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ABSTRACT

Ultrasonography is the main modality for prenatal screen-

ing examination of the fetal central nervous system. Due to

the variability of the position of the fetal brain relatively to

the probe, identification of structures of interest requires both

time and a high level of expertise. The method presented in

this paper aims at helping the clinician navigate through the

brain by automatically aligning the head in near real time (<1
s) in a 3D ultrasound volume. The alignment is obtained by

defining a frame of reference (i.e. an orthogonal basis and

a center point) based on the skull, the mid-sagittal plan and

the orbits of the eyes; their signals remain strong and stable

across acquisitions. They are detected by combining state-

of-the-art techniques (random forests and template deforma-

tion). Our method has proven fast and accurate on a dataset

of 78 volumes (19-24 gestational weeks): maximal alignment

errors’ medians range from 5.1 to 5.8mm for the transcerebel-

lar, transventricular and transthalamic planes.

Index Terms— ultrasound, auto-alignment, random for-

est, template deformation

1. INTRODUCTION

Ultrasound systems are low-cost, non-invasive, radiation-free

and potentially portable devices. Hence, ultrasonography has

been widely used as the main modality for screening exam-

inations of the fetal central nervous system [1] (Figure 1).

However such examinations require specific expertise, while,

according to the World Health Organization, ”it is likely that

much of the ultrasonography currently performed is carried

out by individuals with in fact little or no formal training” [2].

Standard screening examination of fetal central nervous sys-

tem consists of visual assessments and biometric measure-

ments of structures of interest (lateral ventricles, the cere-

bellum and cisterna magna, and cavum septi pellucidi) from

specific scanning planes (transventricular, transthalamic and

transcerebellar) [1].

The goal of this work is to help the clinician or sonog-

rapher obtaining these planes of interest by finding the fe-

Fig. 1. A near real time alignment of the fetal head during screening

examinations to help navigate through the brain. The alignment is

obtained by defining frame of reference based on the skull, the orbits

of the eyes and the mid-sagittal plane

tal head alignment in 3D ultrasound scan (Figure 1). To be

used in clinical routine, near real-time response is required (∼
1s). Other potential applications include rapid initialization

for deeper off-line analyses such as segmentation-based [3]

or registration-based analyses [4, 5, 6].

Most papers in the literature tackle this alignment problem

by registering the image onto a template or an image from an-

other modality [4, 5, 6]. While these approaches may lead to

more precise alignments, they require a pre-alignement step

and their processes are often time consuming, which makes

them unsuitable for clinical examination. Closely related to

our work is Lu et al.’s contribution in [7] which aims at di-

rectly finding specific heart planes in an 3D ultrasound based

on the marginal learning space with probability boosting tree

technique. However, the variability of the fetus position in

utero yields specific challenges such as misleading contextual

information (structures / organs that belong to the mother),

clutter due to fetal skull and appearance change of brain struc-

tures depending on their positions relatively to the probe. To
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Fig. 2. Workflow: (a) original image; (b) response P of a plate detector for the head detection; (c) approximation of the spheroidal shell

by spherical shells for the head detection; (d) weigthed Hough transform on the response of a plate detector to detect the midsagittal plane;

(e) probability map of the orbits’positions; (f) final frame of reference based on the head center, the eye position and the midsagittal plane.

cope with this challenging scenario, Feng et al. [8] combined

both 3D and 2D datasets to detect the fetal face, thus requir-

ing large and specific datasets. Moreover their method does

not provide any alignment information.

In this paper, we propose a fast alignment method based

on structures that are echogenic independently of the probe

position: the skull, the midsagittal plane and the orbits of

the eyes. The skull is detected and segmented using a shape

model and a template deformation algorithm (Section 2). An

initial anatomical frame of reference can thus be defined.

Then, the detection of both midsagittal plane and orbits of

the eyes allows to remove orientation ambiguities and even-

tually to refine this frame of reference (Section 3). Detection

algorithms are based on weighted Hough transform (for the

midsagittal plane) and a random forest classifier that com-

bines geometric information with image features (for the

orbits). Experiments and results are detailed in Section 4.

2. SHAPE-BASED FETAL HEAD SEGMENTATION

Robust segmentation of the fetal head needs the use of a shape

model to cope with the presence of clutter, strong shadows

and missing parts due to field of view variations. An ellip-

soidal shell model is thus used to detect the fetal head (2.1).

A precise segmentation is then obtained using this model as a

deformable template (2.2).

2.1. Detection

Ultrasound images are prone to speckle, shadows and clutters

and their intensity distributions are user dependent. Neverthe-

less, the echo signal of the fetal skull has a plate-like structure

whose size remains stable across subjects and acquisitions

(2.5mm). Our detection is thus based on the response P to

a plate detector [9] at a fixed scale (Figure 2.b).

