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Abstract. Marine Protected Areas (MPAs) provide an important tool for conservation of
marine ecosystems. To be most effective, these areas should be strategically located in a
manner that supports ecosystem function. To inform marine spatial planning and support
strategic establishment of MPAs within the California Current System, we identified areas
predicted to support multispecies aggregations of seabirds (‘‘hotspots’’). We developed
habitat-association models for 16 species using information from at-sea observations collected
over an 11-year period (1997–2008), bathymetric data, and remotely sensed oceanographic
data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and
seaward 600 km from the coast. This approach enabled us to predict distribution and
abundance of seabirds even in areas of few or no surveys. We developed single-species
predictive models using a machine-learning algorithm: bagged decision trees. Single-species
predictions were then combined to identify potential hotspots of seabird aggregation, using
three criteria: (1) overall abundance among species, (2) importance of specific areas (‘‘core
areas’’) to individual species, and (3) predicted persistence of hotspots across years. Model
predictions were applied to the entire California Current for four seasons (represented by
February, May, July, and October) in each of 11 years. Overall, bathymetric variables were
often important predictive variables, whereas oceanographic variables derived from remotely
sensed data were generally less important. Predicted hotspots often aligned with currently
protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots
in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern
California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British
Columbia, that are not currently included in protected areas. Prioritization and identification
of multispecies hotspots will depend on which group of species is of highest management
priority. Modeling hotspots at a broad spatial scale can contribute to MPA site selection,
particularly if complemented by fine-scale information for focal areas.
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marine protected areas; marine reserves; multispecies aggregations; pelagic ecosystems; remote-sensed data;
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INTRODUCTION

Across the globe, marine ecosystems have been

exploited, disturbed, and altered, putting many species

at grave risk (Norse et al. 2005, Polldoro et al. 2008,

Halpern et al. 2009, Ojeda-Martı́nez et al. 2009). In

response, marine spatial planning has emerged as a

comprehensive approach to improve management and

conservation of these ecosystems (Ray 2010). The

ultimate objective of marine spatial planning is to

analyze and allocate the distribution of human activities,

in space and time, in marine areas so as to achieve

ecological and economic objectives identified through a

political process (Douvere and Ehler 2009). Marine

reserves or marine protected areas (MPAs) have been

widely viewed as an effective way to advance marine

spatial planning and restore ecosystems and populations

(Boersma and Parrish 1999, Worm et al. 2003, Norse et

al. 2005). To be effective, however, marine spatial
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planning and the establishment and management of

Marine Protected Areas (MPAs) require sound scientific

information.

Development of a scientific basis for the establishment

of protected areas in marine ecosystems has been lagging

compared to that in terrestrial habitats (Hyrenbach et al.

2000, Halpern 2003, Cañadas et al. 2005, Game et al.

2009). The identification and protection of foraging

areas for marine predatory species such as seabirds is a

high conservation priority (Hooker and Gerber 2004).

Because seabirds feed on fish, squid, and plankton

species that support other marine top predators

(Polldoro et al. 2008), seabirds can also serve as

indicators of areas where energy flows rapidly from

lower trophic levels to top predators (Furness and

Camphuysen 1997, Hooker and Gerber 2004, Durant et

al. 2009; but see Grémillet and Charmantier 2010).

Marine birds and mammals aggregate at predictable

locations or ‘‘hotspots’’ where food availability is high

(Hunt et al. 1999, Cañadas et al. 2005, Piatt et al. 2006,

Suryan et al. 2006). Productivity in these areas is often

driven by topography and wind patterns, which create

oceanographic features that may concentrate prey and

are associated with measurements of sea-level height,

sea-surface temperature gradients, and chlorophyll

concentration (Hyrenbach et al. 2000, 2006, Ballance

et al. 2006, O’Hara et al. 2006, Yen et al. 2006, Ainley et

al. 2009, Garthe et al. 2009).

