastems, rather than regional (or even outcrop-wide) unconformities. 

A) Largest erosional surface visible in any of the visited crag outcrops – concave scoured 

base to large cross-bedded dune set.  Buckanay Farm.  Scale bar is 2 metres. B) Concave 

scoured base to smaller bedform. In this instance the erosional surface truncates a horizon 

(shown in blue) which has been colonized by Polykladichnus trace-makers.  The order of 

sedimentation states here was thus: 1. Deposition (below blue horizon); 2. Stasis 

(colonization of blue horizon); 3. Deposition (above blue horizon); 4. Erosion (partial erasure 

of stages 1-3); 5. Deposition (above pink horizon). Boyton Marshes. Scale bar is 50 cm.  C) 

Planar erosional surface representing levelling of earlier dune tops. Boyton Marshes. Metre-

stick for scale.   

Figure 7 – Synoptic topography at different scales within the Red Crag Formation and 

indicative of true substrates/chronostratigraphic surfaces.  A-B) Cross-sectional view of 

undulating bedforms, possibly generated during aggradational conditions under supercritical 

flow. Surfaces highlighted blue preserve the instantaneous topography from the time of 

deposition (pink line highlights erosional surface). Boyton Marshes. Person is 170 cm. C-E) 

Synoptic topography of small bedforms, shown in blue – white area in C is enlarged in E.  

Some horizons appear to preserve original bedform morphology, supported by their 

colonization by Cylindrichnus with preserved ‘trumpet’ form at top (t), suggestive of 

proximity to original apertural opening on the seafloor (Hallam and Swett, 1966; Davies et 

al., 2009).  Horizons shown in black are more ambiguous.  Additionally, there may have been 

some minor reworking of the bedform crests during tidal reversals, suggested by 

superimposed, reversed ripple cross-lamination (r).  Scale bar is 20 cm. Boyton Marshes. 
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Figure 8 – Trace fossils as indicators of sedimentary stasis.  A-B) Multiple horizons of 

Cylindrichnus burrows (shown in different colours) attesting to non-steady sedimentation.  At 

least seven episodes of stasis (+/- erosion) during the interval taken to deposit this 70 cm 

package of sediment. Walton-on-the-Naze.  Metre stick for scale.  C-D) Intervals of stasis 

that were followed by intervals of erosion are seen where incomplete Cylindrichnus burrows 

terminate against constructed erosional boundaries (shown in pink).  In contrast, some cross-

strata foresets can be seen to be colonized by apparently complete Cylindrichnus, oriented 

relative to the dipping foreset (blue).  These imply that the tracemaker constructed their 

burrow relative to the inclined substrate and that some of the foresets themselves are synoptic 

topographies (Pollard et al., 1993).  In other words, these dunes were not in continual motion 

and there were intervals where the dune lee slope persisted as a true substrate and could be 

colonized – such irregular motion of dunes is not uncommon in tidal settings (e.g., Allen et 

al., 1994). Capel Green. Scale bar is 1 metre. 

Figure 9 – Signatures of compound sedimentation states recorded in the Red Crag Formation.  

A) Sand deposition (D1), followed by heterolithic wavy tidal bedding – lithology arising 

from fluctuations of deposition and stasis (i.e., tidal stillstand) (Ds2).  Subsequently, these 

layers have been partially eroded; however, erosion was discontinuous and followed by a 

short interval of stasis which has preserved the aspect of the collapsing wavy bedding (Es3), 

subsequently interred as the sedimentation state reverted to deposition (D4). Capel Green. 