We assume that the fetal head shape can be approximated

by an ellipsoid. While a large number of methods exist to

detect ellipsis in 2D (e.g. Hough-like transform, ML-based

ellipse fitting [10]), most of them either break down in 3D

or are not adapted to our problem due to computational time

limitations. They either lack tolerance to noise and outlying

structures or the number of parameters to estimate is too large.

Therefore, for speed and robustness, we use a template match-

ing approach with a template whose Fourier Transform has

an analytic expression. We thus consider a prolate spheroidal

shell E . For a fast implementation E is approximated by a

couple of spherical shells of the same radius and width (Fig-

ure 2.c). Thus the skull detection boils down to convolving the

response map P with a spherical shellBR of radiusR and se-

lecting the couple (x1,x2) that maximizesBR∗P(x1)+BR∗
P(x2) under the constraint (2R+ ‖x1 − x2‖) ∈ [dmin, dmax].
The values of dmin and dmax are set according to the range

of head sizes (50-80 mm for 19-24 weeks). The segment

[x1,x2] gives the principal direction and center of the prolate

spheroidal shell. Its main and secondary axes lengths are set

to R + d/2 and R respectively. To account for the variability

of the fetal head sizes, the analysis is performed at different

scales R. This detection approach has proven robustness to

missing skull regions and noisy data with outlying structures.

2.2. Head Segmentation

Precise segmentation of fetal skull was done using the previ-

ously detected ellipsoidal shell E as a deformable template.

We followed the framework described in [11]. The goal is to

find a transformation ψ maximizing the gradient flux across

the surface of the deformed ellipsoid shell ψ−1(E). Let φ be

the signed distance function to E . The segmentation energy

E in [11] adapted to our problem becomes:

E(ψ) = −

∫
H(φ ◦ ψ) ∆P dx+ λR(ψ) , (1)

where H is the Heaviside function and R(ψ) is a regulariza-

tion term which prevents large deviations from the original

template. The transformation is modeled as ψ = L◦G where

G is a global transformation (typically an affine transforms)

and L is a non-rigid local deformation. L is expressed us-

ing a displacement field u such that L = Id + (u ∗ Kσ).
Kσ is a Gaussian kernel that provides built-in smoothness.

This decomposition allows R to be pose-invariant and con-

strains only the non-rigid deformation: R(ψ) = R(L) =∫
Ω
‖L − Id‖2 =

∫
Ω
‖u ∗ Kσ‖

2. Energy E was minimized,

with respect to the parameters of G and each component of the

vector field u, through a steepest gradient descent. Few iter-

ations are generally needed since the ellipsoidal shell already

provides a rough skull estimation.



3. SKULL-BASED FRAME OF REFERENCE

We now search for a frame of reference based on the skull,

the orbits’ positions and the midsagittal plane (Figure 2.f).

From the mass center and the principal direction of the seg-

mented skull we recover the center of the frame of reference

and a sensible estimate of the anteroposterior axis. The medi-

olateral axis is then computed based on the midsagittal plane

detection (Section 3.1). Finally, orientation ambiguities are

removed by determining the neck direction (Section 3.2) and

the position of eyes’ orbits (Section 3.3).

3.1. Midsagittal plane detection

The midsagittal plane is echogenic and rather stable across

scans. Its detection is also based on the response to the plate

detector proposed in [9] but at a different scale (1mm). Since

the proximal and distal hemispheres have different signals,

symmetry based methods such as [12] do not apply. As the

anteroposterior axis and the head center are known, detecting

the midsagittal plane boils down to estimating only the plane

rotation angle (Figure 2.d). This angle is estimated using a

weighted Hough transform on the response map P . To favor

correctly oriented plates, P is weighted at each voxel x by

|〈
−→
cx

‖−→cx‖
∧ v,nx〉| where c is the head center, v is a unit vector

of the anteroposterior axis and nx is the plate normal in x.

3.2. Neck orientation detection

Finally the orientation ambiguity is removed by detecting the

neck along the longitudinal axis. Assuming that relatively low

gradient is found in the neck region, we evaluate on the skull

surface S the absolute flow of gradient in the direction of the

longitudinal axis. Let u be a unit vector of the longitudinal

axis. Vector u points toward the neck if and only if:

∫
x∈S+

u

|〈∇I(x),u〉|dµ <

∫
x∈S−S+

u

|〈∇I(x),u〉|dµ

where S+
u

= {x ∈ S : 〈−→cx,u〉 > 0}. This simple criterion

proves to ben robust across all our database.

