Prog. Theor. Phys. Vol. 87, No. 3, March 1992, Progress Letters

Where Is the Σ_{b} ?

Chiaki Itoh, Toshiyuki Minamikawa,* Kimio Miura** and Tsunetoshi Watanabe***
Department of Physics, Meiji-Gakuin University, Totsuka 244
* Department of Physics, Tokyo University of Mercantile Marine, Tokyo 135
** Department of Physics, Nippon Ika University, Kawasaki 211
*** Department of Physics, Asia University, Musasino 180

(Received November 15, 1991)

Abstract

The masses of s-wave bottom baryons are discussed in a semirelativistic quark model, on the basis of a quark-distance relation. We stress that the Σ_{b} is heavier than $\Xi_{b}^{\prime}(b[s u t], b[s d])$ containing the antisymmetric $s u$ (or $s d$) subsystem. We conclude that the two candidates for Λ_{b} with very different masses are different states; Basile et al.'s result $5425_{-75}^{+175} \mathrm{MeV}$ is $\Lambda_{b}(b[d u])$, but Arenton et al.'s result $\sim 5750 \mathrm{MeV}$ is $\Xi_{b}^{\prime 0}(b[s u])$.

Where is the Σ_{b} ? There are many experimental data of bottom mesons, ${ }^{1)}$ but as for bottom baryons, there are only two candidates for $\Lambda_{b}{ }^{2)}$ with large experimental errors. If the mass of Λ_{b} is smaller than 5510 MeV , the decay $\Upsilon(11020) \rightarrow \Lambda_{b}+\bar{\Lambda}_{b}$ is allowed. Higher excited states of γ may be expected to decay to $\Lambda_{b}+\bar{\Lambda}_{b}, \Sigma_{b}+\bar{\Sigma}_{b}$ and so on. We expect that the masses of Λ_{b}, Σ_{b} and Ξ_{b}^{\prime} will be established experimentally soon.

In the previous paper, ${ }^{3)}$ we discussed baryon spectroscopy in a semirelativistic quark model. Modifying the quark distances by forces due to the Fermi-Breit terms, we get all the well-known s-wave baryon masses within $\pm 9 \mathrm{MeV}$ accuracy. The new data ${ }^{1)}$ of $\Sigma_{c}{ }^{++}, \Sigma_{c}{ }^{0}, \Xi_{c}^{+}(c[s u])$ and $\Xi_{c}^{\prime \prime}(c[s d])$ get closer to our results. As for Λ_{c}^{+}, Alvarez et al. ${ }^{4)}$ and Frabetti et al. ${ }^{5)}$ have obtained experimental values which just fit our results. The fit is so good that it is interesting to discuss bottom-baryon masses in our model.
Ξ_{c} baryons of the quarks c, s, u (or d) have two states. One contains the symmetric state of s and u (or d) subsystem, which is denoted by Ξ_{c} in our notation, and the other, the antisymmetric of them, by Ξ_{c}^{\prime}. We note that the Σ_{c} is near Ξ_{c}^{\prime}. There are two main reasons for it. One reason is that the difference of the spin-spin interaction term $\left(16 \pi \alpha_{s} / 9\right)\left\langle\Sigma \delta\left(\boldsymbol{r}_{i j}\right)\left(\boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}\right) /\left(m_{i} m_{j}\right)\right\rangle$ of the one gluon exchange potential partly cancels the mass difference between s and $u(d)$. The other is that the distances of the quark pairs in these baryons are not equal.

In this paper, we further discuss these circumstances about the bottom baryons. Using the values of the parameters obtained in the previous paper, ${ }^{3)}$ we estimate bottom-baryon masses. One of our main results is that Ξ_{b}^{\prime} with the antisymmetric [su] configuration has a smaller mass than Σ_{b} with the symmetric $\{d u\}$ configuration.

Our Hamiltonian for the three-quark system consists of the relativistic kinetic terms $\Sigma\left(m_{i}{ }^{2}+\boldsymbol{p}_{i}{ }^{2}\right)^{1 / 2}$, the harmonic-oscillator potentials $\Sigma(1 / 2) K \boldsymbol{r}_{i j}^{2}$, the Fermi-Breit terms U and all the others H_{0}, where $m_{i}, \boldsymbol{p}_{i}$ and \boldsymbol{r}_{i} are the mass, momentum and
position of the i th quark, respectively and $\boldsymbol{r}_{i j}=\boldsymbol{r}_{\boldsymbol{i}}-\boldsymbol{r}_{j}$. The solutions ${ }^{3}$ of the Schrödinger equations with harmonic-oscillator potentials are the Gaussian wave functions. Distances between two quarks in the baryons depend on the masses of the quarks and get the modification by the forces due to the Fermi-Breit terms. We reduce the size of the Gaussian wave function according to the quark-distance relation ${ }^{3)}$

