
Where the Bugs Are

Thomas J. Ostrand
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

ostrand@research.att.com

Elaine J. Weyuker
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

weyuker@research.att.com

Robert M. Bell
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932
rbell@research.att.com

Abstract

The ability to predict which files in a large software system are
most likely to contain the largest numbers of faults in the next re-
lease can be a very valuable asset. To accomplish this, a neg-
ative binomial regression model using information from previous
releases has been developed and used to predict the numbers of
faults for a large industrial inventory system. The files of each
release were sorted in descending order based on the predicted
number of faults and then the first 20% of the files were selected.
This was done for each of fifteen consecutive releases, represent-
ing more than four years of field usage. The predictions were ex-
tremely accurate, correctly selecting files that contained between
71% and 92% of the faults, with the overall average being 83%.
In addition, the same model was used on data for the same sys-
tem’s releases, but with all fault data prior to integration testing
removed. The prediction was again very accurate, ranging from
71% to 93%, with the average being 84%. Predictions were made
for a second system, and again the first 20% of files accounted for
83% of the identified faults. Finally, a highly simplified predic-
tor was considered which correctly predicted 73% and 74% of the
faults for the two systems.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging –Debug-
ging aids

General Terms: Experimentation

Keywords: software faults, fault-prone, prediction, regression model,
empirical study, software testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’04, July 11–14, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-820-2/04/0007 ...$5.00.

1. Introduction and Previous Work

Software testing activities play a critical role in the production
of dependable systems, and account for a significant amount of
resources including time, money, and personnel. If testing effort
can be more precisely focused on the places in a software sys-
tem where faults are likely to occur, then available resources will
be used more effectively and efficiently, resulting in more reliable
systems produced at decreased cost.

By evaluating files for fault-proneness prior to testing them, we
can determine how to focus testing effort. Our goal is to provide
testers with a practical, reasonably accurate assessment of which
files are most likely to contain the largest numbers of faults, so they
can adjust their testing efforts to target these files. The model de-
scribed in this paper assigns a predicted fault count to each file of
a software release, based on the structure of the file and its history
in previous releases. Unlike most software testing research which
is designed to tell peoplehow to test their software orhow to select
test cases, the goal of this research is to tell testerswhere in their
software to focus when they test. Of course we do not intend that
the tester willonly test the indicated files, however, we expect they
can use our predictions to prioritize testing effort, thereby saving
time and other resources.

We have been studying large industrial software systems to de-
termine how faults are distributed over the systems’ files, and to
identify the characteristics of those source files that have the high-
est fault densities. Summaries of our preliminary findings can also
be found in [11], which based the identification of characteristics
on twelve releases of an industrial inventory system that had been
in the field in continuous use for about three years.

Several other research groups have looked at similar character-
istics of software. Results along these lines can be found in [1,
2, 3, 4, 5, 9, 10, 13], among others. The types of characteris-
tics investigated by our group and many of the others include such
things as the file’s size, the file’s age, whether or not the file is new
to the current release, and if it is not new, whether it was changed
during the prior release. Other characteristics considered were the
number and magnitude of changes made to a file, the number of
detected faults during early releases and the number of faults de-
tected during early development stages.

One of the things that differentiates our research from most
of the other work is its magnitude and duration. While most of
the published studies have considered only a small number of re-
leases, we have now studied seventeen successive releases of one

86

large industrial software system representing four years of large-
scale field usage. We have also collected data from nine releases of
a second software system corresponding to two years in the field.
For the first system, our data include faults identified at all stages
of development starting from the requirements phase and continu-
ing through field release, while for the second system, faults were
included beginning with integration testing. By examining such
a large number of releases, we have been able to assess whether
or not relevant characteristics change as the system matures and
stablizes, with new files comprising an increasingly smaller per-
centage of the system.

Having accumulated information in our earlier studies about
which software characteristics are most likely to have a significant
impact on the number of faults in a file, the next natural step is
to use that information topredict which particular files in a soft-
ware system are likely to contain the highest numbers of faults in
the next release. This is another point of departure from much of
the earlier research, whose goal was simply to identify the char-
acteristics that made files particularly prone to having faults rather
than identifying particular files that should be especially subject to
scrutiny. The two papers most closely related to this research are
References [4] and [6]. In Section 4.1 we present our results on
prediction and in Section 4.2 contrast them with the work done by
these other research groups.

The ability to predict where the largest concentrations of faults
are likely to reside represents a very valuable tool for organizations
that develop software systems, provided it is feasible to make such
a prediction with reasonably high accuracy. This information will
allow testers to target their testing efforts to the files most likely
to contain the highest concentrations of faults. This should enable
testers to identify faults more quickly and therefore have additional
time to test the remainder of the system. The net result should
be systems that are of higher quality, containing fewer faults, and
projects that stay more closely on schedule than would otherwise
be possible.

To do this sort of prediction, we developed a negative binomial
regression model to predict an expected number of faults for each
file of a release. The predictions rely on the factors determined to
be most relevant, including the file size in terms of the number of
lines of code, whether the file was new to the release, or changed
or unchanged from the previous release, the age of the file in terms
of the number of previous releases it was in, the number of faults
in the previous release, and the programming language used.

We first applied the model prospectively to predict the number
of faults associated with each file in each of Releases 3 through 12
of the inventory system, covering a period of roughly three years
of field release. For each release, we based the predictions on a
model fit to data from prior releases only. When the files of each
release were ranked in descending order of the predicted number
of faults, the first 20% of the files contained from 71% to 85% of
the release’s faults.

