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Abstract. The lattice of the set partitions of [n] ordered by refinement is studied.
Suppose r partitions p1, . . . , pr are chosen independently and uniformly at random. The
probability that the coarsest refinement of all pi ’s is the finest partition

�
{1}, . . . , {n}

	

is shown to approach 0 for r = 2, and 1 for r ≥ 3. The probability that the finest
coarsening of all pi ’s is the one-block partition is shown to approach 1 for every r ≥ 2.

Introduction. Let Πn be the set of all set partitions of [n] , ordered by refinement.
That is, for two partitions p and p′ , p � p′ if each block of p′ is a union of blocks
of p . It is well known, Stanley [6], that Πn is a lattice; it means that every pair
of partitions p, p′ has the greatest lower bound inf{p, p′} (p inf p′ or p meet p′ ) and
the least upper bound sup{p, p′} (p sup p′ or p join p′ ). Namely, inf{p, p′} is the
partition whose blocks are the pairwise intersections of blocks of p and p′ , and it is
the “coarsest” (simultaneous) refinement of p and p′ . sup{p, p′} is a partition whose
every block is both a union of blocks of p and a union of blocks of p′ , with no proper
subset of the block having that property; so it is the finest “coarsening” of p and p′ .
Assigning to each p the same probability, 1/|Πn| , we transform Πn into the probability
space with uniform measure. There is a sizeable literature on the properties of the
uniformly distributed partition, see Pittel [5] and the references therein. Closer to the
subject of this paper, Canfield and Harper [1] and Canfield [2] used the probabilistic
tools to find the surprisingly sharp bounds for the length of the largest antichain in
Πn . In [5] we proved that the total number of refinements of the random partition is
asymptotically lognormal.
In the present paper we study the properties of inf1≤i≤r pi , sup1≤i≤r pi , under the as-
sumption that the uniform partitions p1, . . . , pr are independent. (Formally, we study
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the distributions of two random (partition-valued) variables defined on the product
of r copies of the probability space Πn .) Specifically, we want to know how likely
it is that infi pi is the minimum partition pmin = {{1}, . . . , {n}} , and that supi pi
is the maximum partition pmax = {[n]} . We also discuss (briefly) the behavior of
inf(sup)ipfi where pf is a partition of [n] into the level sets for a uniformly random
mapping f : [n]→ [n] .

I stumbled upon these problems trying to answer a question which was posed by
Stephanie Rieser (Steve Milne’s doctoral student at the Ohio State University) during
the Herb Wilf’s Festschrift (University of Pennsylvania, Summer 1996). Stephanie
asked for a formula of the number of partitions p′ which intersect minimally (“are
disjoint from”) a given partition. These are p′ with the property inf{p, p′} = pmin !
Few weeks later I sent Stephanie an answer that expressed the number in question as a
certain coefficient of the explicit (multivariate) generating function. I understood then
vaguely that this solution might be relevant for (asymptotic) enumeration of minimally
intersecting partitions, (pairs and tuples). However, I hadn’t got back to these issues
until earlier this year.

In Section 1 we enumerate the minimally intersecting partitions, with Corollary 1
containing the answer to Rieser’s question, and end up (Theorem 1, Theorem 2) with
a formula for the total number of r -tuples of such partitions. In Section 2 we use
the enumerational results to estimate the probability that r independent partitions
intersect minimally. It turns out (Theorem 3) that this probability is fast approaching
zero as n → ∞ if r = 2, and its limit is 1 for every other r > 2. We look closer
at inf{p1, p2} and prove (Theorem 4) that this refinement of p1 and p2 is unlikely
to have blocks of size three or more, and that the number of two-element blocks is
asymptotically Poisson, with a parameter close to 0.5 log2 n . We conclude by proving
(Theorem 5) that supi pi = pmax with probability tending to 1, for every r ≥ 2.

