Where is the Proof? - A Review of Experiences from Applying MDE in Industry

Parastoo Mohagheghi, Vegard Dehlen SINTEF ICT, Oslo, Norway

Motivation

- Model-Driven Engineering (MDE) has been promoted as a solution to handle increased complexity of software development.
- MDE promises:
 - Better abstraction techniques and separation of concerns -> improved communication, improved quality, portability of solutions
 - Generation of artefacts from models -> increased productivity, improved quality, traceability etc.
- But:
 - Are these promises supported by evidence?

Context

- This research is supported by two projects:
- 1. MODELPLEX (EU IP, 2006-2010):
 - The goal of MODELPLEX is to develop solutions for applying MDE in complex software system development.
 - We plan to evaluate the MODELPLEX solutions empirically and therefore searched for empirical studies on applying MDE.
- 2. Quality in MDE- QiM (SINTEF, 2006-2008):
 - The goal of QiM is to search for and develop approaches for improving the quality of software when applying MDE.
 - We searched for studies on quality aspects in MDE.

Finding Evidence on MDE Impact

- Research method: Systematic review as a step in evidence-based software engineering (Dybå, Kitchenham, Jørgensen):
 - 1. Collect evidence as answer to research questions.
 - 2. Identify publication channels.
 - Search them for available evidence.
 - 4. Critically appraise the evidence for its validity, impact and applicability.
 - 5. Integrate the evidence with practical experience and values to answer the questions, or to make decisions about the practice.

Research Questions

- RQ1. Where and why has MDE been applied?
- RQ2. What is the state of maturity of MDE?
- RQ3. What evidence do we have on the impact of MDE on productivity and software quality?

Publication Channels

- We searched in:
 - Journals and conferences: SoSyM, ESE journal, UML and MoDELS conferences, ECMDA conferences, DSM workshops at OOPSLA; all since 2000
 - IEEE Xplore and ACM Digital Library;
 - References in other papers.
- 33 papers were identified; 8 were excluded (no evidence).
- Where published?
 - 13 papers are published in the proceedings of conferences (especially the ECMDA-FA conference);
 - 9 papers in workshops and satellite activities of conferences;
 - 2 are online reports;
 - Only one is published in a journal.

An Overview of Papers

- Only seven papers report experiences from completed projects;
 - Others are from pilot studies or ongoing projects at the time of reporting,
 - One is from a terminated project (at ABB).
- Most papers do not provide any information on the size of the projects.
- Type of studies:
 - 20 of papers are experience reports from single projects;
 - 3 papers have used interviews and questionnaires in addition to observations;
 - 3 papers describe comparative studies;
 - 1 paper describes three quasi-experiments (the MODELWARE report).
- Motorola is an exception with detailed description and quantitative data.

RQ1- Where has MDE been Applied?

- A broad range of companies in various domains report their experience from investigating or applying MDE. To name some, the papers cover:
 - Telecommunications domain 7 papers;
 - Business applications and financial organizations 5 papers;
 - Defense / aerodynamics / avionic systems 2 papers;
 - Web applications 2 papers.
- Types of systems:
 - Safety-critical and trustworthy systems 3 papers;
 - Embedded systems 2 papers;
 - Software product lines 3 papers;
 - Legacy systems 2 successful cases and one unsuccessful: ABB Robotics refrained from adopting MDE due to the base of legacy code.

RQ1- Why MDE has been Applied?

- Main motivations have been:
 - Increasing productivity and shortening development time 6 papers;
 - Improving the quality of the generated code or models, earlier detection of bugs, and managing requirement volatility - 6 papers;
 - Automation: generating code and other artifacts -13 papers;
 - Improved communication and information sharing between stakeholders and within the development team 5 papers, and ease of learning 2 papers.
- Some other motivations have been portability of solutions, traceability, and early assessment each in only 2 papers.

RQ2- State of the MDE; Automatic Generation

- Some papers report generating all or most of the code from the models (2 examples), while others report that only part of the code could be generated.
 - Depends on the type of code: low-level code is not captured in the design and is unlikely to be generated.
- Most papers report the status of code generators as satisfactory in producing code with no introduced defects.
- Automatic generation of code required developing Domain Specific Languages (DSLs) or UML profiles and own code generators in 6 cases.
- Also reports on generating XML schemas but not on generating test cases or documentation.

RQ2-State of the MDE; Processes

- Baker et al. report that many teams in Motorola encountered major obstacles in adopting MDE due to the lack of a well-defined process, lack of necessary skills and inflexibility in changing the existing culture.
- Approaches:
 - Use pre-existing processes such as RUP and Agile with MDE;
 - Define own MDE process:
 - Thales example by extending the IEEE 1471 standard;
 - Staron from ABB and Ericsson with focus on early defining of transformations.
 - None of the studies report using any of the already existing although few
 model-based methodologies, e.g. KobrA or COMET.
- Process has not been much in focus.

RQ2- State of the MDE; Tools

- A small survey performed among industry participants showed that, when considering whether or not to adopt MDE, the availability of tools was perceived as the most influential factor.
- The MODELWARE participants were concerned about the instability of tools and their integration.
- According to Motorola, third-part MDE tools do not scale well to large system development.
- Others mean that third-party tools are not suitable for their products or question availability over time.
 - Develop own tools or use OSS tools?
- MDE is at "early adopters" stage?

RQ3- Productivity Gains or Losses

- Quantitative data from small comparative studies or quasiexperiments on productivity :
 - 3 partners in MODELWARE reported productivity gains around 20%.
 - 2 others reported no difference (WGO) or even loss.
 - A small comparative study by Middleware Company reported 35% productivity gains.
- Others report gains but do not have a clear baseline:
 - Motorola estimates 2X-8X improvement.
- Improvements are due to automation, model-based simulation and testing, DSLs and reuse between releases.
- Few studies, lack of baseline, and lack of detailed data; for example on the cost of tool development.

RQ3- MDE Impact on Software Quality

- Even less data than on productivity!
- Motorola reported that:
 - Fewer inspections are needed;
 - Defects are avoided due to generation- 3X fewer defects;
 - Defects are detected earlier 3X improvement;
 - Fixing defects are faster but detecting cause may be more complex.
- France Telecom wrote that simulation helps in validating specifications.

Validity Threats

- Low number of studies -> generalization is impossible!
- Success cases are more likely published than failures.
- Some companies may refrain from publishing their results.
- Few results from large-scale projects.
- Lack of baseline data in most companies -> estimated results are not reliable.
- We have not included results reported in tool providers' or OMG websites. A more extensive search may add other results.

Conclusions

- RQ1 Where and Why?
 - A wide range of domains and types of systems;
 - Automation and reducing labour-intensive tasks, improving communication, integrating best solutions in code generators -> increasing productivity and improving software quality by avoiding defects.
- RQ2 State of the MDE
 - Code generation is common;
 - Scalability, reliability and integration of tools are main concerns.
- RQ3 MDE impact on productivity and software quality:
 - Reports of success but we need more data and from larger studies. Most difficult to answer.

Lessons Learned & Gaps for Future Research

- Define a baseline in the company from previous projects.
- Perform more empirical studies and of different types.
- Investigate Return-On-Investment (ROI) including costs and benefits.

MODELPLEX have defined an evaluation plan based on previous experience and we will report the results as far as possible.

Thank You!

Questions?