Of course there is nothing magical about the 20% figure. When
we looked at the graphs corresponding to many of the releases, we
saw that the “knee” of the curve, i.e. the place where the curve flat-
tened out, often occurred around the 20% mark. Also, we arenot
suggesting that a project shouldonly test the files that are highly
ranked by the prediction. What we are suggesting is that we are
likely to get the greatest payoff by testing these files, and therefore
a good strategy is to test these files first and with greatest empha-
sis.

This paper makes four main contributions. The first is the ap-

plication of our prediction model to five additional releases of the
inventory system representing more than a year of additional field
experience. This lets us assess the prediction’s accuracy as the
system matures and stabilizes. The second contribution evaluates
the prediction model when data are only available from testing
stages later than unit testing. In many production environments,
data collection for a system does not begin until after it leaves de-
velopment, and moves on to integration or system testing. Since
the model was developed using data from a system that included
faults detected at all stages of development, it was important to see
whether the prediction based on post-unit testing data would be
comparably accurate. The third contribution provides additional
evidence of the prediction’s effectiveness by applying the model to
a different system, written by different personnel, using different
primary programming languages, and performing different func-
tions. The fourth contribution proposes a highly simplified predic-
tive model, and assesses its application to the two systems to which
we applied the full model. We discuss the tradeoffs observed in
terms of the decreased effort to apply the simplified model versus
the decreased accuracy of that model.

The remainder of the paper is organized as follows: Section 2
briefly describes the inventory system that is the primary subject
of the case study. In Section 3 we describe the negative binomial
regression model we used to predict the number of faults in each
executable file of the system and present results from fitting the
model to data from Releases 1 to 12. Section 4 presents the results
of applying the predictor to all seventeen releases of the system,
and compares its success at predicting which files have the highest
numbers of faults for early releases with the results on the later,
more mature and stable releases. In Section 5, we compare the
effectiveness of the predictor when applied to the fault data col-
lected from all stages of development, including unit testing, to
its effectiveness when restricted to faults detected only from inte-
gration testing and beyond for all seventeen releases. In Section 6
we examine the model’s applicability to a second system, to deter-
mine whether the key file characteristics for the inventory system
are also significant for code written by a different group, for an
entirely different purpose. Section 7 discusses a simplification of
the predictor and provides information about how much predic-
tive power is lost by this simplification. Conclusions and plans for
extending this work are discussed in Section 8.

2. The System Under Study

For this study, we use the same inventory system that was an-
alyzed during the earlier studies [11, 12] mentioned in Section 1.
While the earlier studies used the first twelve releases of the sys-
tem, there are now a total of seventeen successive releases, rep-
resenting more than four years of continuous field use. We used
these seventeen releases for the current study.

Many AT&T software projects use a combined version con-
trol/change tracking system throughout their life cycles. The basic
entity of this system is amodification request (MR) that is entered
by a developer or tester when a change is deemed necessary. An
MR contains a written description of the reason for the proposed
change and a severity rating of 1 through 4 that characterizes the
importance of the proposed change. If the request results in an ac-
tual change, the MR records the file(s) that are changed or added to
the system, and the specific lines of code that are added, deleted,
or modified. It also includes such information as the date of the

87

Number of Lines Mean Faults Fault Files Containing Pct Containing
Rel Files of Code LOC Detected Density Any Faults Any Faults

1 584 145,967 250 990 6.78 233 39.9
2 567 154,381 272 201 1.30 88 15.5
3 706 190,596 270 487 2.56 140 19.8
4 743 203,233 274 328 1.61 114 15.3
5 804 231,968 289 340 1.47 131 16.3
6 867 253,870 293 339 1.34 115 13.3
7 993 291,719 294 207 0.71 106 10.7
8 1197 338,774 283 490 1.45 148 12.4
9 1321 377,198 286 436 1.16 151 11.4

10 1372 396,209 289 246 0.62 112 8.2
11 1607 426,878 266 281 0.66 114 7.1
12 1740 476,215 274 273 0.57 120 6.9
13 1772 460,437 260 127 0.28 71 4.0
14 1877 482,435 257 235 0.49 95 5.1
15 1728 479,818 278 305 0.64 120 6.9
16 1847 510,561 276 274 0.54 116 6.3
17 1950 538,487 276 253 0.47 122 6.3

Table 1. Inventory System Information

change and the development stage at which it was made.
We had initially hoped to use the severity rating as a variable

for the fault location predictor, however, we learned that these rat-
ings were highly subjective and also sometimes inaccurate because
of political considerations not related to the importance of the
change to be made. We also learned that they could be inaccurate
in inconsistent ways. We were told that a change could be rated
as a Severity 2 modification, for example, when in fact the person
writing the modification request rated it as either a Severity 1 or
Severity 3 fault. It might be downplayed so that friends or col-
leagues in the development organization “looked better”, provided
they agreed to fix it with the speed and effort normally reserved for
Severity 1 faults, or it might be “upgraded” so that developers who
actually make the change focus on it quickly. For these reasons,
we did not include fault severity in our predictor or propose that it
be used in any way to influence or weight test case selection.

The inventory system used in the earlier case studies contained
changes including faults found at each of nine distinct stages of
development: requirements, design, development, unit test, inte-
gration test, system test, beta release, controlled release, and gen-
eral release. Faults were reported for each of these stages, and,
surprisingly, almost three quarters of the faults (3407 of 4618 for
the first twelve releases), were reported during unit testing. When
other pre-unit testing phases were added, roughly 80% of the faults
reported in the database occurred during these very early stages.

Table 1 contains information about the system. Not surpris-
ingly, there is a general increase in the size of the system as new
functionality is added at most releases, particularly the earlier ones.
The average number of lines of code per file remained fairly con-
stant for all releases. With a few exceptions, the fault density,
computed as the number of faults observed in a file, divided by the
file’s size in terms of the number of thousands of commented lines
of code (KLOCs), tended to decrease as the system matured.