Here we ask whether widely available environmental

data, including those from remote-sensing satellites, can

be used to derive predictive models identifying multi-

species aggregations (‘‘hotspots’’) throughout the highly

productive California Current Large Marine Ecosystem

(hereafter, CCS; Ekstrom 2008). This large upwelling

ecosystem stretches from British Columbia, Canada, to

Baja California, Mexico, and seaward for hundreds of

kilometers (Fig. 1). The CCS supports many important

populations of marine wildlife as well as valuable

commercial fisheries (Halpern et al. 2009, Teck et al.

2010). Like most of the world’s oceans, the CCS has

recently suffered from overexploitation of fish stocks

and climatic and oceanographic anomalies (Bakun and

Weeks 2004), highlighting the need to protect important

wildlife areas. Hotspots for marine organisms have not

yet been identified for the CCS on an ecosystem-wide

basis. In addition, many areas in the CCS have been

inadequately surveyed, so the ability to develop a

comprehensive regional perspective on seabird distribu-

tions would help to advance marine spatial planning,

highlight areas in need of protection, and prioritize

future survey efforts.

In this paper we describe the development and

application of habitat-association models for a 16-

species assemblage of seabirds based on 11 years of

survey data spanning the geographic range of the CCS.

Model output provides predictive maps covering the full

range of the CCS, including areas where little or no

survey data are available. We use three criteria to

combine predictions across the 16 species to highlight

different aspects of potential areas of seabird aggrega-
tion, all of which are relevant for marine spatial

planning. The three criteria reflect abundance, stan-
dardized across species; importance to individual species

(as indicated by ‘‘core’’ areas); and persistence of
hotspots among years. Because the modeling is con-
ducted over the entire ecosystem, it enables us to

consider not only the location and identification of
individual MPAs, but also spatial relationships among

sites (Lascelles et al. 2009). Model results can therefore
inform the designations of MPAs and, more broadly,

marine spatial planning (Douvere and Ehler 2009).
There are few examples in which the distribution and

abundance of a large number of species have been
modeled over a large area and over a considerable time

period, especially so with respect to marine ecosystems.
Hence, the modeling approach and synthesis of results

presented here may provide a valuable approach for
application to other marine taxa as well as other regions

of the globe.

METHODS

Data collection and processing

Bird observational data.—Seabird observation data
were obtained from several research and monitoring

programs: California Cooperative Oceanic Fisheries
Investigation (CalCOFI), National Marine Fisheries

Service (NMFS) California Current Ecosystem Study
(National Oceanic and Atmospheric Administration

[NOAA] and PRBO Conservation Science), CSCAPE
and ORCAWALE (NOAA Southwest Fisheries), Line P

(Canadian Wildlife Service [CWS] of Environment
Canada [EC] and Fisheries and Oceans Canada), and

NMFS Rockfish Surveys (NOAA) (Appendix A).
Spatial coverage for the analysis lay between 528 N

and 308 N latitude and from the shoreline out to 600 km
from the mainland (Fig. 2). The northern boundary

corresponded to the approximate northern edge of the
California Current (Fig. 1); the southern and offshore
boundaries were dictated by the extent of survey

coverage (Fig. 2). Spatial coverage varied by cruise,
with some providing extensive but sparse coverage of the

entire west coast from Baja California to Vancouver
Island and others providing dense coverage of smaller

regions. Temporal coverage included the period from
October 1997 to November 2008 (Appendix A). Data

from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) satellite were not available prior to October

1997, precluding the use of seabird data before that time
for the purposes of modeling.

Surveys used the strip-survey method (Tasker et al.
1984, Buckland et al. 1993) to quantify seabird

distribution and abundance (see, for example, detailed
descriptions in Clarke et al. 2003 and Yen et al. 2004).