1. Enumeration of minimally intersecting partitions.

Lemma 1. Let a partition p of [n] be given, and let i1, . . . ik denote the sizes of
blocks in p listed in any order. For a given ` > 1 , define N(p, `) as the total number
of partitions p′ with ` blocks exactly that intersect p minimally. Then

(1.1) N(p, `) =
i!
`!
· [xi]

(
k∏

α=1

(1 + xα)− 1

)`
.

Here i! =
k∏

α=1
iα! , and the second factor is the coefficient of

k∏
α=1

xiαα in the power

expansion for the indicated function.
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Corollary 1. N(p) , the overall number of the partitions p′ that intersect p mini-
mally, is given by

(1.2) N(p) = i![xi] exp

(
k∏

α=1

(1 + xα)− 1

)
.

Note. As a partial check, for p = ∪i{i} , N(p) is the Bell number B(n) . And
indeed

[x1 · · ·xn] exp

(
n∏
α=1

(1 + xα)− 1

)
=e−1[x1 · · ·xn]

∞∑
j=0

1
j!

n∏
α=1

(1 + xα)j

=e−1[x1 · · ·xn]
∞∑
j=0

1
j!

n∏
α=1

(1 + jxα)

=e−1
∞∑
j=0

jn

j!
,

which is the Dobinski formula for B(n) , Comtet [1].

Proof of Lemma 1. Given ` ≥ 1, j1, . . . j` ≥ 1, such that

(1.3)
∑̀
β=1

jβ = n,

denote by N(p, j) the total number of partitions p′ with ` blocks of sizes j1, . . . , j`
which intersect p minimally. Every p′ is characterized, albeit incompletely, by the
matrix [εαβ], 1 ≤ α ≤ k , 1 ≤ β ≤ ` . Here εαβ ∈ {0, 1} is the cardinality of
intersection of the α -th block in p and the β -th block in p′ , cardinality of the latter
being jβ . That is ∑

α

εαβ = jβ , 1 ≤ β ≤ `,∑
β

εαβ = iα, 1 ≤ α ≤ k,

and the total number of solutions of this system is

(1.4) [xiyj]
∏
α,β

(1 + xαyβ).

Now, there are iα! ways to decide how to assign the elements from the α -th block of p
to those iα nonzero εαβ ’s, and the overall number of partitions p′ appears to be the
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expression (1.4) times i! . However each such p′ has been counted more than once. If
mj is the multiplicity of j in the multiset {j1, . . . , j`} , then the compensating factor
is (

`!
m1! · · ·mn!

)−1

·
(
m1! · · ·mn!

)−1 =
1
`!
.

Hence

(1.5) N(p, j) =
i!
`!
· [xiyj]

∏
1≤α≤k
1≤β≤`

(1 + xαyβ).

Our j satisfies (1.3). It is easy to see that the second factor on the right in (1.5) is
zero if j does not meet (1.3). Consequently N(p, `) , the total number of partitions p′

with ` blocks that intersect p minimally is given by

N(p, `) =
∑

j1+···+j`=n
j1,...,j`>0

N(p, j)

=
i!
`!
· [xi]

 ∑
j1,...,j`>0

[yj]
∏
α,β

(1 + xαyβ)

 .(1.6)

It is crucially important that we are able to drop the condition
∑
β jβ = n in the last

sum. Using inclusion-exclusion principle, we substitute∑
A⊆[`]

(−1)|A|S(A,x),

for the sum. Here

S(A,x) =
∑

j1,...,j`≥0
jβ=0 if β∈A

[yj]
∏
α,β

(1 + xαyβ)

=
∑

jβ≥0, β∈Ac

[ ∏
β∈Ac

y
jβ
β

] ∏
α≤k, β∈Ac

(1 + xαyβ)

=
∏
α≤k

(1 + xα)|A
c|.

Therefore the sum in (1.6) equals

∑
A⊆[`]

(−1)|A|

∏
α≤k

(1 + xα)

`−|A|

=
∑
m≤`

(−1)m
(
`

m

)∏
α≤k

(1 + xα)

`−m

=

∏
α≤k

(1 + xα)− 1

`

.
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Thus (1.1) is proved. �

The corollary follows by summing over ` > 0 and noting that the expression on the
right in (1.1) is zero for ` = 0.