The next to last column in the table shows the number of files
which contained at least one fault that was detected at any stage
of development, while the final column shows the percentage of
files that were found to contain at least one fault in the release. At

each release after the first, faults occurred in 20 percent or fewer
of the files, with those files typically averaging two to three faults
apiece. This concentration of faults suggested that testing effort
could be reduced greatly if most of the faulty files could be iden-
tified prospectively. Of course it is possible, and even likely, that
other files in the system contain faults that have gone undetected;
however, we can only discuss faults that have been observed.

Notice that from Release 1 to Release 12, the last release used
in the earlier studies, the system roughly tripled in size from 584
executable files containing almost 146,000 lines of code to 1,740
executable files, containing a total of more than 476,000 lines of
code. The system is primarily written in java, (approximately 70%
of the files) but there are files in a number of other languages in-
cluding shell scripts, makefiles, xml, html, perl, c, sql, awk, and
other specialized languages. In each of our studies, non-executable
files were excluded. Although the system has continued to grow
steadily over Releases 13 to 17, the rate of growth has definitely
begun to slow. This is not surprising as new files frequently repre-
sent new features, while modified files often represent fault repairs,
and as the system matures one would expect fewer new features to
be added.

One of the problems we had to address at the outset of our
studies was how to identify faults and how to count them. For
both systems, there was generally no identification in the database
of whether a change was initiated because of a fault, an enhance-
ment, or some other reason such as a change in the specifications.
The inventory system recorded more than 5,800 faults over the
seventeen releases plus many times that number of other changes,
far too many to read all of the reports and make a determination
of exactly which were faults and which were not. A rule of thumb
suggested by the test team of the project was that if only one or two
files were changed by the modification request, then it was likely
a fault, while if more than two files were affected, it was likely
not a fault. The rationale was that if many files were touched by
the change, it was generally a change in the interface caused by
a change in the specifications. For the inventory system we used
that rule of thumb to identify fault-caused changes.

88

In order to determine whether or not this was a reasonable ap-
proximation to use, we did a small, informal study in which we
selected a relatively small number of modification requests and
read them carefully. We found that every MR that caused changes
in more than two files, was not a fault correction. A typical rea-
son for these changes, especially when large numbers of files were
affected, was just as hypothesized: a parameter was added or re-
moved. For almost every MR that caused changes in just one or
two files, on the other hand, we found that the MR was written
because of an observed failure caused by a software fault.

In Section 6 we consider applying our prediction to a second
system. In this case, substantially fewer changes were included in
the database, since data was not entered until system test began.
We were therefore able to read every modification request, and
determine whether or not the change was due to a fault. For most
entries it was apparent from the write-up whether or not the change
was a fault. For a few entries, the description was unclear, and we
asked the test team to make the determination.

In all of the work described in this paper, we use the same fault
counting convention as was used in [9] and [3], and our earlier
studies [11, 12]. If a problem causesn files to be modified, then
this is counted asn distinct faults. Therefore each fault is associ-
ated with exactly one file.

3. Multivariate Analysis to Predict the
Number of Faults in Each File

We now describe the negative binomial regression models we
designed to predict the number of faults in a file during a release.
Similar to multiple linear regression, the negative binomial re-
gression model relates the outcome to a linear combination of file
characteristics. Unlike linear regression, this model accounts for
special circumstances involved in modeling an outcome that is a
count.

Modeling serves two primary purposes.

� It provides information regarding the association between
the number of faults and individual file characteristics while
holding other file characteristics constant. That is, regres-
sion coefficients estimate the unique contribution of indi-
vidual characteristics.

� The model makes predictions of which files will contain the
largest numbers of faults in a release, allowing testing re-
sources to be targeted more effectively.

The second of these objectives is the primary goal of the re-
search described in this paper. We briefly outline the model in
Section 3.1, while in Section 3.2, we describe the specific explana-
tory variables used. Section 3.3 presents results for Releases 1 to
12 and lists other variables that we found did not enhance the pre-
dictive abilities of the model.

3.1 The Negative Binomial Regression Model

Negative binomial regression extends linear regression in order
to handle outcomes like the number of faults [8]. It explicitly mod-
els outcomes that are nonnegative integers. For such outcomes, it
is unrealistic to assume that the expected value of the outcome is
an additive function of the explanatory variables. Instead, it is as-
sumed that the expected number of faults varies as a function of
file characteristics in a multiplicative relationship.

Let yi equal the number of faults observed in filei andxi be
a vector of characteristics for that file. The negative binomial re-
gression model specifies thatyi, givenxi, has a Poisson distribu-
tion with mean�i. Unlike the related Poisson regression model,
the negative binomial model allows for the type of concentration
of faults we observed in this system by explicitly incorporating a
source of additional dispersion (variation in the number of faults)
for each file. Specifically, the conditional mean ofyi is given by
�i =
ie

�0xi , where
i is itself a random variable drawn from a
gamma distribution with mean 1 and unknown variance�2 � 0.
The variance�2 is known as thedispersion parameter, and it al-
lows for the type of concentration observed for faults. The larger
the dispersion parameter, the greater the unexplained concentra-
tion of faults. However, to the extent that this concentration is
explained by file characteristicsxi that are included in the model,
the dispersion parameter will decline.

The regression coefficients� and the dispersion parameter�2

are estimated by maximum likelihood, as is standard [8]. Inference
for estimated regression coefficients is adjusted for the additional
uncertainty associated with the unknown
i.

3.2 Explanatory Variables

We present the results of a negative binomial regression model
fit to files from Releases 1 to 12. The unit of analysis is a file-
release combination, yielding a total of 12,501 observations. The
outcome is the number of faults associated with the file at the given
release. The procedure Genmod in SAS/STAT Release 8.01 [14]
was used to fit all models.

