
Where’s Waldo?

Sensor-Based Temporal Logic Motion Planning ∗

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas
GRASP Laboratory, University of Pennsylvania

Philadelphia, PA 19104, USA

{hadaskg,fainekos,pappasg}@grasp.upenn.edu

Abstract— Given a robot model and a class of admissible
environments, this paper provides a framework for automat-
ically and verifiably composing controllers that satisfy high
level task specifications expressed in suitable temporal logics.
The desired task specifications can express complex robot
behaviors such as search and rescue, coverage, and collision
avoidance. In addition, our framework explicitly captures
sensor specifications that depend on the environment with
which the robot is interacting, resulting in a novel paradigm
for sensor-based temporal logic motion planning. As one robot
is part of the environment of another robot, our sensor-based
framework very naturally captures multi-robot specifications.
Our computational approach is based on first creating discrete
controllers satisfying so-called General Reactivity(1) formulas.
If feasible, the discrete controller is then used in order to guide
the sensor-based composition of continuous controllers result-
ing in a hybrid controller satisfying the high level specification,
but only if the environment is admissible.

Index Terms— Motion planning, temporal logics, sensor-
based planning, controller synthesis, hybrid control.

I. INTRODUCTION

Motion planning and task planning are two fundamental

problems in robotics that have been addressed from differen

perspectives. Bottom-up motion planning techniques concen-

trate on creating control inputs or closed loop controllers for

detailed robot models that steer it from one configuration to

another [1], [2]. Such controllers can either assume perfect

knowledge of the environment [3] or receive information

about the environment through the use of sensors [4]. On the

other hand, top-down task planning approaches are usually

focused on finding coarse, typically discrete, robot actions

in order to achieve more complex tasks [5]. Such goals

may include final goals for multiple robots [6] or temporal

ordering or sequencing of goals [7].

The natural hierarchical decomposition of task planning

layers residing higher than motion planning layers has re-

sulted in a lack of approaches that address the integrated

system, until very recently. The modern paradigm of hy-

brid systems, coupling continuous and discrete systems,

has enabled the formal integration of high level discrete

actions with low level controllers in a unified framework.

This has inspired a variety of approaches that translate high

level, discrete tasks to low level, continuous controllers in

a verifiable and computationally efficient manner [8]–[10]

∗This work is partially supported by National Science Foundation EHS
0311123, National Science Foundation ITR 0324977, and Army Research
Office MURI DAAD 19-02-01-0383.

or compose local controllers in order to construct global

plans [11]–[13].

This paper follows the spirit of our previous work [8],

[9] where complex task specifications are expressed as

linear temporal logic formulas [14]. However, this paper

contributes in two very significant and novel directions. The

first novelty is that the temporal logic we consider explicitly

models sensor inputs. This enables our task descriptions to

depend on possibly dynamic environment, capturing multi-

robot search and rescue style missions. In a multi-robot

setting, one robot is part of the environment of another robot,

hence it is very natural to consider a variety of other multi-

robot missions as well. The interpretation or execution of

such tasks has a very natural game-theoretic flavor between

the robot and the environment (or other robots). Depending

on the the environment, the execution of the task may be

different, but it will satisfy the task if the environment is

admissible.

The second novelty in this paper is the use of a very recent

fragment of linear temporal logic which is called General

Reactivity (1) (GR(1)) [15]. By restricting to GR(1) formu-

las, the complexity of translating a formula to an automaton

becomes polynomial (from double exponential in the size

of the formula). This dramatic acceleration in computation

does not come at a major expense of expressivity, as a large

number of (but not all) tasks specified in practice is naturally

captured in the fragment of interest.

As in [8], [9], the solution of the discrete synthesis algo-

rithm is integrated with the controllers in [11] resulting in an

overall hybrid controller that is orchestrating the composition

of low level controllers based on the sensorial interaction

with the environment. The overall closed loop system is

guaranteed, by construction, to satisfy the desired specifi-

cation but only if the robot operates in an environment that

satisfies whatever assumptions that were explicitly modeled,

as another temporal logic formula, in the synthesis process.

This leads to a very natural assume-guarantee decomposition

between the robot and its environment.