Lemma 2. Let N2(k) denote the number of ordered pairs (p, p′) of minimally inter-
secting partitions such that p consists of k blocks exactly. Then

(1.7) N2(k) = e−1n!
k!
· [xn]

∑
`≥0

1
`!
[
(1 + x)` − 1

]k
.

Proof of Lemma 2. By Corollary 1,

N2(k) =
1
k!

∑
i1+···+ik=n
i1,...,ik>0

n!
i!

i! · [xi] exp

(
k∏

α=1

(1 + xα)− 1

)

=e−1 n!
k!

∑
i1+···+ik=n
i1,...,ik>0

[xi] exp

(
k∏

α=1

(1 + xα)

)
.

Predictably, we want to use the inclusion-exclusion principle again. In preparation,
for a given A ⊆ [k] ,

S(x,A) :=
∑

i1+···+ik=n
i1,...,ik≥0
iα=0 if a∈A

[ ∏
α∈Ac

xiαα

]
exp

(
k∏

α=1

(1 + xα)

)

=[xn] exp
(

(1 + x)|A
c|
)

=[xn]
∞∑
`=0

1
`!

(1 + x)|A
c|`.

Therefore

N2(k) =e−1 n!
k!

[xn]
∑
A⊆[k]

(−1)|A|S(x,A)

=e−1 n!
k!
· [xn]

∞∑
`=0

1
`!

(1 + x)|A
c|`

=e−1 n!
k!
· [xn]

∞∑
`=0

1
`!

k∑
m=0

(−1)m
(
k

m

)
(1 + x)(k−m)`

=e−1 n!
k!
· [xn]

∞∑
`=0

1
`!
[
(1 + x)` − 1

]k
.

�
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Theorem 1. N2n , the overall number of ordered pairs (p, p′) of minimally intersect-
ing partitions, is given by

(1.8) N2n = e−2
∑
k,`≥0

(k`)n
k!`!

,

where (m)n = m(m− 1) · · · (m− n+ 1) .

Proof of Theorem 1. By Lemma 2,

N2n =
∑
k>0

N2(k)

=e−1n!
∑
`≥0

1
`!
· [xn]

∑
k≥0

1
k!
[
(1 + x)` − 1

]k
=e−1n!

∑
`≥0

1
`!
· [xn] exp

(
(1 + x)` − 1

)
=e−2n!

∑
`≥0

1
`!

∑
k≥0

1
k!

(
k`

n

)
=e−2

∑
k,`≥0

(k`)n
k!`!

.

�
Note. We used k, ` both as the numbers of blocks for a generic pair (p, p′) and as
the summation indices in (1.8), and in (1.7). Needless to say, (1.8) should not be read
as implying that the total number of minimally intersecting pairs (p, p′) with k and
` blocks respectively is e−2(k`)n/(k!`!) . For one thing, the expression is irrational!
However, the magnitude of that number is strongly correlated to the (k, `)-th term,
at least for the dominant values of k and ` .

In the light of this Theorem, the following statement must be true, and it is!

Theorem 2. Given r ≥ 2 , let Nrn denote the total number of ordered r -tuples of
partitions (p1, . . . , pr) with a property that infi pi = pmin . Then

(1.9) Nrn = e−r
∑

k1,...kr≥0

(k1 · · ·kr)n
k1! · · ·kr!

.

Proof of Theorem 2. Let the numbers k1, . . . , kr > 0 be given. For every s ≤ r ,
let is = (is1, . . . , isks) be a ks -tuple of positive integers that add up to n . Fix a parti-
tion p1 with k1 blocks of given cardinalities, listed in i1 . Introduce N(p1, i2, . . . , ir) ,
the total number of (r − 1)-tuples (p2, . . . , pr−1) of partitions, such that ps has ks
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blocks of cardinalities is , (2 ≤ s ≤ r ), with the property inf1≤i≤r pi = pmin . Let
N(p1, k2 . . . , kr) be the analogous number when only the number of blocks in each
ps, (2 ≤ s ≤ r) , is given. Analogously to (1.5), we obtain

(1.10) N(p1, i2, . . . , ir) =
i1!
r∏
s=2

kr!
·
[
xi1yi2 · · · zir

] ∏
1≤βs≤ks
1≤s≤r

(1 + xβ1yβ2 · · · zβr ) .