Visible part of ruler is 80 cm. B) Cylindrichnus burrow within heterolithic wavy tidal 

bedding (see Figure 2A for location).  During intervals of stasis, tracemaker thickens its 

burrow (S), but after interval of deposition (D) adjusts to newly elevated seafloor, resulting in 

pinching and thickening of burrow within heterolithic sediment (Nara, 1997). Boyton 

Marshes. Pen is 14 cm long. C) Cross-bedding with Macaronichnus burrows along individual 

foresets (e.g., along light blue lines), attesting to punctuated dune migration.  Dune top has 
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subsequently been truncated by erosion (dark blue line), but this was followed by a more 

prolonged interval of stasis, attested to by the denser abundance of Macaronichnus along the 

horizontal erosional plane.  The neglible tiering of Macaronichnus, and horizontal 

distribution, indicates that these were emplaced during post-erosional stasis and are not 

contemporaneous with the less dense, diagonally-oriented, examples along the foresets.  

Buckanay Farm. Ruler is 20 cm long. D) Example of deposition and erosion with no evidence 

for intervals of stasis.  Erosional surface (pink) is followed by bedforms climbing at an angle 

of 10-15°.  These record a continuous state of deposition (at a high rate of sedimentation), but 

one which is intrinsically linked to the erosion of bedforms (i.e., reworking of migration 

ripple trains): hence the resultant stratigraphy is dominated by constructed boundaries rather 

than synoptic topography. Boyton Marshes. Visible part of ruler is 1 metre long.   

Figure 10 – Outcrop at Capel Green, showing surfaces arising from erosion and stasis and 

estimated duration of formation (scale bar is 2 metres).  Approximate minimum time to 

deposit complete package of sediment visible in yellow box was c. 35 days (828 hours of 

deposition and stasis, plus unknown time lost to erosion).  Order of Events: 1. Ss1 (201 

hours); 2. Dp1 (120 hours, including at least 6 increments of instantaneous stasis); 3. Es1 

(unknown missing time); 4. Dp2 (108 hours, including Ss2-4 [9 hours each] and at least 6 

increments of instantaneous stasis); 5. Es2 (unknown missing time); 6. Dp3 (64 hours, 

including Ss5 [9 hours] and at least 15 increments of instantaneous stasis); 7. Es3 (unknown 

missing time); 8. Ss6 (9 hours); 9. Dp4 (not estimated, limited architectural evidence); 10. 

Ss7 (326 hours).  Duration of stasis surfaces (Ss) and depositional packages (Dp) are gauged 

as follows (unburrowed foresets are not numbered, and are assumed to represent 

instantaneous stasis time intervals at minimum).  Time estimated only for those packages 

fully exposed in the cliff face (i.e., no consideration is given to strata at the top or bottom of 

the outcrop where exposure is obscured or truncated and elapsed time cannot be confidently 
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estimated).  Ss1: Polykladichnus burrows: Maximum Dimensions: approximate volume 100.5 

cm3 (maximum length 32 cm (i.e., 16 cm long U-shape) maximum width 2 cm); Excavation 

time: 201 hours (likely polychaete tracemaker, maximum burrowing rate of 0.5 cm3 per 

hour).  Ss2-6: Diopatrichnus burrows: Maximum Dimensions: approximate volume 18 cm3 

(maximum length 10 cm, maximum width 1.5 cm); Excavation time: 9 hours (possible 

crustacean tracemaker, maximum burrowing rate of 2 cm3 per hour).  Ss7: Cylindrichnus 

burrows: Maximum Dimensions: approximate volume 163 cm3 (maximum length 13 cm, 

maximum width 4 cm); Excavation time: 326 hours (likely polychaete tracemaker, maximum 

burrowing rate of 0.5 cm3 per hour). Dp1: Minimum sand wave height: 100 cm. Lateral 

extent: 10 metres (at 100 cm per 12 hours): 120 hours. Dp2: Minimum sand wave height: 75 

cm.  Lateral extent: 675 cm.  Time to migrate (at 75 cm per 12 hours): 108 hours. Dp3: 

Minimum sand wave height: 75 cm.  Lateral extent: 400 cm.  Time to migrate (at 75 cm per 

12 hours): 64 hours. 