II. PROBLEM FORMULATION

The goal of this paper is to construct controllers for

mobile robots that generate continuous trajectories satisfying

given specifications. Furthermore, we would like to achieve

such specifications while interacting, using sensors, with a

variety of environments. To achieve this, we need to specify

2007 IEEE International Conference on

Robotics and Automation

Roma, Italy, 10-14 April 2007

ThD11.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3116

a robot model, assumptions on admissible environments, and

the desired system specification.

Robot Model: We will assume that a mobile robot (or

possibly several mobile robots) is operating in a polygonal

workspace P . The motion of the robot is expressed as

ṗ(t) = u(t) p(t) ∈ P ⊆ R
2 u(t) ∈ U ⊆ R

2 (1)

where p(t) is the position of the robot at time t, and u(t) is

the control input. We will also assume that the workspace

P is partitioned using a finite number of cells P1, . . . , Pn,

where P = ∪n
i=1Pi and Pi ∩ Pj = ∅ if i 6= j. Furthermore,

we will also assume that each cell is a convex polygon.

The partition naturally creates boolean propositions Y =
{r1, r2 . . . , rn} which are true if the robot is located in Pi,

for example r1 is true iff p ∈ P1. Since {Pi} is a partition

of P , exactly one ri can be true at any time.

Admissible environments: The robot interacts with its

environment using sensors, which in this paper are as-

sumed to be binary. The m binary sensor variables X =
{x1, x2, . . . , xm} have their own (discrete) dynamics which

we do not model explicitly. Instead, we place high level

assumptions on the possible behavior of the sensor variables,

defining a class of admissible environments. These environ-

mental assumptions will be captured (in Section III) by a

suitable temporal logic formula ϕe. Our goal is to construct

controllers that achieve their desired specification not for any

arbitrary environment, but rather for all possible admissible

environments satisfying ϕe.

System Specification: The desired system specification for

the robot will be expressed as a suitable formula ϕs in the

so-called linear temporal logic (LTL) [14]. Informally, LTL

will be used (in Section III) to specify a variety of robot

tasks that are linguistically expressed as:

• Coverage: “Go to rooms P1,P2,P3,P4 in any order”.

• Sequencing: “First go to room P5, then to room P2”.

• Conditions: “If you see Mika, go to room P3, otherwise

stay where you are”.

• Avoidance: “Don’t go to corridor P7 ”.

Furthermore, LTL is compositional, enabling the construc-

tion of complicated robot task specifications from simple

ones. Putting everything together, we can describe the prob-

lem that will be addressed in this paper.

Problem 1: [Sensor-based temporal logic motion plan-

ning] Given robot model (1), initial position p(0), and suit-

able temporal logic formula ϕe modeling our assumptions on

admissible environments, construct (if possible) a controller

so that the robot’s resulting trajectories p(t) satisfy the

system specification ϕs in any admissible environment.

The approach presented in the paper can be easily general-

ized to the case where the initial position of the robot is not

specified, but may belong in a number of cells.

In order to make Problem 1 formal, we need to precisely

define the syntax, semantics, and class of temporal logic

formulas that are considered in this paper.

III. TEMPORAL LOGICS

Loosely speaking, Linear Temporal Logic (LTL) [14] con-

sists of the standard propositional logic with some temporal

operators that allow us to express requirements on sequences

of propositions.

A. LTL Syntax and Semantics

Syntax: Let AP be a set of atomic propositions. In our

setting AP = X ∪ Y , including both sensor and system

propositions. LTL formulas are constructed from atomic

propositions π ∈ AP according to the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ

As usual, the boolean constants True and False are defined

as True = ϕ ∨ ¬ϕ and False = ¬True respectively. Given

negation (¬) and disjunction (∨), we can define conjunction

(∧), implication (⇒), and equivalence (⇔). Furthermore,

we can also derive additional temporal operators such as

“Eventually” ✸ϕ = True U ϕ and “Always” ✷ϕ = ¬✸¬ϕ.

Semantics: The semantics of an LTL formula ϕ is defined

on an infinite sequence σ of truth assignments to the atomic

propositions π ∈ AP . For a formal definition of the

semantics we refer the reader to [14]. Informally, the formula

©ϕ expresses that ϕ is true in the next “step” (the next

position in the sequence) and the formula ϕ1 U ϕ2 expresses

the property that ϕ1 is true until ϕ2 becomes true. The

sequence σ satisfies formula ✷ϕ if ϕ is true in every position

of the sequence, and satisfies the formula ✸ϕ if ϕ is true

at some position of the sequence. Sequence σ satisfies the

formula ✷✸ϕ if ϕ is true infinitely often.