Adding up N(p1, i2, . . . , ir) for given k2, . . . , kr , and acting like in (1.8), we have:

(1.11)

N(p1, k2, . . . , kr) =i1! · [xi1 ]
∑

1≤βs≤ks
2≤s≤r

u

rQ

s=2
(ks−βs)

r∏
t=2

(−1)βt

kt!

(
kt
βt

)
;

u :=
∏

1≤α≤k1

(1 + xα).

Then we use

Nrn =
∑
k1

1
k1!

∑
i11+···+i1b1=n
i11,...ik11>0

n!
i1!

∑
k2,...,kr

N(p1, k2, . . . , kr),

and, applying the inclusion-exclusion to the condition i1 > 0 , we arrive at

Nrn =n! · [xn]
∑

k1,...,kr≥0

r∏
s=1

1
ks!

∑
β1≤k1,...,βr≤kr

u

rQ

s=1
(ks−βs)

r∏
t=1

(−1)βt

kt!

(
kt
βt

)
;

u :=1 + x.

An easy induction on r (based on the devices used above for r = 2) shows that the
last sum equals

e−r
∑

k1,...,kr≥0

uk1···kr

k1! · · ·kr!
,

and it remains to notice that

[xn](1 + x)k1···kr =
(
k1 · · ·kr

n

)
.

�
Note. Herb Wilf (private communication) indicated that (1.9) is equivalent to

(1.12) Nrn =
n∑
j=1

Br(j)S(n, j);
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here the S(n, j) are signed Stirling numbers of the first kind. Does the reader see
why?

2. Probabilistic asymptotics. Suppose that the partitions p1, . . . , pr are chosen
from Πn uniformly at random (uar), independently of each other. The formulas (1.8),
(1.9) are ideally suited for an asymptotic study of

Prn
def= Pr

(
inf

1≤i≤r
pi = pmin

)
.

According to Theorems 1 and 2,

Prn =
Nrn
Br(n)

,

where B(n) is the Bell’s n -th number, that is B(n) =
∣∣Πn

∣∣ . By the Moser-Wyman
formula [4],

(2.1) B(n) =
1 + o(1)
ρ1/2

· exp
[
n(ρ− 1 + 1/ρ)− 1

]
, n→∞,

where ρ is defined as the root of ρeρ = n , and asymptotically
(2.2) ρ = logn− (1 + o(1)) log logn.
Note. It can be shown that actually o(1) = O(1/ρ) in this formula, [5].

Theorem 3.

(2.3) Prn =

{
(1 + o(1))e−ρ

2/2, if r = 2,

1−O(log−1 n), if r ≥ 3.
So limn→∞ Prn is 0 for r = 2 and 1 for every r > 2 .

Proof of Theorem 3. The computations are more or less standard, with “less” due
to the sum in (1.9) being multiple. So we will outline the argument, paying attention
to the key points.
A typical partition has about n/ logn blocks. This is why we should expect that the
dominant contribution to the series in (1.9) comes from the summands with k1, . . . , kr
all asymptotic to n/ logn . Indeed Nrn(k) , the generic summand in (1.9), can be
transformed—via the Stirling formula for factorials—into

(2.4)

Nrn(k) =
(
1 +O(

r∑
s=1

1/ks + 1/(k − n))
)
Nrn(k);

Nrn(k) :=e−r
r∏
s=1

(2πks)−1/2 · exp(H(k));

H(k) :=− n+
r∑
s=1

(ks − ks log ks) + k log k − (k − n) log(k − n);

k :=
r∏
s=1

ks.
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The estimate is uniform for all k > 0 such that k > n . The terms for the values of k
left out are either zero, when some ks = 0, or negligible, if k = n . H(k) attains its
absolute maximum at a point k = (k, . . . , k) , where k is the root of

(2.5) κr−1 log
κr

κr − n − logκ = 0.