3.3. Orbits detection

At this point, we lack only the orientation of the anteropos-

terior axis. To find it, we detect the orbits’ positions with a

random forest [13, 14]. We further use this detection to re-

fine this axis estimation. We train a random forest classifier

to predict, for each voxel x lying within a certain distance to

the skull (5mm), the probability of belonging to an orbit (Fig-

ure 2.e). This random forest combines geometric information

with image features.

At a voxel x, features encoding geometric information

include signed distance to the skull as well as the different

angles between −→
cx and the three main axes (anteroposterior,

midsagittal

plane
c

x

x
′

ex =
−→
cx

‖−→cx‖

ey ∝
−→
xx

′ − 〈
−→
xx

′, ex〉ex

ez

Fig. 3. Local orthonormal basis (ex, ey, ez) robust to the head ori-

entation to define random offsets. c: head center; x: voxel position;

x
′ projection of x on the midsagittal plane

longitudinal or mediolateral).

As eyes’orbits appear in the scans as black balls surrounded

by white structures, the image features, at a given scale

(5mm), are differences of Laplacians between two voxels

displaced by a random offset. To ensure robustness against

fetal head position variability, random offsets are defined in a

local basis (ex, ey, ez) (Figure 3).

Decision stumps are used as weak classifiers and the impurity

criterion is the Gini index [13, 14]. The forest is composed

of 5 trees with a maximum tree depth d = 10 and a minimal

node size n = 100.

The position of the orbits relative to brain structures is more

stable across different subjects than the main axis of the skull.

Thus, we further consider as the anteroposterior axis the axis

lying in the midsagittal plane defined by the head center c

and the middle of the orbits’ centers (Figure 2.f).

4. EXPERIMENTS AND RESULTS

The validation of our method was performed on a dataset

composed of 78 3D ultrasound volumes of fetal heads. The

gestational age ranged between 19 and 24 weeks. Two experi-

ments were carried out to assess our alignment method. First,

since it relies on the orbits’ positions, we assessed their detec-

tions by measuring the distance between the true and detected

orbits’ centers (Section 4.1). Then, since screening exams at

the considered fetal ages require measurements and visual as-

sessments in three specific anatomical planes [1] (transthala-

mic, transcerebellar and transventricular), we computed the

variability of these planes’ coordinates in the detected frame

of reference (Section 4.2).

The validation was done with a 2-fold cross-validation

(50% training, 50% testing). The complete frame of refer-

ence computation process took less than a second per image

with a C++ CPU-based implementation (3.0 GHz quad-core,

8 GB RAM).

4.1. Eyes detection validation

Detection errors in terms of distances between the true and

the predicted centers are summed up in Table 1. The median

error was 1.6 mm and 3.0 mm for the proximal orbit and the

distal orbit respectively. The ultrasound clutter generated by



the skull explains the asymmetry of the results. Note that in

our dataset, the order of magnitude of the orbits’ radii was

5mm.

Table 1. Detection error of the proximal and distal orbits’centers.

Distances are indicated in mm.

Orbit median 3rd quartile 90th perc. 95th perc.

Proximal 1.6 2.1 2.8 3.4

Distal 3.0 4.8 6.8 7.8

4.2. Referential validation based on anatomical planes

As the variance of a plane position and orientation is difficult

to interpret, we quantified the planes’ coordinates variability

as follows. We first computed the mean plane coordinates for

the training set. In other words, we computated three Karcher

means in R × S
2. Then, for a given anatomical plane, the

computed error was the maximal distance inside the skull be-

tween the ground truth plane and the plane estimated by the

mean coordinates. The errors are summarized in Table 2. Re-

lying only on the skull, the midsagittal plane and the orbits of

the eyes, our algorithm obtained robust and precise alignment

of the fetal head in less than a second.

Table 2. Maximal error distance (in mm) within the head for the

transcerebelar (TC), transthalamic (TT) and transventricular plane

(TV).

Plane median 3rd quartile 90th perc. 95th perc.

TC 5.8 7.6 9.5 11.0

TT 5.1 6.9 8.8 10.8

TV 5.3 7.0 8.6 10.1

5. CONCLUSION

This paper presented a fast and fully automatic method to de-

tect and align fetal heads in 3D ultrasound. The alignment is

done by finding a frame of reference based on the anatomy.

To be fast (∼s) and robust, our method relies on simple struc-

tures whose signals remain stable across subjects and acqui-

sitions: the skull, the midsagittal plane and the orbits of the

eyes. The method proves to be fast and accurate on a dataset

composed of 78 3D ultrasound volumes, which makes it com-

patible with clinical routine. It could also be used as an initial-

ization for deeper off-line analyses such as registration based

analyses [4, 5, 6].
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