B. Special class of LTL formulas

Following [15], we consider a special class of tempo-

ral logic formulas. We first recall that we have divided

our atomic propositions into sensor propositions X =
{x1, . . . , xm}, and system propositions Y = {r1, . . . , rn}.

These special formulas are LTL formulas of the form

ϕ = (ϕe ⇒ ϕs). ϕe is an assumption about the sensor

propositions, and thus about the behavior of the environment,

and ϕs represents the desired behavior of the system. Both

ϕe and ϕs have the following structure

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g , ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

where

• ϕe
i , ϕs

i - Non-temporal boolean formulas constraining

(if at all) the initial value(s) for the sensor propositions

X and system propositions Y respectively.

• ϕe
t - represents the possible evolution of the state of the

environment. It consists of a conjunction of formulas

of the form ✷Bi where each Bi is a boolean formula

constructed from subformulas in X ∪ Y ∪©X , where

©X = {©x1, . . . ,©xn}. Intuitively, formula, ϕe
t

constrains the next sensor values ©X based on the

current sensor X and system Y values.

• ϕs
t - represents the possible evolution of the state of

the system. It consists of a conjunction of formulas of

ThD11.5

3117

Fig. 1: The workspace of Example 1. The initial position

of the robot is marked with a star.

the form ✷Bi where each Bi is a boolean formula in

X ∪ Y ∪©X ©Y .

• ϕe
g , ϕs

g - represent goal assumptions for the environment

and desired goal specifications for the system. Both

formulas consist of a conjunction of formulas of the

form ✷✸Bi where each Bi is a boolean formula.

The formula φ = (ϕe
g ⇒ ϕs

g) which will be discussed in

section IV, is a Generalized Reactivity(1) (GR(1)) formula.

Despite the structural restrictions of this class of LTL

formulas, there does not seem to be a significant loss in

expressivity. Furthermore, the structure of the formula very

naturally reflects the structure of most sensor-based robotic

tasks. We illustrate this with a relatively simple example.

Example 1: Consider a robot that is moving in the

workspace shown in Fig. 1 consisting of four areas la-

belled P1, ..., P4 (which define the system propositions Y =
{r1, . . . , r4}). Initially, the robot is placed somewhere in

region P1. In natural language, the desired specification for

the robot is: Look for Waldo in regions P2 and P4, if you

find him, stay where you are, and if not, keep looking.

Since Waldo is part of the environment, we consider one

sensor proposition X = {sWaldo} which becomes true if our

sensor has detected Waldo. Our assumptions about Waldo are

captured by ϕe = ϕe
i ∧ϕe

t ∧ϕe
g . The robot initially does not

see Waldo, thus ϕe
i = (¬sWaldo). Since we can only sense

Waldo in regions P2 and P4, we encode the requirement

that in other regions the value of sWaldo cannot change.

Furthermore, we assume (for simplicity) that once the robot

detects Waldo, Waldo doesn’t move. These requirements are

captured by the formula

ϕe
t =

{

✷((¬r2 ∧ ¬r4) ⇒ (©sWaldo ⇔ sWaldo))
∧

✷(sWaldo ⇒ ©sWaldo)

We place no further assumptions on the environment propo-

sitions which means that ϕe
g = ✷✸True, completing the

modeling of our environment assumptions. Notice that the

environment is admissible whether Waldo is there or not.

We now turn to modeling the robot and the desired

specification, captured by ϕs = ϕs
i ∧ ϕs

t ∧ ϕs
g . Initially,

the robot starts somewhere in region r1, hence ϕs
i = (r1 ∧

¬r2 ∧¬r3 ∧¬r4). ϕs
t models the possible changes in in the

robot state. The first four subformulas represent the possible

transitions between regions, for example, from region P1

the robot can move to adjacent regions P2, P4, or stay in

P1. The next four subformulas capture the mutual exclusion

constraint, that is at any step, exactly one of r1, r2, r3, and

r4 is true. For a given decomposition of workspace P , the

generation of these formulas is easily automated. The final

subformula is part of the desired specification and states that

if the robot is in region P2 (or P4) and it sees Waldo when

he senses1 it should remain in region P2 (respectively P4)

in the next step as well.