$$
\begin{equation*}
r_{i j}=R_{i j}-\left.\kappa \frac{\partial}{\partial r_{i j}}\langle U\rangle\right|_{r_{i j}=R_{i j}}, \tag{1}
\end{equation*}
$$

where $r_{i j}$ stands for the modified quark distance, $R_{i j}$ denotes the quark distance in the harmonic-oscillator potentials, $1 / R_{i j}=\langle 1 /| r_{i j}| \rangle$ and κ is an adjustable parameter. Baryon masses are calculated as the expectation values of the Hamiltonian. The details of the calculation are the same as given in Ref. 3) and the fixed parameters are

$$
\begin{align*}
& m_{u}=432 \mathrm{MeV}, \quad m_{d}=437 \mathrm{MeV}, \quad m_{s}=680 \mathrm{MeV} \\
& m_{c}=1944 \mathrm{MeV}, \quad \alpha_{s}=0.566, \quad K=3.87 \times 10^{7} \mathrm{MeV}^{3}, \\
& \kappa=2.46 \times 10^{-9} \mathrm{MeV}^{-3}, \quad E_{0}=\left\langle H_{0}\right\rangle=-1021 \mathrm{MeV} \tag{2}
\end{align*}
$$

Figure 1 shows our results of the $\Xi_{b}^{\prime}, \Lambda_{b}$ masses and the mass difference $\Xi_{b}^{\prime}-\Sigma_{b}$ as the functions of the b quark mass m_{b}. The mass difference $\Xi_{b}^{\prime}-\Sigma_{b}$. changes the sign at $m_{b}=2820 \mathrm{MeV}$. The expected b quark mass $\sim 5000 \mathrm{MeV}$ is well above this crossing point. So we can expect Σ_{b} to be heavier than Ξ_{b}^{\prime}. For example, for m_{b} $=5300 \mathrm{MeV}$, we obtain $\Xi_{b}^{\prime 0}-\Sigma_{b}{ }^{0}=-25 \mathrm{MeV}$, in contrast with $\Xi_{c}^{\prime 0}-\Sigma_{c}{ }^{0}=25 \mathrm{MeV}$ (expt.

Fig. 1. The dependence of $\Xi_{b}^{\prime}, \Lambda_{b}$ (the left-hand scale in GeV) and $\Xi_{b}^{\prime}-\Sigma_{b}^{0}$ (the right-hand scale in MeV) on m_{b} (in GeV). The experimental dafa are for Λ_{b} obsèrved by Basile et al. ${ }^{2!}$ $=20 \mathrm{MeV}$) obtained in Ref. 3). From Table I, we can see that this comes mainly from the spin-spin interactions, the harmonic-oscillator potentials and the Coulomb potentials, where the differences of quark distances in Ξ_{b}^{\prime} and Σ_{b} play an essential role. Thus we see that the internal interactions overcome the quark mass difference.

There are two candidates ${ }^{2)}$ for Λ_{b} with very different masses. One is 5425 ${ }_{-75}^{+175} \mathrm{MeV}$ by Basile et al. and the other is $\sim 5750 \mathrm{MeV}$ by Arenton et al. Though the experimental errors of them are very large, the mass difference between them is clearly larger than the experimental errors. This evidence is sufficient to suspect that these two experiments are of the same particle. Possible candidates for them are Λ_{b} and $\Xi_{b}^{\prime 0}$, where $\Xi_{b}^{\prime 0}$ contains $b[s u]$ quarks of a flavor antisymmetric and spin antisymmetric

Table I. The expectation values (in MeV) of the kinetic terms, the harmonicoscillator potentials and the Fermi-Breit terms of $\Xi_{b}^{\prime 0}, \Sigma_{b}{ }^{0}$ and $\Xi_{b}^{\prime 0}-\Sigma_{b}{ }^{0}$. We put $m_{b}=5300 \mathrm{MeV}$ as an example.

	Ξ_{b}^{0}	$\sum_{b}{ }^{0}$	$\Xi_{b}^{\prime 0}-\Sigma_{b}{ }^{0}$
$\sum\left\langle\left(m_{i}{ }^{2}+\boldsymbol{p}_{i}{ }^{2}\right)^{1 / 2}\right\rangle$	6953	6672	281
$\sum\left\langle\frac{1}{2} K \boldsymbol{r}_{i j}^{2}\right\rangle$	475	581	-106
$\sum\left\langle\left(\alpha Q_{i} Q_{j}-\frac{2}{3} \alpha_{s}\right) \frac{1}{\left\|\boldsymbol{r}_{i j}\right\|}\right\rangle$	-551	-499	-52
$\sum\left\langle\left(\alpha Q_{i} Q_{j}-\frac{2}{3} \alpha_{s}\right)\left(-\frac{1}{2 m_{i} m_{j}}\right)\left(\frac{\boldsymbol{p}_{i} \boldsymbol{p}_{j}}{\left\|\boldsymbol{r}_{i j}\right\|}+\frac{\boldsymbol{r}_{i j} \cdot\left(\boldsymbol{r}_{i j} \cdot \boldsymbol{p}_{i}\right) \boldsymbol{p}_{j}}{\left.\mid \boldsymbol{r}_{i j}\right]^{3}}\right)\right\rangle$	-88	-72	-16
$\sum\left\langle\left(\alpha Q_{i} Q_{j}-\frac{2}{3} \alpha_{s}\right)\left(-\frac{\pi}{2} \delta\left(\boldsymbol{r}_{i j}\right)\right)\left(\frac{1}{m_{i}{ }^{2}}+\frac{1}{m_{j}{ }^{2}}\right)\right\rangle$.	122	128	-6
$\sum\left\langle\left(\alpha Q_{i} Q_{j}-\frac{2}{3} \alpha_{s}\right)\left(-\frac{\pi}{2} \delta\left(\boldsymbol{r}_{i j}\right)\right) \frac{16 s_{i} \cdot \boldsymbol{s}_{j}}{3 m_{i} m_{j}}\right\rangle$	-108	18	-126
E_{0}	-1021	-1021	0
total	5782	5807	-25