Predictor variables for the model included: the logarithm of the
number of lines of code; whether the file was new, changed or un-
changed, which we refer to as the file’schange status; the file’s
age as measured by the number of previous releases in which it
appeared; the square root of the number of faults identified dur-
ing the previous release; the programming language used; and the
release number.

We included lines of code in terms of its logarithm because ini-
tial analysis suggested that the expected number of faults for a file
was roughly proportional to the number of lines of code (LOC).
Since the logarithm of the expected number of faults is modeled as
a linear combination of the explanatory variables, our initial find-
ings would imply that code mass should be specified as log(LOC),
with an anticipated coefficient near 1.0. Because the number of
faults at the previous release had a very long tail (the maximum
value was 57), we tried a variety of transformations to reduce the
influence of extreme values. The square root transformation pro-
duced a better fit to the data than either no transformation or more
extreme transformations. Each factor included in the model was
easily statistically significant at the 0.001 level.

The log of the number of lines of code, file age, and the square
root of the number of prior faults were treated as continuous vari-
ables. Change status, programming language type, and release
number were treated as categorical variables, each fit by a series
of dummy (0-1) variables, with one omitted category that served
as the reference. For change status, the reference category was un-
changed files. In this way, the new and changed coefficients repre-
sented contrasts with existing, unchanged files. For program type,
the reference category is java files, the most commonly-occurring
type for this system. We arbitrarily set Release 12 as the reference
release.

89

Standard 95 Percent
Predictor Coef Error t Conf Interval
Intercept -1.636 .149 -10.95 (-1.929, -1.343)
log(KLOC) 1.047 .031 34.32 (.987, 1.107)
Sqrt Prior Faults .425 .041 10.47 (.346, .505)
Age -.050 .014 -3.60 (-.077, -.023)
File Status
New 1.861 .114 16.33 (1.638, 2.085)
Changed 1.066 .087 12.21 (.894, 1.237)
Unchanged .000 NA NA NA
Program Type
makefile 2.548 .149 17.09 (2.256, 2.840)
sql 1.747 .217 8.06 (1.322, 2.172)
Other 1.714 .231 7.41 (1.261, 2.168)
sh 1.011 .147 6.87 (.723, 1.300)
html .576 .177 3.26 (.230, .923)
xml .439 .324 1.35 (-.196, 1.074)
perl .168 .189 .89 (-.202, .539)
java .000 NA NA NA
c -1.082 .327 -3.30 (-1.723, -.440)
Release
1 1.453 .139 10.48 (1.181, 1.724)
2 .141 .175 .81 (-.202, .485)
3 1.115 .143 7.79 (.835, 1.396)
4 .803 .151 5.31 (.507, 1.100)
5 .671 .149 4.51 (.380, .963)
6 .654 .147 4.46 (.367, .941)
7 .087 .153 .57 (-.213, .387)
8 .613 .130 4.73 (.359, .867)
9 .550 .132 4.17 (.292, .809)
10 .385 .141 2.73 (.109, .660)
11 .211 .135 1.56 (-.054, .476)
12 .000 NA NA NA

Table 2. Results from Full Negative Binomial Regression Model

3.3 Results for Releases 1 to 12

Table 2 shows estimated coefficients, their standard errors, t-
statistics associated with the null hypothesis that the true coeffi-
cient equals zero, and 95 percent confidence intervals for the true
coefficients.

For continuous predictor variables, positive coefficients indi-
cate characteristics that are positively associated with the number
of faults, while controlling for other characteristics. For example,
the model estimates that a unit change in the square root of the
number of faults in the prior release (e.g., a change from 0 faults to
1 fault) is associated with an increase of 0.425 in the logarithm of
the expected number of faults. This translates into a multiplicative
factor of e0:425 = 1.53. In contrast, the model estimates that the
expected number of faults in a file decreases by 5 percent (e�0:050

= 0.95) at each successive release, holding all else equal (in par-
ticular the file’s change status and number of prior faults).

We found that the number of lines of code was the strongest
individual predictor in the model. The estimated coefficient for
the logarithm of lines of code was 1.047. Because the 95 percent
confidence interval included 1.00, this result is consistent with a
finding that after controlling for all other factors, the number of

faults is proportional to the number of lines of code – in other
words, that fault density does not change with LOC.

For categorical predictors, each coefficient estimates the differ-
ence in the logarithm of the expected number of faults for the cor-
responding category versus the reference category. For example,
the coefficient of 1.066 for changed files indicates that changed
files have aboute1:066 = 2.90 times more faults than existing, un-
changed files with otherwise similar characteristics (of course, the
changed files are also more likely to have other characteristics such
as prior faults indicating a propensity for faults at the current re-
lease). The estimated coefficient for the new file variable was
1.861. This implies that new files had aboute1:861 = 6.4 times
as many faults as existing, unchanged files that were similar in all
other respects.

The full model, which combined these and the other factors dis-
played in Table 2 produced more accurate predictions than models
based on any of the individual factors (see Section 7 for additional
details).

Other possible predictor variables were tried, but not included
in the model, as they did little to improve the predictive power.
Among the variables that we decided not to include were the num-
ber of changes made to a file for those files that were changed
since the previous release, whether a file had been changed prior

90

Release 3 4 5 6 7 8 9 10 11 12 Avg 3-12

% Faults Identified 77 74 71 85 77 81 85 78 84 84 80

Table 3. Percentage of Faults Included in the 20% of the Files Selected by the Model - Releases 3-12

Release 13 14 15 16 17 Avg 13-17

% Faults Identified 82 91 92 92 88 89

Table 4. Percentage of Faults Included in the 20% of the Files Selected by the Model - Releases 13-17

to the previous release, and the logarithm of the cyclomatic num-
ber for java files. Since the cyclomatic number [7] has been found
to be very highly correlated with the number of lines of code, it is
not surprising that this did not appreciably enhance the predictive
power of the model.