ϕs
t =























































∧

✷(r1 ⇒ (©r1 ∨©r2 ∨©r4))
∧

✷(r2 ⇒ (©r1 ∨©r2 ∨©r3))
∧

✷(r3 ⇒ (©r2 ∨©r3 ∨©r4))
∧

✷(r4 ⇒ (©r1 ∨©r3 ∨©r4))
∧

✷((©r1 ∧ ¬© r2 ∧ ¬© r3 ∧ ¬© r4)
∨(¬© r1 ∧©r2 ∧ ¬© r3 ∧ ¬© r4)
∨(¬© r1 ∧ ¬© r2 ∧©r3 ∧ ¬© r4)
∨(¬© r1 ∧ ¬© r2 ∧ ¬© r3 ∧©r4))

∧

i∈{2,4} ✷((ri ∧©sWaldo) ⇒ ©ri)

Finally, the requirement that the robot keeps looking in

regions P2, P4 unless it has found Waldo is captured by

ϕs
g = ✷✸(r2 ∨ sWaldo)

∧

✷✸(r4 ∨ sWaldo)

This completes our modeling of the robot specification as

well. Combining everything together, we get the required

formula ϕ = (ϕe ⇒ ϕs).
Having modelled a scenario using ϕ, our goal is now

to synthesize a controller generating trajectories that will

satisfy the formula if the scenario is possible (if the formula

is realizable). This is the goal of the next two sections.

IV. DISCRETE SYNTHESIS

Given an LTL formula, the realization or synthesis prob-

lem consists of constructing an automaton whose behaviors

satisfy the formula if such an automaton exists. In general,

creating such an automaton is proven to be doubly exponen-

tial in the size of the formula [16]. However, by restricting

ourselves to the special class of LTL formulas, we can use

the efficient algorithm recently introduced in [15] which is

polynomial O(n3) time, where n is the number of valuations

of the sensor and state variables. We present the algorithm

informally, and refer the reader to [15] for a full description.

The synthesis process is viewed as a game played between

the system (robot) and the environment (as the adversary).

Starting from some initial state, both the robot and the

environment make transition to the state of the system. The

winning condition for the game is given as a GR(1) formula

φ. The way the game is played is that at each step, first the

environment makes a transition according to its transition

relation and then the system makes its own transition. If the

system can satisfy φ no matter what the environment does,

we say that the system is winning and we can extract an

automaton for our robot. However, if the environment can

falsify φ we say that the environment is winning and the

desired behavior is unrealizable.

Relating the formulas of section III-B to the game men-

tioned above, the initial states of the players are given by ϕe
i

1As explained in Section IV, at each step the robot first senses the
environment and then moves, therefore we need to refer to the truth value
of ©s

Waldo

ThD11.5

3118

and ϕs
i . The possible transitions the players can make are

given by ϕe
t and ϕs

t , and the winning condition is given

by the GR(1) formula φ = (ϕe
g ⇒ ϕs

g). Note that the

system is winning, i.e. φ is satisfied if ϕs
g is true, which

means that the desired robot behavior is satisfied, or ϕe
g

is false, which means that the environment did not reach

its goals (either because the environment was faulty or the

system prevented it from reaching its goals). This implies

that when the environment does not satisfy ϕe
g there is no

guarantee about the behavior of the system. Furthermore, if

the environment does not “play fair”, i.e. violates its assumed

behavior ϕe
i ∧ ϕe

t , the automaton is no longer valid.

The synthesis algorithm [15] takes the GR(1) formula ϕ

and first checks whether it is realizable. If it is, the algorithm

extracts a possible (but not necessarily unique) automaton

which implements a strategy that the robot should follow in

order to satisfy the desired behaviour. The automaton that

is generated by the algorithm can be modeled as a tuple

A = (X ,Y, Q, q0, δ, γ) where:

• X is the set of input (environment) propositions

• Y is the set of output (system) propositions

• Q ⊂ N is the set of states

• q0 ∈ Q is the initial state

• δ : Q × 2X → 2Q is the transition relation, i.e.

δ(q, X) = Q′ ⊆ Q where q ∈ Q is a state and X ⊆ X
is the subset of sensor propositions that are true.

• γ : Q → 2Y is the state labeling function where γ(q) =
y and y ∈ 2Y is the set of state propositions that are

true in state q. Note that in our case, since the only

outputs are the regions, and there is only one output

proposition that is true at every state, γ(q) = y ∈ Y .