The method employed for all surveys recorded birds
continuously while the survey vessel was under way: all

birds within a survey strip off one forequarter of the
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ship’s bow were counted and their behavior was

classified. The width of the strip being surveyed

depended on the survey vessel and weather conditions,

but was between 250 and 500 m, mostly 300 m (84% of

survey transects). Although the presumption is that all

birds encountered within the strip are detected and

recorded, it is likely that detectability varied as a

function of species (i.e., size and color) and exogenous

conditions (e.g., sea state, cloud cover). Nevertheless, we

feel that our approach was warranted because our

intention was not to estimate actual absolute density, in

which case some correction for bird flight speed and

direction would be required (e.g., Spear et al. 1992), but

rather to derive an index of relative density that can be

combined across species. Furthermore, we standardized

abundance across species, thus eliminating species-

specific differences in detectability from influencing

combined species results.

Each survey transect was divided into 3 km long

segments or ‘‘bins.’’ We used 3-km bins because previous

analysis indicated generally low levels of spatial auto-

correlation among adjacent bins at that scale (Yen et al.

2004), although autocorrelation is not a major concern

for predictive models such as ours (Diniz-Filho et al.

2003, Ferguson et al. 2006). Seabird observations and

survey transect data were represented by points corre-

sponding to the midpoint of a survey bin. Bin center

points were used for analysis of distance from land,

distance to isobaths, bathymetry, sea-surface tempera-

ture (SST), chlorophyll a concentration (CHL), and sea-

surface height (SSH). For all cruises combined, 58 966

survey bins were used in the statistical analysis. We

controlled for area of the survey bin to standardize the

number of individuals detected per bin to the number of

individuals per square kilometer. In .75% of the

surveys the bin area was 0.9 km2 (i.e., strip width ¼

FIG. 1. Portion of Pacific Ocean, depicting the California Current and showing the main direction of flow and important land
and ocean features. National Marine Sanctuary (NMS) boundaries are depicted for the Olympic Coast NMS, Cordell Bank NMS,
Gulf of the Farallones NMS, Monterey Bay NMS, and Channel Islands NMS.
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300 m 3 3 km). Each observation included information

on GPS position, visibility, and species, number, and

behavior of animals observed. Counts of individuals of a

single seabird species, by behavior classification, were

summed within each bin (Appendix B).

Environmental data.—Bathymetric data were obtained

in raster form from the General Bathymetric Chart of

the Oceans (GEBCO) with a cell size of 13 1 arc-minute

(approximately 1.85 3 1.5 km, exact dimensions of the

cell varying with latitude). Depth (in meters) for each

bin was obtained for each bin center point. We also

developed moving-window statistics for depth. For each

bathymetric grid cell, we calculated the mean, minimum,

maximum, and standard deviation of depth based on the

‘‘focal’’ cell and the eight adjacent cells. Thus, each focal

cell was located within a group of nine cells (33 3 cells),

whose area was ;24 km2. We also calculated a ‘‘contour

index’’ that reflects topographic relief of the sea floor

within the same nine cells. Contour index was defined as

½ðmax: depth �min: depthÞ=max: depth � 100�:

This index varied from 0 to 100, with higher values

indicating steeper bathymetry.

Distances from the bird-survey bin center points to

the mainland and to islands were calculated in ArcMap

9.2 (ESRI 2006) using shapefiles provided by California

Department of Fish and Game and ESRI. Distances

from the center points to the 200-m, 1000-m, and 3000-

m depth isobaths were calculated from bathymetry data.

These three isobaths have been used in similar analyses

(e.g., Yen et al. 2005): inside the 200-m isobath is

considered the continental shelf, the 1000-m isobath is

indicative of the position of the continental shelf slope,

and the 3000-m isobath indicates the ocean floor.