4. Predictions for Releases 3 Through 17

4.1 Our Prediction Results

The negative binomial regression model assigns a predicted
fault count to each file of a release. The higher the predicted fault
count, the more important it is to test the file early and carefully.
In [12] we computed these predictions for the files of Releases 3-
12, in each case using data from Releases 1 through (n-1) to make
the predictions for Release n. Sorting the files in descending order
of their predicted fault counts creates an ordered list of the files
from most to least likely to be problematic. Although the individ-
ual fault counts predicted for each file do not generally match their
actual fault counts, the great majority of the actual faults in the
system occur in the set of files at the top of the listing. Tables 3
and 4 show the percentage of actual faults that occurred in the first
20% of files, as predicted by the model. The results in Table 3, for
Releases 3 through 12, were described in [12]. For these releases,
the model identified files that contained between 71% and 85% of
the faults identified in the system, with an average of 80% over all
releases through Release 12.

The accuracy of these predictions was very encouraging, but
raised the question of whether the accuracy would diminish for
later releases, as the system stabilized and matured. This is partic-
ularly important since, as can be seen in Table 1, by Release 10,
all of the identified faults are concentrated in less than 10% of the
files, making the potential payoff of accurate prediction extremely
valuable.

Table 4 shows the prediction results for Releases 13 through 17.
The accuracy of the prediction actually improved as the system
matured. The average percentage of faults contained in the 20%
of the files selected by the model was 89% for the five most recent
releases, bringing the overall average for all of the releases through
Release 17 to almost 83%.

These five additional releases represent more than a year of
additional system field usage, for a total of more than four con-
secutive years. The results for these additional releases provide
a completely independent validation of the model’s predictive ac-
curacy for this system. The form of the model and the variables
used were selected before looking at the data for Releases 13-17.
In addition, the estimated coefficients used to order files in Re-

leases 13 through 17 were those resulting from fitting the model to
data from Releases 1 through 12. Consequently, all aspects of the
model were independent of the five additional releases.

The accuracy of the overall fault predictions can be evaluated
by comparing how close the predicted ordering comes to the or-
dering according to the actual number of faults discovered. The
graphs of Figure 1 show this comparison, both for the full predic-
tion model based on all the significant variables, and for a simpli-
fied model that is based only on the lines of code in each file. This
simplified model and our assessment of its predictive ability will
be discussed in Section 7 for the two systems.

The curves plot the cumulative percent of faults (on the verti-
cal axis) found in a given percentage of the files (on the horizontal
axis) in a release. On the Actual Faults curve represented by the
heavy solid line, the files are sorted in decreasing order of the num-
ber of actual faults found in each file. This is the optimal ordering
given the goal of finding all the faults in as few files as possible; it
represents perfect prediction. On the Full Model curve represented
by the short dashed line segments, the files are sorted according to
the full model’s prediction of the number of faults contained in
each file. The LOC curve, represented by the long dashed line
segments, sorts the files solely in decreasing order of their size.

The “goodness” of each of the model predictions can be mea-
sured in terms of how close the prediction curve comes to the Ac-
tual Faults curve. While the LOC-based predictions for some of
the early releases are quite close to the Full Model, by Release 14
the full model predictions have become substantially better, cap-
turing well over 85% of the faults with 20% of the files. The LOC-
based predictions will be further discussed in Section 7 .

4.2 Comparison with Other Prediction Approaches

The research most closely related to ours is described in [6]
and [4]. Both groups attempt to make predictions relating faults to
specific parts of the software system.

Khoshgoftaar et al. [6] developed two classification models
based on discriminant analysis that predict whether or not a mod-
ule will be fault-prone, rather than attempting to predict the actual
number of faults that will occur in the module as we do. In their
study, they define a module to be a collection of files, and say that
a module is fault-prone if it contains 5 or more faults. The models
use data from a single release of a large telecommunications sys-
tem, containing about 1.3 million LOC, with approximately 2000
modules and 25,000 files. For the entire sample set of the study,
approximately 12% of the modules were by their definition, fault-
prone.

Their predictions are based on software design metrics and
reuse information. The design metrics include call graph metrics
such as the number of calls from one module to other modules,

91

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17

Actual_Faults LOC
Full_Model

P
ro

po
rti

on
 o

f F
au

lts

Proportion of Files

Graphs by Release

Figure 1. Lorenz Curves for Prospective Predictions at Releases 3-17

and the number of distinct modules that are referenced, as well
as control-flow graph metrics such as the number of loops, cy-
clomatic complexity, and nesting level. Reuse information classi-
fies whether a module was new in the current release, and if new,
whether it was changed from the previous release.

Model 1 was based solely on the software design metrics, while
Model 2 used both the design metrics and reuse information. The
discriminant analysis was performed on a randomly chosen set
of two thirds of the system’s modules. The two models were
evaluated according to their ability to correctly predict the fault-
proneness of the system modules.

The authors point out that from a testing point of view, it is
most important to avoid predicting that a module that is actually
fault-prone is not fault-prone, a so-called Type 2 fault. To evaluate
the efficacy of the models, they were applied to the remaining one
third of the system’s modules. Model 1 predicted 21.3% of the
actual fault-prone modules to be non-fault-prone, while Model 2
predicted 13.8% of the fault-prone modules to be non-fault-prone.
The obvious conclusion is that reuse information contributes sig-
nificant predictive power. The study did not evaluate the effective-
ness of a model based solely on the reuse information.