Therefore n/k ∼ log k , so that k ∼ n/ logn . More accurately, we set k = n/x , so
that x ∼ logn , and obtain from (2.5):

x− log
n

x
= − xr+1

2nr−1
+O

(
log2r+1 n

n2r−2

)
.

Comparing the last equation with

ρ− log
n

ρ
= 0,

we see that

(2.6) x = ρ− ρr+1

2nr−1
+O

(
log2r+1 n

n2r−2

)
.

Combination of (2.4)-(2.6) yields

H(k) =rn
(
x−1 − x−1 log

n

x
+ log

n

x

)
− n2

2k
r +O

(
n3

k
2r

)
=nr(ρ−1 − 1 + ρ)− ρr

2nr−2
+O

(
log2r n

n2r−3

)
.

(For the last line we have used the fact that the displayed function of x has zero
derivative at x = ρ .) We notice immediately that the term −ρr/(2nr−2) is either
−ρ2/2 → −∞ , if r = 2, or is O(logr n/n) , if r > 2. Furthermore, for ‖k − k‖ ≤
n1/2 logn ,

(2.7)
∂2H(k)
∂s1∂s2

=


− ρ2 + ρ

n
+O

(
log4 n

n3/2

)
, if s1 = s2,

O

(
logr+2 n

nr

)
, if s1 6= s2.

Introducing

xs =
ks − ks
n1/2

(ρ2 + ρ)1/2, ∆xs =
(
ρ2 + ρ

n

)1/2

, 1 ≤ s ≤ r,
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and using (2.4), (2.7), we get then: within a factor 1 +O(n−1/2 log4 n) ,

∑
‖k−k‖≤n1/2

Nrn(k) =
(
2π(ρ+ 1)

)−r/2 exp
(
nr(ρ− 1 + 1/ρ)− r − ρr

2nr−2

)

·
∑

‖x−x‖≤(ρ2+ρ)1/2

exp

(
−1

2

r∑
s=1

x2
s

)
r∏
s=1

∆xs.

Next, within a factor 1+O(∆x1) , the last sum equals the corresponding r -dimensional
integral, and the latter is within the distance of order∫

|x|>ρ/r

e−x
2/2 dx = o

(
e−ρ

2/(2r2)
)

from the integral over Rr . Thus

(2.8)
∑

‖k−k‖≤n1/2

Nrn(k) =
(
1 +O(n−1/2 log4 n)

)exp
(
nr(ρ− 1 + ρ−1)− r − ρr

2nr−2

)
(ρ+ 1)r/2

.

In addition, using (k1 · · ·kr)n ≤ kn1 · · ·knr and the Dobinski formula for B(n) ,

(2.9)
∑

‖k−k‖>n1/2

Nrn(k) ≤ rBr−1(n) · e−1
∑

|k−k|>r−1n1/2 logn

kn

k!
.

The fraction kn/k! attains its absolute maximum at some k∗ so close to n/ρ , whence
to k , that the condition on k implies |k−k∗| > (2r)−1n1/2 logn . The function kn/k!
is roughly exp(H(k)) , where H(k) = n log k − k log(k/e) is convex. H(k) has its
maximum at k = n/ρ , and

H′′
(
nρ−1 + θn1/2 log n

)
≤ − ρ

2

2n
, ∀θ ∈ [−1, 1].)

Therefore
exp

(
H
(
nρ−1 ± (2r)−1n1/2

)
log n

)
≤ exp

(
−c∗ log4 n

)
,

and with a bit of extra effort it follows that

e−1
∑

|k−k|>(2r)−1n1/2 logn

kn

k!
≤ B(n) exp

(
−c′ log4 n

)
,
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with c′ < c∗ . Hence (2.9) reduces to

(2.10)
∑

‖k−k‖>n1/2 logn

Nrn(k) = O
(
Br(n)e−c

′ log4 n
)
.