Two sources of satellite-derived sea-surface tempera-

ture (SST) data were combined to maximize spatial and

temporal data coverage: Moderate Resolution Imaging

Spectroradiometer (MODIS) (Aqua and Terra) and

Advanced Very High Resolution Radiometer (AVHRR)

Pathfinder data sets. We used AVHRR SST data when

they were available. When AVHRR SST data were not

available, we used a predictive equation to estimate

AVHRR SST as a function of the available MODIS SST

value (R2¼ 0.96). The regression equation was based on

the set of cells that had both AVHRR and MODIS SST

values. The regression-derived estimates of AVHRR

SST were used when observed AVHRR SST data were

not available. We used daytime composite temperatures

over the 8-day period corresponding to the date of the

bird survey. Data cell sizes were, on average, 4.6 3 3.7

km.

Chlorophyll (CHL) concentration data (milligrams

per cubic meter) were obtained from the SeaWiFS

satellite. As with temperature, 8-day composite periods

were constructed to minimize missing data, and these

were matched with dates and center points of the survey

bin. Cell size was, on average, 9.3 3 7.3 km (as with

other metrics, exact dimensions varied with latitude).

Where SeaWiFS data were unavailable, we used data

from MODIS, processed as with SST (i.e., we used a

regression equation to predict SeaWiFS values on the

basis of MODIS values).

Sea-surface height (SSH) data were obtained from

multiple satellites with the same ground-track (including

Topex/Poseidon, Jason-1 þ ERS, Envisat). We used a

composite value corresponding to a 7-day time period.

Original spatial coverage was global, with a cell size of

0.25 3 0.25 degrees (;28 km on one side 3 22.0 km,

depending on latitude). SSH (in centimeters) for each

survey bin was obtained by matching the location and

date of the survey bin with the 7-day composite SSH

raster.

Data for predictive modeling.—Physical and biological

data for the modeling process were available from 1997

to 2008; all months were used to develop the predictive

models themselves. However, we picked just four focal

months for the purposes of model predictions: October,

February, May, and July (representing fall, winter,

spring, and summer, respectively); predictions were

made for each of the four months in each year (1997

to 2008). We chose a ‘‘seasonal’’ approach to prediction

rather than producing month-by-month predictions

because the survey coverage was adequate at the

seasonal scale, but, in general, surveys did not provide

adequate month-by-month coverage of the study area to

justify 12 monthly predictions per year.

FIG. 2. Map of surveys used in this study of seabird
hotspots. Individual data points are shown classified by cruise
project or program. See Appendix A for information on cruises.
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Our choice of months reflected the seasonal cycle of

seabirds in the CCS (e.g., February is pre-breeding

period for those that breed in the CCS, May is early

breeding season, July is late breeding season, and

October is the nonbreeding period). With regard to the

annual cycle of physical oceanography, October occurs

within the ‘‘Oceanic’’ season; February falls within the

‘‘Davidson Current’’ season; May occurs within the

middle of the ‘‘Upwelling’’ season; and July falls toward

the end of the ‘‘Upwelling’’ season (Ford et al. 2004).

Data used for predictions were similar to those used

for analysis except that only four months were used in

each year, as just described, and the satellite data were

based on monthly average values rather than 8-day

values. Overall, 45 months were used for prediction

between October 1997 and October 2008. After process-

ing, geodetic datum, spatial extent, and cell size were

standardized for all data; the datum was WGS 84;

boundaries were limited to �1378 W, 308 N, �1178 W,

528 N; and the cell size was resampled to the standard

cell size of MODIS SST data (;4.6 3 3.7 km).

Single-species statistical analyses

For most of the species initially analyzed, only birds

observed foraging or on the water were included in the

analyses. For all gulls, terns, kittiwakes, albatrosses, and

storm-petrels, however, we included flying birds as well,

as these species often forage while flying (following

Jahncke et al. 2008) and often are not observed except

when flying (Clarke et al. 2003).

We selected species for analysis through a two-step

process. First, we selected all seabird species observed in

at least 300 bins (i.e., one or more individuals of the

appropriate behavior codes were observed in the survey

‘‘bin’’). This minimum represents ;0.5% of all survey

bins analyzed, and was used primarily to filter out rarer

species. Twenty-five species met this criterion. We then

conducted bagged decision-tree (BDT) analysis on each

of the 25 species.