Figure 11 – Outcrop at Walton-on-the-Naze, showing surfaces arising from erosion and stasis 

and estimated duration of formation.  Approximate minimum time to deposit complete 

package of sediment within the field of view was c. 53 days (1264 hours of deposition and 

stasis, plus unknown time lost to erosion).  Order of Events: 1. Dp1 (60 hours, including 

multiple instances of instantaneous stasis); 2. Es1 (unknown missing time); 3. Dp2 

(uncertain, but possibly within one tidal reversal – see ripple lamination at base [i.e., 6 

hours]); 4. Dp3 (95 hours, including multiple instants of instantaneous stasis plus Ss1-9 [1 

hour each]); 5. Es2 (unknown missing time); 6.  Dp4 (16 hours including multiple instants of 

instantaneous stasis); 7. Es3/Ss10 (uncertain order as not clear if burrows truncated or not; 

uncertain missing time; 509 hours of stasis); 8. Dp5 (not estimated, limited architectural 

evidence); 9. Ss11 (288 hours); 10. Dp6 (290 hours including Ss12-19 [1 hour each]). 

Duration of stasis surfaces (Ss) and depositional packages (Dp) are gauged as follows 
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(unburrowed foresets are not numbered, and are assumed to represent instantaneous stasis 

time intervals at minimum).  Time estimated only for those packages fully exposed in the 

cliff face (i.e., no consideration is given to strata at the top or bottom of the outcrop where 

exposure is obscured or truncated and elapsed time cannot be confidently estimated). Ss1-9: 

Skolithos burrows: Maximum Dimensions: approximate volume 1.5 cm3 (maximum length 8 

cm, maximum width 0.5 cm); Excavation time: 1 hour (possible polychaete tracemaker, 

maximum burrowing rate of 0.5 cm3 per hour).  Ss10: Psilonichnus burrows: Maximum 

Dimensions: approximate volume 2545 cm3 (maximum length 40 cm, maximum width 9 

cm); Excavation time: 509 hours (likely crustacean tracemaker, maximum burrowing rate 

uncertain, but maximum rate of organisms in Table 1, 5 cm3 per hour, used).  Ss11: 

Cylindrichnus burrows: Maximum Dimensions: approximate volume 144 cm3 (maximum 

length 15 cm, maximum width 2.5 cm); Excavation time: 288 hours (possible polychaete 

tracemaker, maximum burrowing rate of 0.5 cm3 per hour). Ss12-19: Skolithos burrows: 

Maximum Dimensions: approximate volume 1.5 cm3 (maximum length 8 cm, maximum 

width 0.5 cm); Excavation time: 1 hour (possible polychaete tracemaker, maximum 

burrowing rate of 0.5 cm3 per hour). Dp1: Minimum sand wave height: 70 cm. Lateral extent: 

380 cm (at 70 cm per 12 hours): 60 hours.  Dp2: No clear stasis surfaces, but direction of 

ripple laminae suggests a flow reversal, possibly placing this within one 6 hour tidal reversal. 

Dp3. Minimum sand wave height: 60 cm. Lateral extent: 430 cm (at 60 cm per 12 hours): 86 

hours.  Dp4. Minimum sand wave height: 60 cm. Lateral extent: 82 cm (at 60 cm per 12 

hours): 16 hours. Dp6. Minimum sand wave height: 20 cm. Lateral extent:  470 cm: 282 

hours. 

Figure 12 – Conceptual diagrams showing how outcrop and stratigraphy relate to the time 

interval of their formation, during which interval the sedimentation state variously existed in 

a state of deposition, erosion or stasis. A) Regional lithostratigraphy (left) considers the Red 
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Crag Formation to be a <40 metre thick unit, deposited over 600-800 ka during the Pliocene-