There are several significant differences between the research

described in [6] and ours. The most important one is the primary
goals. The predictions in [6] classify all modules into two cat-
egories: fault-prone or not fault-prone, where fault-proneness is
defined based on an arbitrary and fixed number of faults in a mod-
ule. In contrast, our model assigns a number of expected faults to
each file and ranks the files from most to least fault-prone, with-
out choosing an arbitrary cutoff point for fault-proneness. Another
important difference is the level of granularity at which the predic-
tions are being done. Khoshgoftaar et al. are working at the mod-
ule level which is much coarser than the file level at which we are
working. Using this coarser-grained prediction, will increase the
difficulty of pinpointing where faults are likely to be and therefore
make it less useful for debugging.

Another difference is the extent of the studies. While Khosh-
goftaar et al. applied their models to a portion of a single release of
a system, we have applied ours to seventeen successive releases.
In addition, in the next section we will describe the application of
our model to systems that begin recording fault information only
after unit testing, and therefore have significantly less data. Un-
der these circumstances, we’ve found that our model’s predictive
accuracy remains comparable to the results using the full dataset
containing faults detected at all development stages.

92

Release 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Avg 3-17

% Faults Identified - ALL 77 74 71 85 77 81 85 78 84 84 82 91 92 92 88 83
% Faults Identified - PUT 80 71 73 90 81 83 81 81 83 90 90 93 85 88 86 84

Table 5. Percentage of Post-Unit Test Faults Included in the 20% of the Files Selected by the Model

In [4], Graves et al. report a study using the fault history for
the modules of a large telecommunications system. Their subject
system contained roughly 1.5 million lines of code, divided into
80 modules, each a collection of files. They first considered differ-
ent file characteristics, and found that module size and other stan-
dard software complexity metrics were generally poor predictors
of fault likelihood. Their best predictors were based on combina-
tions of a module’s age, the changes made to the module, and the
ages of the changes. Although they did use the models to predict
faults in files, the primary focus of their work was the identifi-
cation of the most relevant module characteristics and the com-
parison of models. They applied their model to make predictions
using a single two year time interval, but did not discuss the extent
to which the predictions were effective. At the conclusion of their
study they described applying their model to a one year interval
in the middle of the original two year interval and were troubled
to discover that certain parameters values differed by an order of
magnitude during the two time periods.

There are also significant differences here between their work
and ours. They focused on identifying the most relevant module
characteristics or groups of characteristics and comparing the ap-
parent effectiveness of the proposed models, rather than predicting
faults and using them to guide testing. As with the work described
in [6], they worked at the module rather than the file level, and
only looked at a single release, albeit one of long duration.

5. Prediction for Releases Based on
Integration Testing and Beyond

Having seen the success of our model in making accurate pre-
dictions for the first seventeen releases of the inventory system, we
are very encouraged because we believe we have identified an ap-
proach that is potentially applicable to many production software
systems. However, since recording early faults found prior to in-
tegration or system testing is not the norm for many software sys-
tems we have encountered, we wondered whether the same model
could be used for systems for which the database did not include
faults discovered during unit testing or earlier. Not only does the
change management database for such a system have a different
population of faults, but it will also have significantly less data. In
this section we discuss our findings using the negative binomial
regression model restricted to faults discoveredafter unit testing.

For the inventory system, the change management/version con-
trol system contained data for any modifications made for any rea-
son during any phase of development beginning at the require-
ments stage. Almost 80% of the faults in Releases 1 through 12
were detected prior to integration testing, primarily during unit
testing.

In practice, many projects do not actually begin to use the
change tracking portion of the system until the project enters inte-
gration testing or the system test phase. In particular, it is unusual
to find unit test changes of any sort (including faults) recorded for
many software systems. The rationale might be that just as an

author recognizes that a first draft of an article might well contain
unpolished wordings, or even typographical or grammatical errors,
the programmer recognizes that while he or she is developing the
code there may be missing parts or faults that they will address be-
fore releasing the file to others to test. As such, the code is a work
in progress, and until it is sent for integration or system testing,
any changes made are not really faults, and hence not included in
the fault database.

Therefore, we repeated our empirical study predicting which
files would contain the highest numbers of faults using the same
negative binomial regression model with the same variables. In
this case we used only faults detected during the integration testing
phase or later, both as the dependent variable and as the measure
of faults in the prior release. The findings are shown in the bottom
row of Table 5. To facilitate comparison, we repeat the data for the
results using the full fault dataset in the row above.

While the average percentage of faults included in the files
identified by the model when all faults are considered is 83%,
the average percentage of values for post-unit test faults in Ta-
ble 5 is 84%. For the full fault dataset the range was from 71%
to 92%, while for the post-unit test dataset the range was from
71% to 93%. The fact that our model appears to be applicable to
a system for which significantly less data is available, and which
does not include faults identified during unit testing or earlier is ex-
tremely promising as many systems that we encounter begin data
collection (or retention) at this later stage. The prediction approach
should therefore be applicable to a far wider field of projects than
if fault data from all development phases were required.

6. Applicability of the Model to Other
Systems

The next issue we considered was whether or not the model we
developed and the particular variables used would be applicable
for other software systems. Our goal is to develop a method that
can be used to help any software project order their testing efforts.
We therefore needed to identify a new software system, with a sub-
stantial number of releases and years of field usage, preferably one
that was developed by a different organization and hence different
personnel. Another requirement was that the system be a differ-
ent type of system from the one used in the earlier studies. We
did identify such a potential study subject. This system is used to
establish or activate a service for a customer by configuring hard-
ware and software. Such a system is often known as aprovisioning
system in the telecommunications industry.