We evaluated predictive adequacy of the resultant

BDT model by examining the proportion of deviance

explained for each species using test data (data not part

of the ‘‘training data’’ used to develop predictions).

Species models in which the proportion of deviance

explained exceeded 0.40 for test data were considered

further. For each of these species, we evaluated

goodness of fit by determining whether the drop in

predictive ability comparing training data and test data

(Hastie et al. 2009) was low to moderate; more

specifically, we determined whether the percentage of

deviance explained in the test data was between 60% and

100% that of the training data. All species that met the

first criterion (i.e., proportion of deviance explained in

test data . 0.40), also met the latter criterion. Of the 25

species examined, 16 species produced adequate predic-

tive models and were retained (Table 1; species summary

data in Appendix B). All but one of the species retained

is considered a species of concern by the Baja to Barrow

Initiative of the Audubon Society (Table 1). In addition,

two of the 16 species are considered globally threatened,

near-threatened, or endangered by the IUCN: Black-

footed Albatross and Sooty Shearwater (Table 1).

Bagged decision-tree analysis.—We used bagged deci-

sion trees, one type of machine-learning methodology

(also referred to as ‘‘data mining’’; Hochachka et al.

2007). Machine learning algorithms, and decision-tree

methodology in particular, have only recently become

more widely used in ecological studies (e.g., niche

modeling) in marine and terrestrial systems (De’ath

2007, Elith et al. 2008, Leathwick et al. 2008). Decision-

tree analysis uses binary ‘‘rules’’ to classify and predict

responses based on a set of predictor variables (Breiman

et al. 1984, Hastie et al. 2009). However, simple decision

trees are highly sensitive to the data at hand and can

provide predictions that ‘‘overfit’’ the data. Bootstrap

aggregation, or ‘‘bagging,’’ enhances the accuracy of the

decision tree by using a large number of bootstrapped

data sets (an ‘‘ensemble’’; see Efron and Tibshirani 1993)

and performing a separate decision-tree analysis on each

data set (Breiman 1996, Hochachka et al. 2007, Hastie et

al. 2009). The predictions from each decision tree are

then combined and averaged to produce a final

prediction. BDT analysis and similar machine-learning

methods are discussed in an ecological context by Elith

et al. (2008).

There are a number of strengths that make BDT a

good choice for this study. (1) The method has been

shown to perform well in terms of prediction (Dietterich

2000, Hochachka et al. 2007); (2) the method makes use

of observations that have missing values for some of the

predictor variables; (3) the method is nonparametric

(i.e., no assumption is made about a particular shape of

the response function to a predictor variable); (4) a large

number of predictor variables can be incorporated into

the model (Guyon and Elisseeff 2003); and (5) interac-

tions of predictor variables are incorporated into the

final models and these do not have to be specified. This

last feature is particularly relevant to this study: because

latitude and distance from land were two of the

predictor variables, BDT allowed for the effects of other

environmental variables (e.g., SST) to vary across the

spatial range of the study area. In addition, ‘‘day of

year’’ and variables reflecting annual variation were also

included in BDT models; hence BDT allowed for the

effect of environmental variables to vary within and

among years.

We used the recursive partitioning package (rpart)

within the R statistical programming language (version

2.10.1, R Development Core Team 2009) for the

analysis. Custom code developed by D. Fink was used

to implement the bagging, prediction, model averaging,

and model fit (Hochachka et al. 2007). We used BDTs to

develop predictive models for each of the 16 species. The

BDT models were used to make predictions for the

entire region of the California Current in each of four

months, in each year. As a first step, we partitioned 90%
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of the data for use during model building (i.e., training),

leaving 10% available for testing. For each predictive

model, we used an ensemble of 500 bootstrapped data

sets obtained from the training data (Hochachka et al.

2007). A priori tests with these data showed that there

was little improvement in the predictive ability of the

bagged ensemble beyond 500 bootstrapped data sets.