Using (2.8), (2.10) and (2.1) (see also the note following (2.2)), we conclude that

Prn =
(
1 +O(ρ−1)

)
exp

(
− ρr

2nr−2

)
+O

(
e−c

′ log4 n
)
.

�

Since p′ := inf{p1, p2} is so unlikely to be the finest partition, an interesting question
is what is the size of the largest block of p′ typically? The answer is: two. And how
many two-elements sets are there in p′ ? The answer is: only about log2 n/2.

Theorem 4. Introduce Qn(k) , the probability that p′ 6= pmin , that the largest block
has size two, and that there are k such blocks. If k = o(n1/2) , then

(2.11) Qn(k) = (1 + o(1))e−λ
λk

k!
, λ :=

ρ2

2
.

Thus the number of two-element sets in p′ is Poisson distributed with a large parameter
ρ2/2 , and with probability approaching one p′ has no larger blocks.

Proof of Theorem 4. The total number of (p1, p2) such that p′ has k two-element
blocks, and no larger blocks, is(

n

2k

)
(2k − 1)!! ·N2,n−k.

(We choose 2k elements in
(
n
2k

)
ways, then pair them in

(2k − 1)!! = 1 · 3 · · · (2k − 1) =
(2k)!
2kk!

ways, and finally select an ordered pair of minimally intersecting partitions on the
resulting set of n− 2k + k elements, k of them being the pairs, and n− 2k of them
being the singletons left out.) Then

(2.12)
Qn(k) =

(
n
2k

)
(2k)!B2(n− k)P2,n−k

2kk!B2(n)

=
(
1 +O(k2/n)

) n2k

2kk!
·
(
B(n− k)
B(n)

)2

· P2,n−k.
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By Theorem 3,

P2,n−k =
(
1 +O(ρ−1(n− k))

)
exp

(
−ρ2(n− k)/2

)
,

where ρ(x) satisfies

(2.13) ρ(x)eρ(x) = x⇐⇒ ρ(x) + log ρ(x) = logx.

It follows from the last equation that

(2.14) ρ(n− k) = ρ+O(k/n).

Furthermore, by (2.1),

B(n− k)
B(n)

=(1 + o(1)) exp
(
f(n− k)− f(n)

)
;

f(x) :=x(ρ(x)− 1 + ρ(x)),(2.15)

and it is easy to see, via (2.13), that f ′(x) = r(x) . Invoking (2.14) also, we compute

(2.16) f(n− k)− f(n) = −k
(
ρ+O(k/n)

)
= −kρ+O(k2/n).

Putting together (2.12)-(2.16) leads to

Qn(k) =
(
1 +O(k2/n)

) n2k

2kk!
· e−2kρ · e−ρ2/2

=
(
1 +O(k2/n)

)(ρ2/2)k

k!
· e−ρ2/2.

�

Note. For a given mapping f : [n] → [n] , the sets {i ∈ [n] : f(i) = j} form a
partition pf of [n] . If f is chosen uar from the set of all nn mappings then pf is
random, but not uniform. We suggest the interested reader show that for f1, f2 chosen
independently

lim
n→∞

Pr
(
inf{pf1 , pf2} = pmin

)
= e−1/2.

(Hint: the reader may wish first to show that it is unlikely for inf{pf1 , pf2} to have a
block of size three or more, and second to evaluate the factorial moments of the number
of two-element blocks.) This result shows that two models of random set partitions
differ substantially.

It remains to estimate the probability that sup1≤i≤r pi is the one-block partition pmax ,
the coarsest one. Exact enumeration of such r -tuples appears to be very hard. We
can prove, however, that for n large, almost all r tuples have that property.
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Theorem 5. Denote Prn = Pr
(

sup
1≤i≤r

pi = pmax

)
. Then

(2.17) Prn = 1−O
(

logr+1 n

nr−1

)
.

Proof of Theorem 5. Given the event sup
i
pi 6= pmax , there exists a nonempty

proper subset A of [n] such that each pi is obtained by partitioning separately A and
[n] \A . Therefore

(2.18) 1− Prn ≤ 2
∑

m≤n/2

(
n

m

)(
B(m)B(n−m)

B(n)

)r
.