We collected data for nine releases of this system, providing
two years of field experience. While the inventory system is pri-
marily written in java, the programming language with the largest
number of files in this system is sql, accounting for roughly one
quarter of the files. The other two major programming languages
used are java, and shell scripts, which together account for another
quarter of the system’s files.

The two systems are similar in size. Release 9 of the provision-

93

Aggregated Rel Number of Lines Mean Faults Fault Files Containing Pct Containing
Rel Name No. Files of Code LOC Detected Density Any Faults Any Faults

A 1 2008 381,973 190 24 0.06 19 0.9

B 2 2085 397,683 191 85 0.21 63 3.0
3 2137 412,621 193 52 0.13 41 1.9
4 2104 406,674 193 10 0.02 9 0.4
5 2119 407,724 192 6 0.01 6 0.3

C 6 2213 423,895 192 15 0.04 14 0.6
7 2250 434,772 193 74 0.17 64 2.8
8 2230 434,781 195 34 0.08 30 1.3
9 2241 437,578 195 7 0.02 6 0.3

Table 6. Provisioning System Information

Release 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Avg 3-17

% Faults Identified 71 68 71 75 76 76 77 77 80 75 68 80 71 67 58 73

Table 7. Percentage of Faults Included in the 20% of the Files Selected by LOC

ing system has 2,271 files containing a total of 439 KLOCs. Ta-
ble 6 provides more details about the system. However, while the
inventory system grew substantially over its lifetime, with many
new files and features being added at each release, the provision-
ing system was already fairly mature at the point when our data
collection began. Consequently, it remained much more stable in
size with roughly 250 new files being added over the entire course
of the two year period that was studied. Another difference be-
tween the systems is that systematic fault reporting for the provi-
sioning system did not begin until unit testing was complete and
integration testing began.

For this system, substantially fewer faults were identified than
were observed in the inventory system, even when only post-unit
testing faults were considered as in Section 5. For the nine re-
leases for which we had data, there was only a total of 307 faults.
Upon reflection we decided that this was not surprising since the
system did not grow substantially over time and unit testing faults
were not included. One of our observations in [11] was that new
files generally had substantially higher numbers of faults and fault
densities than files that had existed in earlier releases, and the pro-
visioning system generally had relatively few new files at each re-
lease. Additionally, the system’s releases were often more frequent
than once a quarter.

Because there were so few faults associated with this system,
with four of the releases having fifteen or fewer faults identified,
we decided that there was insufficient data to apply the negative
binomial regression model separately for the nine releases.

In order to see whether we could actually use the model to
make predictions for this system in spite of the paucity of data,
we decided to treat Releases 2 through 5 as a single release, and
similarly treat Releases 6 through 9 as a single release. This gave
us three releases with the first release (Release A) having 24 faults,
the second release (Release B) having a total of 153 faults, and the
third release (Release C) having a total of 130 faults.

We used data for Release B to develop predictions of the num-
ber of faults and evaluated the results on Release C. No attempt
was made to model faults for Release A because we could not de-
termine the change status or fault history for those files. Data from
Release A were used to determine values of those factors for Re-
lease B. The model was a slight revision of the one developed for

the inventory system presented in Section 4.1. Because data for
only Release B was used, the model excluded release number and
age of the files, which were not known.

As with the inventory system, lines of code and whether a file
was new, changed, or unchanged were strong, statistically signif-
icant factors for predicting faults in the provisioning system. The
estimated coefficient for the logarithm of LOC was 0.73, signifi-
cantly lower than 1.00, suggesting that in this system, fault density
may decrease for longer files, holding all else equal. The estimated
coefficient for new files was 1.92, very similar to the value for the
other system (1.86). The estimated coefficient for changed files
was 1.77, compared with 1.06. Programming language was statis-
tically significant overall, but not strikingly so. That may simply
be due to the large drop in the amount of information (few faults)
in the new data. The number of prior faults was not significant,
perhaps due to very few faults in Release A, but was retained for
purposes of making predictions at Release C.

Using the model estimated with data from Release B to predict
which files would likely contain the most faults in Release C, the
percentage of faults contained in the 20% of the files selected by
the model was 83%, very close to the overall predictive accuracy
for the seventeen releases of the inventory system.

7. Simplifying the Model

We have now provided evidence that our proposed model is
useful for predicting which files are likely to contain the highest
numbers of faults. However, it does require relatively sophisti-
cated use of statistical modeling, and so the next question we con-
sider is whether the model can be significantly simplified so that
a development team can make similar sorts of predictions without
needing to rely on someone with a strong background in statistics.

Since file size was the most potent predictor by far, we consid-
ered using file size alone to predict which files would contain the
largest numbers of faults. Table 7 shows the percentage of faults
contained in the 20% of the files that were the largest in terms of
the number of lines of code, for the inventory system. While the
average percentage of faults contained in the 20% of the files se-
lected by the full model over the seventeen releases is 83%, for

94

the simplified model that value is 73%. Thus although there is a
definite difference in the accuracy of the prediction when using
the full model to target testing effort as compared to the simplified
one, there is evidence from this study that using size alone as a
predictor is still likely to be very useful to testers.

The graphs of Figure 1 include the curves for the simplified
LOC model. While the LOC model approaches the full model in
some of the early releases (especially Releases 6-8), in the later
more mature releases, it performs significantly poorer. In partic-
ular, note that for the last four releases, the LOC model requires
nearly 100% of the files to capture all the release’s faults, while the
full model reaches 100% of the faults with 40 to 50% of the files.
This reflects the fact that some very short files contain faults, and
characteristics other than size are needed to raise their ranking.