We assumed a Poisson distribution for the response

variable (birds detected per survey bin) in our BDT

analysis.

Variable selection.—We identified 20 habitat variables

as potentially meaningful for inclusion in the modeling

(Table 2). We arrived at this selection of variables by

considering previous studies on seabird–habitat rela-

tionships, in general and in the CCS in particular (e.g.,

Yen et al. 2004, Ainley et al. 2009, Tremblay et al. 2009),

and the limitations of data availability for the study

period and study area.

Date, upwelling transition, and oceanographic indi-

ces.—Day of year was included, allowing for seasonal

fluctuations in abundance for individual species. We also

used ‘‘transition date,’’ the date at which the upwelling

regime in the CCS changes from a winter pattern to a

spring pattern. Transition date demonstrates strong

year-to-year variation (Holt and Mantua 2009).

Although transition dates in the CCS show regional

variation, we were unable to quantify the variations in

transition date throughout the system. Instead, we relied

on a single annual value based on upwelling and winds

(Method 1 of Holt and Mantua 2009), obtained from

data near the Farallon Islands in Central California (J.

Jahncke and J. Roth, unpublished manuscript). BDT

allows for an interaction between transition date and

latitude, so the effect of transition date in the analysis

can vary with latitude. Use of a single transition date in

each year for the CCS in the BDT analysis may be an

oversimplification. However, it was not our intention to

develop a detailed accounting of transition date itself,

but rather to characterize how variation in abundance of

the target seabird species was related to variation in

year, date, and related variables.

Three oceanographic indices were included: Southern

Oscillation Index, Pacific Decadal Oscillation, and

Northern Pacific Gyre Oscillation (Di Lorenzo et al.

2008). Index values were calculated for two time periods:

the three-month period that included the month of

survey and the two previous months, as well as the three

months prior to that period (i.e., 3–5 months prior to the

month of survey).

Multispecies hotspot determination

We used three criteria to identify multispecies

hotspots. All three were implemented at the scale of a

single ‘‘prediction cell,’’ ;4.6 3 3.7 km.

Criterion 1: Standardized abundance, summed over all

species.—Predicted densities were standardized for each

species such that mean density¼0 and SD of density¼1.

Standardization was implemented before combining

results across species so that each species contributed

equal weight to the composite results. Otherwise, species

with very high mean abundance would swamp less

common species. Species with high variance also could

have a large influence on the composite results. We use

the term ‘‘abundance’’ henceforth, but recognize that

observations and predictions refer to individuals detect-

ed during surveys, which only provide an index of

abundance. Note that this standardization accounted

for possible differences in detectability among species.

The standardized abundance values were then summed

over all species for the individual predicted cell. We refer

to this metric as ‘‘summed standardized abundance’’ to

emphasize that it is a multispecies metric and not a

TABLE 1. Seabird species analyzed and modeled. The table also indicates each species’ status as a species of concern in the Baja to
Barrow Initiative (B2B) and its IUCN status.

Species code Common name Scientific name B2B IUCN status

BFAL Black-footed Albatross Phoebastria nigripes x endangered
BOGU Bonaparte’s Gull Larus philadelphia x least concern
BRAC Brandt’s Cormorant Phalacrocorax penicillatus x least concern
BRPE Brown Pelican Pelecanus occidentalis x least concern
CAAU Cassin’s Auklet Ptychoramphus aleuticus x least concern
CAGU California Gull Larus californicus x least concern
COMU Common Murre Uria aalge x least concern
FTSP Fork-tailed Storm-Petrel Oceanodroma furcata x least concern
GWGU Glaucous-winged Gull Larus glaucescens x least concern
HEEG Heermann’s Gull Larus heermanni x least concern
HERG Herring Gull Larus argentatus least concern
LHSP Leach’s Storm-Petrel Oceanodroma homochroa x least concern
RNPH Red-necked Phalarope Phalaropus lobatus x least concern
SAGU Sabine’s Gull Xema sabini x least concern
SOSH Sooty Shearwater Puffinus griseus x near-threatened
WEGU Western Gull Larus occidentalis x least concern