Note that this automaton can be nondeterministic2. An ad-

missible input sequence is a sequence X1, X2, ... ,Xj ∈ 2X

that satisfies ϕe. A run of this automaton under an admissible

input sequence is a sequence of states σ = q0, q1, This

sequence starts at the initial state and follows the transition

relation δ and the truth values of the input propositions,

i.e. for all j ≥ 0, qj+1 ∈ δ(qj , Xj). An interpretation of

a run σ is a sequence y0, y1, ... where yi = γ(qi) is the

label of the ith state in the run. We use this sequence of

labels to construct the discrete path the robot must follow.

As mentioned before, when given a non-admissible input

sequence, i.e. an input sequence that violates any part of

ϕe, the automaton is no longer relevant and we will not be

able to construct a correct path for the robot.

Example 2: Revisiting Example 1, Fig. 2 represents the

synthesized automaton that realizes the desired behavior.

The number at the top of each circle is the state and the

proposition that is written inside each circle is the state’s

label, i.e. the output proposition that is true in that state.

We can see that the robot will first search P2 and then,

if it doesn’t find Waldo, continue to search P4. If Waldo

is nowhere to be found, the robot will continue to look for

him forever. Note that this plan is not unique, since the robot

2By making a small change in the algorithm, the automaton may become
deterministic, i.e. for every input there will be a unique next state

could have started searching in P4. Furthermore, it is also

nondeterministic since the robot can go from state 2 to state

6 through either state 3 or 4.

Fig. 2: The synthesized automaton of Example 2

From the interpretation of a run of the automaton, we

extract a discrete path for the robot. What is left to do, is to

transform this discrete path to a continuous trajectory, as is

explained in the next section.

V. CONTROLLER COMPOSITION

In order to continuously implement the discrete solution

of the previous section, we construct a hybrid controller that

takes a set of simple controllers and composes them sequen-

tially according to the discrete execution of the automaton.

Initially, the robot is placed in region i0 such that γ(q0) =
ri0 . During the execution, at step j ≥ 1 the robot first

senses its environment3 and determines Xj . Then the next

automaton state is selected qj ∈ δ(qj−1, Xj) and the next

region ij the robot must go to is extracted by rij
= γ(qj).

When the robot reaches region ij , step j + 1 is performed.

By continuing this procedure, the discrete path ri0 , ri1 , ...

is extracted, and by combining the simple controllers, the

continuous path is achieved.

Following the work in [8], we utilize atomic controllers

that satisfy the so-called bisimulation property [17]. Such

controllers are guaranteed to drive the robot from one region

to another regardless of the initial state in the region.

There are several recent approaches for generating such

simple controllers, such as [11], [18].We use the framework

developed in [11] due to its computational properties and the

variety of regions it can be applied to. In this approach, the

control input is the gradient of a harmonic potential function.

We would like to emphasize that this method can employ

different and more realistic types of controllers, dealing with

convex bodied robots and nonholonomic constraints [19], as

long as they satisfy the bisimulation property.

VI. CASE STUDIES

In this section we give several examples of desired behav-

iors, the automata that implement them and the trajectories

which they induce. The polygonal environment we use for

the examples is shown in Fig. 3. In the following we refer

to region Pi as region i.

3An implicit assumption is that the sensing is performed only when
entering a region. Another approach would be to check the sensor values
every computation cycle and allow the controller to change before exiting
the current region.

ThD11.5

3119

A. Single robot - Nursery scenario

The desired behaviour is: “Starting in region 1, keep

checking whether a baby is crying in regions 2 or 4. If you

find a crying baby, go look for an adult in regions 6, 7 and

8. Keep looking until you find him. After finding the adult,

go back to monitoring the babies and so on...”

We can define two environment propositions here, one in-

dicating a crying baby was sensed and another indicating an

adult was found. In order to reduce the number of variables,

the computation time and the size of the automaton, we use

one environment proposition, CkBby, indicating whether the

robot should check on the babies (when the proposition is

true) or go look for an adult (when the proposition is false).

Initially CkBby is true. We assume that the proposition

becomes false in regions 2 and 4 if the robot senses a baby

crying and once it becomes false it stays false as long as it

is in 2 or 4 (a baby does not stop crying on her own and she

cannot be ignored). Furthermore, we assume that CkBby

becomes true in regions 6, 7 and 8 only if the robot sensed

an adult. Once it becomes true it stays true in these regions

(once the adult was found, the robot must return to check

on the babies). In all other regions, the truth value of the

proposition may not change.