Using the computations analogous to (2.13)–(2.16), it is easy to prove that R(m) , the
ratio of the two consecutive terms, (m+ 1)-th and m-th, approaches zero uniformly
for m ≤ n1/2 , say. (The choice of n1/2 is somewhat arbitrary.) For m ∈ [n1/2, n/2] ,

(2.19)
R(m) =

(
1 +O(log−1 n)

)n−m
m

erρ(m)

erρ(n−m)

=
(
1 +O(log−1 n)

)
exp
[
g(m)− g(n−m)

]
;

g(x) :=(r − 1)ρ(x)− log ρ(x).

Now

g′(x) =
(

(r − 1)− 1
ρ

)
· dρ
dx

=
(

(r − 1)− 1
ρ

)
ρ

x(1 + ρ)
.

So, for x ∈ [n1/2, n/2] , there exists a positive c such that g′(x) ≥ c/x . Then, by
(2.19),

R(m) ≤
(
1 +O(log−1 n)

)
exp

(
−c
∫ n−m

m

x−1 dx

)
=
(
1 +O(log−1 n)

)( m

n−m

)c
.

Therefore, given a > 0, there exists b > 0 so large that

R(m) ≤ 1− a/ logn, ∀m ∈
[
n1/2, (n/2)(1− b/ logn)

]
,

for all n > n(a) . Consequently, the corresponding terms in the sum on the right of
(2.18) are dominated by those of a geometric series with denominator 1−a/ logn , and
their overall contribution is bounded by

(2.20)
n

(
B(n− 1)
B(n)

)r
· 1

1− (1− a/ logn)
=O

(
n logn exp

(
−rρ(n)

))
=O

(
logr+1 n

nr−1

)
.
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(For the first line we have used (2.15) and (2.16).)
For m ∈

[
(n/2)(1− b/ logn), n/2] , we use (2.15) again and bound

(2.21)
(
n

m

)(
B(m)B(n−m)

B(n)

)r
≤ 2n+1 exp

(
rf(m) + rf(n−m)− rf(n)

)
.

Since

f ′(x) = ρ(x), ρ′(x) =
ρ(x)

x(1 + ρ(x))
,

we write for m in question:

f(m) =f(n/2)−
∫ n/2

m

ρ(x) dx

=f(n/2)− (n/2−m)ρ(n/2) +O
(
n−1(n/2−m)2

)
.

Analogously,

f(n−m) = f(n/2) + (n/2−m)ρ(n/2) +O
(
n−1(n/2−m)2

)
.

So

f(m) + f(n−m)− f(n) =2f(n/2)− f(n) +O
(
n log−2 n

)
=n
(
ρ(n/2)− ρ(n)

)
+O

(
n log−1 n

)
=− n

∫ n

n/2

ρ(x)
x(1 + ρ(x))

dx+O
(
n log−1 n

)
=− n log 2 +O

(
n log−1 n

)
.

Therefore the right-hand side of (2.21) becomes 2−n(r−1)(1+o(1)) , and multiplying this
bound by (n/2)b/ logn , the number of m ’s in question, we get the same 2−n(r−1)(1+o(1)) ,
with a slightly larger term o(1). Thus, by (2.20),

1− Prn = O

(
logr+1 n

nr−1

)
.

�

Note. For the random set partitions pf , however,

lim
n→∞

Pr
(

sup
1≤i≤r

pfi = pmax

)
= 0,

for every r ≥ 1. (Does the reader see a simple proof of this?) It is tempting to
“explain” such a difference from the case of uniform partitions by the fact that a typical
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such partition has about n/ logn blocks, while the one induced by the uniformly
random mapping has more blocks, about

(
1 − e−1

)
n . (The number of “no-values”

of the uniformly random mapping is close, in probability, to e−1n .) However, the
difference between n and n/ logn does not seem to be sufficiently large to account for
such a sharp contrast with the uniform partitions.
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