Notes: In addition, nine analyzed species did not yield adequate predictive models (see Methods: Single-species statistical
analyses): Black-legged Kittiwake (Rissa tridactyla), Rhinoceros Auklet (Cerorhinca monocerata), Black-vented Shearwater
(Puffinus opisthomelas), Red Phalarope (Phalaropus fulicarius), Pacific Loon (Gavia pacifica), Pomarine Jaeger (Stercorarius
pomarinus), Northern Fulmar (Fulmarus glacialis), Cook’s Petrel (Pterodroma cookii), and Pink-footed Shearwater (Puffinus
creatopus).
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single-species metric. These calculations were carried out

by month and year, and then results were averaged over

years by month as well as averaged over all years and

months.

Criterion 2: Important ‘‘core’’ areas for individual

species.—For each species, we ranked all prediction cells

according to the predicted abundance of that species by

month and year. We then identified the smallest set of

cells that together constituted 25% of the species’ total

predicted abundance within the study region. These

‘‘highest predicted density’’ cells were considered to

indicate a species’ ‘‘core area’’ and were assigned a score

of 2. The set of cells that together made up the next

quartile of the species’ total abundance based on

predicted density, were considered important ‘‘shoulder’’

areas and were assigned a score of 1. Thus, the smallest

set of cells that constituted 50% of the species’ total

predicted abundance within the study region received a

score of 2 (‘‘core’’) or 1 (‘‘shoulder). All remaining cells

received a score of 0. We chose these two criteria (top

25% and 50% of predicted total abundance), on the basis

of previous studies of habitat use (e.g., Hyrenbach et al.

2002) and after preliminary evaluation of several

thresholds (e.g., top 10%, top 75%).

Importance was calculated for each species and a

weighted average was then calculated over all species.

The average was weighted by assigning a weight that

was inversely proportional to the number of cells

making up the 25% core area for a species. Thus, if

species X required 100 cells to reach the 25% criterion

whereas species Y required 1000 cells, each ‘‘core’’ cell

for species X received 10 times the weight of each ‘‘core’’

cell for species Y. The weighting function was scaled to

have mean ¼ 1. We used this weighting function to

normalize the contribution of each species to the overall

‘‘importance’’ score. More specifically, the product of

the weighting factor and the number of core cells for

each species was the same across all species. Species-

specific abundances were calculated first (by month,

averaged over all years, and overall, averaged over all

months and years), and then species-specific importance

scores were determined.

Criterion 3: Persistence of hotspots across years.—This

index was calculated for individual species for each

month separately (February, May, July, and October)

and for all months combined. The number of years (out

of 11) that a cell was in the top 5% of predicted summed

standardized abundance was scored (i.e., in the 95th

percentile of all prediction cells for that month or for all

months combined). Note that the persistence score itself

was only calculated within a specified month or set of

months; thus our measure of persistence reflected

variation among years but not fluctuations due to

seasonal changes in abundance of a species.

Combining all three criteria.—To synthesize informa-

tion on all three criteria, we first standardized the

TABLE 2. Variables included in predictive models of seabird hotspots.

Variable Type of variability Scale (spatial or temporal)

Latitude spatial NA
Depth, minimum spatial 5.6 km
Depth, mean spatial 5.6 km
Contour index spatial 5.6 km
Distance to 200-m isobath spatial NA
Distance to 1-km isobath spatial NA
Distance to 3-km isobath spatial NA
Distance to land spatial NA
Chlorophyll spatial and temporal 9.3 km, 8 days
SST (sea-surface temperature) spatial and temporal 4.6 km, 8 days
SSH (sea-surface height) spatial and temporal 28 km, 7 days
Day of year temporal within year
Transition date temporal annual
Year temporal annual
SOI, 0–2 months before temporal 3 months
PDO, 0–2 months before temporal 3 months
NPGO, 0–2 months before temporal 3 months
SOI, 3–5 months before temporal 3 months
PDO, 3–5 months before temporal 3 months
NPGO, 3–5 months before temporal 3 months