Pleistocene, with the oldest strata at the bottom and youngest at the top. The possible 

dominant sedimentation state during the interval of Red Crag deposition (“Crag time”) is 

shown on the right: the oldest Red Crag deposits are at Walton-on-the Naze, in the south – as 

these were being deposited, there is no evidence of any deposition further north, which 

implies erosion (i.e., constant reworking) or stasis to the north at the onset of Crag time.  By 

the time the depocentre had shifted to the north at the end of Crag time, no new sediment was 

being deposited in the south – however, as it was also not being eroded (as it can be seen 

today), the dominant state in the south was stasis.  The 600-800 ka of Crag time is thus not 

vertically-stacked (as in the classic lithostratigraphic viewpoint), but rather distributed 

unevenly across the region.  B) Block representing the Red Crag Formation as a <40 metre 

unit across the region (top), with areas of exposed outcrop highlighted in yellow. Below; this 

apparently contiguous outcrop and subcrop considered from a chronostratigraphic standpoint 

– any cell in the region could have experienced erosion, deposition or stasis during Crag time, 

but the final sedimentation state at any location (relative to what has become preserved) must 

have been deposition or stasis and not erosion.  The cartoon shows that, although exposed 

outcrops are all of the same formation, at approximately the same height, they are an 

amalgamation of random, very rarely contemporaneous, pockets of time.  C) Block 

representing an individual outcrop with internal bounding surfaces.  Many of the surfaces 

reflect an interval of stasis with no time added or destroyed – however, prolonged interval of 

erosion has removed some of the previous time record of deposition. 

Figure 13 – Modern gastropod shell (left) and remanie shell of Pliocene left-handed 

gastropod Neptunea contraria (right) found within modern beach sediment at Bawdsey. 

Figure 14 – Outcrop and subcrop extent of the Red Crag Formation near Bawdsey, showing 

how much Red Crag sediment is still subject to erosion, deposition and stasis.  Only ‘islands’ 
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of Red Crag have been preserved and recent erosion has largely stripped down to Eocene 

London Clay strata.  At three different sites (A-C), the dominant sedimentation state and 

balance between deposition, erosion and stasis was different over long time intervals; (i) 

during Crag time, (ii) during the remainder of the Quaternary, and (iii) at the present day.  At 

present, Crag sediment in inland crag pits is in a state of stasis.  However, active erosion of 

Crag sediment from coastal localities is re-entraining sediment and fossils, which is being 

transported offshore and deposited within modern subtidal sedimentary environments that are 

highly similar to the ancient Red Crag subtidal sedimentary environments. 

Figure 15 – The Crag Group as an ‘unfinished’ geological unit.  Limit of active subtidal 

sedimentary systems for the Red Crag (RC), Norwich Crag (NC), Wroxham Crag (WC) and 

“North Sea Crag” (“NSC”). “North Sea Crag” refers to the subtidal sandwave sedimentary 

environments, presently active within the open marine North Sea, which are physically 

similar to the ancient crag environments, and which could feasibly be considered to be the 

same and potentially indistinguishable geological unit, if these strata were preserved millions 

of years in the future.  Area shaded yellow is the region that has never experience crag 

deposition. 

Figure 16 – Comparison of Red Crag signatures with older subtidal strata. A) Erosive-based 

cross-bedding at Buckanay Farm, sitting within horizontally-laminated burrowed sands. B) 

Erosive-based cross-bedding sitting within horizontally-laminated burrowed sands within the 

Silurian Tumblagooda Sandstone, Kalbarri, Western Australia. Both images shown at same 

scale. Note that the Red Crag is approximately 2.6 Ma and the Tumblagooda Sandstone is 

approximately 425 Ma, yet at outcrop scale both reveal similar sedimentary facies that would 

have been deposited over month(s) timescales. 
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Figure 17 – Tidal signatures in the Paleoproterozoic (c. 1.7 Ga) Baraboo Quartzite, Devil’s 

Lake, Wisconsin, United States.  Despite their far greater antiquity, the timescales of 

formation of these features are directly analogous to similar features in the Red Crag 