We also examined the LOC model for Release C of the modi-
fied provisioning system. Again, although using file size alone as
a predictor is less accurate than using the full model, there is value
in using the size-alone predictor. For this system, while the full
model selects files containing 83% of the faults, the model based
solely on lines of code selects files containing close to 74% of the
faults. Thus for both systems we see evidence of a tradeoff be-
tween the complexity of the model and required expertise to apply
the model, versus the degree of accuracy.

One other difference should be noted. Even though size is the
most important factor in the full model, several other factors do
affect the ordering of files for testing. That means that when the
full model is used, small or medium-sized files that have many
faults might receive a high fault prediction because, for example,
they are new or changed in the previous release. When the simpli-
fied model based solely on file size is used, however, this cannot
happen and those files cannot be singled out for particular scrutiny.

8. Conclusions and Future Work

We have continued our investigation of software fault behavior,
furthering our goal of being able to predict which particular files
in a software system are most likely to contain faults in a new
release. Using these predictions, testers can focus their efforts and
by so doing, produce reliable software systems more quickly than
would otherwise be possible.

The predictions are based on a negative binomial regression
model whose variables were selected by using the characteristics
we identified as being associated with high fault files. The predic-
tions that we were able to make using this model were in fact very
accurate whether they were based on faults found at all stages of
development, or restricted to just those faults identified after unit
testing was completed. Overall, in both cases, the average per-
centage of faults contained in the 20% of the files identified by the
model as likely to be most problematic, was at least 83% for the
inventory system. We also applied our model to another software
system, and again the top 20% of the files contained 83% of the
faults.

Because using our negative binomial regression model requires
a certain level of statistical expertise, we considered a simplified
model that involved simply sorting files by length and selecting
the 20% of the files that are the largest. This was tried because
in the case study we found that size was the most significant fac-
tor influencing the number of faults, and it is easy to do, requiring
no particular statistics knowledge. We found that for both the in-
ventory system and the provisioning system, this highly simplified

model, though not providing the same level of predictive accuracy
as the full model, still did moderately well. In particular, for both
systems, the predictive accuracy was, on average, roughly 10 per-
centage points lower using the size model as compared to the full
model.

We have now identified another very large software system
with a significant number of releases, and have begun to prepare
their data for analysis and to try to apply our prediction model to
this system. Since this is a relatively new system that is actively
being developed, we are optimistic that our prediction can help
their testers use this information to positively impact the quality
of the system. Thus we expect to both continue our investigation
of the use of our model for targeting testing through prediction,
and to help the test team apply it to improve the efficiency and
reliability of their system.

If, in fact, we do begin using our prediction as systems are
being developed and tested, we may find that its use affects the
faults identified and therefore the prediction method may require
tuning as development progresses. We plan to see if this is an issue
in future work.

Acknowledgments

This work could not have been carried out without the coopera-
tion and assistance of developers and testers at AT&T. Jainag Val-
labhaneni, Jim Laur, Joe Pisano, Chaya Schneider, Steve Prisco,
and Henry Gurbisz were all generous with their time and willing-
ness to answer our questions about their systems.

Raju Pericherla helped greatly with data acquisition and con-
verting raw data into structured formats, as well as finding and
adapting a metrics tool for Java code.

Our colleagues Ken Church, Dave Korn, and John Linderman
provided helpful assistance with Unix and Microsoft utilities.

9. REFERENCES

[1] E.N. Adams. Optimizing Preventive Service of Software
Products.IBM J. Res. Develop., Vol 28, No 1, Jan 1984,
pp.2-14.

[2] V.R. Basili and B.T. Perricone. Software Errors and
Complexity: An Empirical Investigation.Communications
of the ACM, Vol 27, No 1, Jan 1984, pp.42-52.

[3] N.E. Fenton and N. Ohlsson. Quantitative Analysis of Faults
and Failures in a Complex Software System.IEEE Trans. on
Software Engineering, Vol 26, No 8, Aug 2000, pp.797-814.

[4] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Predicting
Fault Incidence Using Software Change History.IEEE
Trans. on Software Engineering, Vol 26, No. 7, July 2000,
pp.653-661.

[5] L. Hatton. Reexamining the Fault Density - Component Size
Connection.IEEE Software, March/April 1997, pp.89-97.

[6] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan, N. Goel.
Early Quality Prediction: A Case Study in
Telecommunications.IEEE Software, Jan 1996, pp.65-71.

[7] T.J. McCabe. A Complexity Measure.IEEE Trans. on
Software Engineering, Vol 2, 1976, pp.308-320.

[8] P. McCullagh and J.A. Nelder. Generalized Linear Models,
Second Edition, Chapman and Hall, London, 1989.

95

[9] K-H. Moller and D.J. Paulish. An Empirical Investigation of
Software Fault Distribution.Proc. IEEE First International
Software Metrics Symposium, Baltimore, Md., May 21-22,
1993, pp.82-90.

[10] J.C. Munson and T.M. Khoshgoftaar. The Detection of
Fault-Prone Programs.IEEE Trans. on Software
Engineering, Vol 18, No 5, May 1992, pp.423-433.

[11] T. Ostrand and E.J. Weyuker. The Distribution of Faults in a
Large Industrial Software System.Proc. ACM/International
Symposium on Software Testing and Analysis (ISSTA2002),
Rome, Italy, July 2002, pp.55-64.

[12] T. Ostrand, E.J. Weyuker, and R. Bell. Using Static Analysis
to Determine Where to Focus Dynamic Testing Effort.Proc.
IEE/Workshop on Dynamic Analysis (WODA04), Edinburgh,
May 2004.

[13] M. Pighin and A. Marzona. An Empirical Analysis of Fault
Persistence Through Software Releases.Proc. IEEE/ACM
ISESE 2003, pp.206-212.

[14] SAS Institute Inc. SAS/STAT User’s Guide, Version 8, SAS
Institute, Cary, NC, 1999.

96