Following these assumptions, we can construct ϕe:

ϕe =



























CkBby
∧

✷(((r2 ∨ r4) ∧ ¬CkBby) → (¬© CkBby)))
∧

✷(((r6 ∨ r7 ∨ r8) ∧ CkBby) → (©CkBby)))
∧

✷(¬(r2 ∨ r4 ∨ r6 ∨ r7 ∨ r8)
→ (©CkBby ↔ CkBby))

∧

✷✸True

As for the robot, we have ten system propositions

r1, ..., r10, one for each region. Constructing ϕs:

ϕs =















r1 ∧i=2,...,10 ¬ri
∧

Transitions
∧

Mutual Exclusion
∧

i∈{2,4} ✷✸(ri ∨ ¬CkBby)
∧

i∈{6,7,8} ✷✸(ri ∨ CkBby)

The first and second lines encode the initial condition,

possible transitions and mutual exclusion requirement as in

Example 1. The rest of the formula describes the desired

behaviour, for example, the third line requires the robot to

infinitely often either visit region i, i ∈ {2, 4} or look for

an adult.

Running this example through the synthesis algorithm, the

computation time was 2 seconds and we got an automaton

with 41 states that realizes this specification. Sample simu-

lations are shown in Fig. 4.

Fig. 3: The environment used in section VI.

(a) Babies are not crying (b) A baby in region 4 cries and
the adult is in region 8

Fig. 4: Nursery Example

B. Multi robot - Search and Rescue

Our framework captures very naturally multi-robot sce-

narios where one robot becomes part of the environment

of another robot. In a natural decentralized model, each

robot is tasked by it’s own formula ϕi resulting in it’s own

synthesized automaton. The coordination between robots can

be done using the input (sensor) propositions, as shown in

the following scenario.

In this search and rescue scenario, we employ two UAV’s

that continuously search regions 1, 3, 7 and 8 for injured

people. Once an injured person was found, a ground vehicle

(ambulance) goes to the person’s location and helps out.

If there are no reports of people needing help, the ground

vehicle does not move. If the ground vehicle is in any of

the search regions, the UAV’s may skip it. We assume, for

simplicity, that the two UAV’s fly at different altitudes so

there can be no collisions between the agents.

The two UAV’s will be named robot 1 and 2 and initially

they are in regions 4 and 6 respectively. Other than the initial

region, the two formulas ϕ1, ϕ2 will be the same therefore

we describe ϕ1 only. Since the behavior of these robots

depend only on the location of the ground vehicle (denoted

as robot 3), we define four environment propositions r3
i , i ∈

{1, 3, 7, 8} indicating whether robot 3 is in either of these

regions.

ϕe
1 =







∧

¬r3
1

∧

¬r3
3

∧

¬r3
7

∧

¬r3
8

∧

Mutual Exclusion between r3
i , i ∈ {1, 3, 7, 8}

∧

✷✸True

Robot 3 does not start in regions 1, 3, 7 or 8, and it cannot

be in two regions at the same time.

ϕs
1 =







r1
4 ∧i=1,2,3,5,...,10 ¬r1

i
∧

Transitions
∧

Mutual Exclusion
∧

i∈{1,3,7,8} ✷✸(r1
i ∨ r3

i)

The robot has to infinitely often visit region i, unless robot

3 is there. This formula took 11 seconds to realize and the

automaton has 129 states.

Robot 3 (the ground vehicle) is initially in region 10.

The behavior of robot 3 depends on the sensing done by

robots 1 and 2 that is transmitted to it. For ϕ3 we define

four input propositions: helpi, i ∈ {1, 3, 7, 8} indicating

people needing help in the respective regions. To make the

automaton smaller, we assume that once the robot reaches

region i, the proposition helpi becomes false, and if helpj

ThD11.5

3120

is true, it stays true until the robot reaches region j.

ϕe
3 =















∧i∈{1,3,7,8}¬helpi
∧

i∈{1,3,7,8} ✷(r3
i → ¬© helpi)

∧

i∈{1,3,7,8} ✷((¬r3
i ∧ helpi) → ©helpi)

∧

✷✸True

Robot 3 stays in place unless there is a need for help.