$s u$ state. The decay $\Xi_{b}^{0} \rightarrow \Lambda K^{0} 2 \pi^{+} 2 \pi^{-}$, which is observed by Arenton et al., is Cabibbo allowed. From Fig. 1 , we can see that the mass difference $\Xi_{b}^{00}-\Lambda_{b}$ is almost constant for a wide range of $m_{b} ; \Xi_{b}^{\prime}-\Lambda_{b}=181.9 \mathrm{MeV}$ for $m_{b}=5000 \mathrm{MeV}$ and $\Xi_{b}^{\prime}-\Lambda_{b}$ $=181.5 \mathrm{MeV}$ for $m_{b}=5300 \mathrm{MeV}$. Our prediction $\Xi_{o}^{00}-\Lambda_{b}=182 \mathrm{MeV}$ is consistent with these assignments within the experimental errors.

It is crucial to find Σ_{b} which may decay to $\Lambda_{b} \pi$. Thus, we will first experience a reversal $\Sigma_{b}>\Xi_{b}^{\prime}$ among different generations with the same spin in spite of the quark mass relation $m_{d}<m_{s}$. On the other hand, there are no such drastic differences between the particles with a flavor symmetric quark pair:

$$
\begin{align*}
& \Xi^{0}-\Sigma^{0}=135 \mathrm{MeV} \quad(\text { expt. }=122.35 \mathrm{MeV}), \\
& \Xi_{c}^{0}-\Sigma_{c}^{0}=127 \mathrm{MeV} \\
& \Xi_{b}^{0}-\Sigma_{b}^{0}=114 \mathrm{MeV} \quad\left(\text { for } m_{b}=5300 \mathrm{MeV}\right) . \tag{3}
\end{align*}
$$

The former two values are the results given in Ref. 3).
Finally, we would like to add some comments. Our calculation is semirelativistic. We use nonrelativistic Gaussian wave functions. The numerical calculation of the kinetic term in the relativistic form $\sqrt{{m_{i}{ }^{2}+\boldsymbol{p}_{i}{ }^{2}}^{\text {leads }}{ }^{6} \text { to a more accurate fit and }}$ more reasonable parameters than those in the nonrelativistic form $m_{i}+\boldsymbol{p}_{i}{ }^{2} /\left(2 m_{i}\right)$. By this we include the relativistic effect of the kinetic term up to the first order. So we can expect a better fit with relativistic wave functions. A possible wave function is given in Ref. 7).

Equation (1) gives an excellent fit. Similar relation to Eq. (1) is used for the meson spectroscopy. ${ }^{6,8) \text {. We can show that our reduced quark distance Eq. (1) and the }}$ wave function are the same as those of the perturbation theory up to the $2 s$ state of the harmonic oscillator for the mesons. ${ }^{8)}$ This discussion can also be applied to the Fermi-Breit terms. As for the baryons, we would like to discuss this point elsewhere.

1) Particle Data Group, J. J. Hernández et al., Phys. Lett. B239 (1990), 1.
2) M. Basile et al., Lett. Nuovo Cim. 31 (1981), 97. M. W. Arenton et al., Nucl. Phys. B274 (1986), 707.
3) C. Itoh, T. Minamikawa, K. Miura and T. Watanabe, Phys. Rev. D40 (1989), 3660.
4) NA14/2 Collaboration, M. P. Alvarez et al., Phys. Lett. B246 (1990), 256.
5) P. L. Frabetti et al., Phys. Lett. B251 (1990), 639.
6) C. Itoh, T. Minamikawa, K. Miura and T. Watanabe, Bull. Meiji-Gakuin Univ. 2 (1979), 11.
7) J. Cohen and H. J. Weber, Phys. Lett. 165B (1985), 229.

We would like to thank Dr. M. Gupta for suggesting this reference.
8) C. Itoh, T. Minamikawa, K. Miura and T. Watanabe, in preparation.