Formation, and presently-exposed outcrops are equally unanchored pockets of human 

timescales within the interval of Baraboo deposition. A) Approximately 15 packages of small 

dune cross-strata, each reflecting migration rates in days to weeks. B) Reversing cross-strata, 

each set of which must have been deposited on a timescale of no more than weeks. C) True 

substrate recording instantaneous conditions of current ripples preserved as synoptic 

topography. 
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Table 1 – Ichnofauna of the Red Crag Formation. Full description and ichnotaxonomic 

assignment of the trace fossils illustrated in Figure 3. Dimensions reported are the mean of 

examples observed in the study. Likely tracemakers are identified based upon information in 

Clifton & Thompson (1978), Humphreys & Balson (1988), Gingras et al. (2008a), Buatois et 

al. (2017), Knaust (2018). Abundance reports the approximate number of each ichnotaxon 

observed across all field locations visited during this study. 

Ichnotaxon Dimensions 
Likely 

Tracemaker 
Abundance Description Locations 

Cylindrichnus isp. 

W: 55 mm 

Polychaete 30 

Concentrically 

lined burrow with 

conical aperture 

and heterolithic fill 

of sandstone, 

mudstone, and 

shell fragments. 

BK, BM, 

WZ 

L: 225 mm 

  

Diopatrichnus isp. 
W: 12 mm Annelid or 

Crustacean 
15 

Small sub-vertical 

burrow lined 

obliquely with 

shell fragments. 

BK, CG, 

WZ 

L: 100 mm   

Macaronichnnus 

segregatis 

W: 3 mm 

Polychaete > 100 

Small, unbranched 

sub-vertical to sub-

horizontal burrow 

with heterolithic 

infill. Occurs in 

dense patches, 

frequently cross-

cutting. 

BK, BM, 

SH, WZ 

L: 25 mm 

  

Polykladichnus 

irregularis 

W: 13 mm 
Polychaete 30 

Y-shaped burrow 

with a muddy infill. 

Often in 

association with 

Skolithos. 

BM, CG, 

CH, NF 

L: 230 mm   

Psilonichnus 

upsilon 
W: 60 mm Crustacean 20 

Large, occasionally 

branching sub-

vertical burrow, 

with spiralling of BM, WZ 
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L: 1400 mm 

the sediment 

laminae 

surrounding a fine 

core.   

Skolithos linearis 

W: 12 mm 

Annelid or 

Crustacean 
> 100 

Unlined, 

unbranched 

vertical burrow, 

with a 

structureless 

muddy infill. Often 

in association with 

Polykladichnus. 

BK, BM, 

CG, CH, 

NF, SH, 

WZ 

L: 180 mm 

  

Teichichnus rectus 
W: 38 mm 

Annelid 5 

Burrow with 

stacked arcuate 

spreite comprised 

of mudstone. WZ 

L: 47 mm   

Thalassinoides isp. 
W: 33 mm 

Crustacean 5 

Complex burrow 

network with a 

mudstone infill. 
WZ 

L: 700 mm   
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Table 2 – Burrowing speeds of modern invertebrates (in cm3 per hour). 

  
cm3/hr 

  

  
Min Max 

 

A Bivalves 0.5 10 

Gingras et al 

(2008) 

B  Arthropods 0.2 2 

Gingras et al 

(2008) 

C Echinoderms 0.05 5 

Gingras et al 

(2008) 

D Polychaetes 0.01 0.5 

Dafoe et al 

(2006) 
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Table 3 – Estimated time taken to construct selected burrows shown in Figure 3 – most likely 

tracemaker and burrowing rates refer to Table 2.  Estimated times in excess of half a synodic 

tidal cycle are unlikely and shown in brackets. 

Ichnotaxon Figure  

Approx. volume 

(cm3) 

Most likely 

tracemaker 

Maximum time 

estimate 

Minim

um 

time 

estimat

e 

Diopatrich

nus 3B 4.02 B 20 hours 2 hours 

Macaronich

nus 3D 0.06 D 6 hours 1 hour 

Polykladich

nus  3E 15.08 D (1508 hours) 

30 

hours 

Psilonichnu

s 3F 1382.3 B (6911 hours) 

138 

hours 
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