ϕs
3 =























r1
10 ∧i=1,...,9 ¬r1

i
∧

Transitions
∧

Mutual Exclusion
∧

✷((∧i∈{1,3,7,8}¬© helpi)
⇒ (∧j∈{1,...,10} © r3

j ↔ r3
j))

∧

i∈{1,3,7,8} ✷✸(r3
i ∨ ¬helpi)

This formula took 60 seconds to realize and the automaton

has 282 states. Fig. 5 depicts four snapshots of a sample

simulation. In this simulation, robot 1 detects a person

(indicated by an X) in region 1, causing robot 3 to move to

region 1. Then, later on, robot 2 detects a person in region

3 and subsequently, robot 3 moves to region 3.

(a) Robot 1 found someone in 1 (b) Robot 3 arrived at 1

(c) Robot 2 found someone in 3 (d) Robot 3 arrived at 3

Fig. 5: Search and Rescue

VII. CONCLUSIONS - FUTURE WORK

In this paper, we have described a method of creating

controllers which are guaranteed to satisfy a user specified

behavior expressed in temporal logic. Furthermore, these

controllers behave in a reactive manner, i.e. the behavior of

the robot can depend on the local information it senses from

the environment in which it is operating. We have shown

that many complex robot behaviors can be expressed and

computed, both for a single robot and for multiple robots.

Writing LTL formulas requires some experience, and

might lead to unintended behaviors. Therefore, we plan to

examine how natural language can be automatically trans-

lated into logic, thus enabling “non-expert” users to take

advantage of this method. Furthermore, we would like to

create some feedback to the user that will help him figure out

what went wrong if the specification is unrealizable. Another

direction we are working on is experimenting with different

controllers and various robots, simulated and real.

ACKNOWLEDGEMENTS

We would like to thank David Conner for allowing us to

use his code for the potential field controllers. We would also

like to thank Nir Piterman, Amir Pnueli and Yaniv Sa’ar for

allowing us to use their code for the synthesis algorithm.

REFERENCES

[1] H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson,
G. Kantor, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, USA, 2005.

[2] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[3] Elon Rimon and Daniel E. Kodischek. Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics and
Automation, 8(5):501–518, October 1992.

[4] H. Choset and J. Burdick. Sensor-based exploration: The hierarchical
generalized voronoi graph. The International Journal of Robotics
Research, 19:96–125, February 2000.

[5] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall, second edition, 2003.

[6] R.M. Jensen and M. M. Veloso. OBDD-based universal planning
for synchronized agents in non-deterministic domains. Journal of
Artificial Intelligence Research, 13:189–226, 2000.

[7] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, , and P. Traverso. MBP
: A model based planner. In In Proc. IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[8] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Tem-
poral logic motion planning for mobile robots. In IEEE International
Conference on Robotics and Automation, pages 2020–2025, 2005.

[9] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas.
Hybrid controllers for path planning: A temporal logic approach. In
IEEE Conference on Decision and Control, Seville, Spain, 2005.

[10] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from ltl specifications. In 9th International Work-
shop on Hybrid Systems: Computation and Control, Santa Barbara,
California, 2006.

[11] David C. Conner, Alfred A. Rizzi, and Howie Choset. Composition of
Local Potential Functions for Global Robot Control and Navigation.
In IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages
3546 – 3551, Las Vegas, NV, October 2003.

[12] D. Conner, H. Choset, and A. Rizzi. Integrated planning and
control for convex-bodied nonholonomic systems using local feedback
control policies. In Proceedings of Robotics: Science and Systems,
Cambridge, USA, June 2006.

[13] S. Lindemann and S. LaValle. Computing smooth feedback plans over
cylindrical algebraic decompositions. In Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2006.

[14] E. Allen Emerson. Temporal and modal logic. In Handbook of
theoretical computer science (vol. B): formal models and semantics,
pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

[15] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of Reactive(1)
Designs. In VMCAI, pages 364–380, Charleston, SC, Jenuary 2006.

[16] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 179–190.
ACM Press, 1989.

[17] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88:971–
984, 2000.

[18] Calin Belta and L.C.G.J.M. Habets. Constructing decidable hybrid
systems with velocity bounds. In IEEE Conference on Decision and
Control, Bahamas, 2004.

[19] David C. Conner, Howie Choset, and Alfred Rizzi. Towards prov-
able navigation and control of nonholonomically constrained convex-
bodied systems. In Proceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA ’06), May 2006.

ThD11.5

3121