Notes: Inside the 200-m isobath is considered the continental shelf; the 1000-m isobath indicates
the position of the continental shelf slope; the 3000-m isobath indicates the ocean floor. Transition
date is the date at which the upwelling regime changes from a winter pattern to a spring pattern.
SOI is the Southern Oscillation Index, PDO is the Pacific Decadal Oscillation, and NPGO is the
Northern Pacific Gyre Oscillation. Data sources are: AVHRR Pathfinder v5 SST data from the Jet
Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center (http://
podaac.jpl.nasa.gov/DATA_CATALOG/avhrr.html); MODIS Aqua and Terra SST and CHL
data from OceanColor Web (http://oceancolor.gsfc.nasa.gov); bathymetric data from GEBCO
(http://www.gebco.net/data_and_products/gridded_bathymetry_data/); SeaWiFS CHL data from
OceanColor Web (http://oceancolor.gsfc.nasa.gov); sea-surface height data from multiple satellites
compiled by AVISO (http://www.aviso.oceanobs.com/en/home/index.html). ‘‘NA’’ means not
applicable.
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hotspot values for each criterion separately. We

calculated z scores for each criterion, such that mean z

score ¼ 0 and SD ¼ 1. However, because there was

strong skew of importance and summed standardized

abundance, we first log-transformed these hotspot scores

before applying the z-transformation. We added a

constant before log-transforming such that minimum

log value for summed standardized abundance and for

importance was 0. Thus, for these two criteria, we

essentially standardized values to a geometric mean of 0

rather than arithmetic mean of 0. Persistence scores were

not skewed so were not log-transformed. Finally, we

averaged z scores across the three criteria.

RESULTS

Individual species models

Predictor variables.—The proportion of deviance

explained in the training data set for the set of predictor

variables exceeded 0.520 for all species; for five species it

exceeded 0.700 (Table 3). Also shown in Table 3 is the

proportion of deviance explained for individual vari-

ables, when the other 19 variables were included in the

model. For example, the predictive model explained

.60% of the deviance in the Black-footed Albatross

training data set. The best predictive variable for this

species was distance to the 1000-m isobath (10.6% of

deviance explained), which reflects proximity to the shelf

slope. Proportion of deviance explained for the top 10

most predictive variables for each species are shown in

Table 3; results for the other 10 variables, for each

species, are not shown. We emphasize that the predictive

models themselves include all 20 variables. Table 3 also

identifies ‘‘important’’ predictor variables, defined as

variables for which the proportion of deviance explained

. 0.075, given that the other 19 variables are included in

the predictive model. Variables among the top 10 but

with proportion of deviance explained ,0.075 are

considered ‘‘moderately important.’’

Latitude was included in the set of top 10 variables for

every species and, for several species, this variable

accounted for a large proportion of the total deviance

(in particular, for Fork-tailed Storm-Petrel and

Glaucous-winged Gull; Table 3). At least one of the

three depth variables was an important or moderately

important predictor (i.e., among the top 10 predictor

variables) for every species except Sooty Shearwater.

For Cassin’s Auklet, the contour index was the strongest

predictor variable among the 20. For Common Murres,

minimum depth (within the nine-cell matrix) was the

strongest predictor variable.

Distance to nearest land was an important predictor

for nearly every species and, for seven species it was the

predictor accounting for the highest proportion of

deviance among the 20 variables (Table 3). Distances

to the 200-m isobath, to the 1000-m isobath, and to the

3000-m isobath were all included among the top 10

variables in terms of proportion of deviance explained,

for nearly all species.

Chlorophyll was a moderately important predictor for

only eight species, and for SST this was the case for only

six species. Among variables derived from remote-

sensed satellite data, SSH was the most important

predictor. For Sabine’s Gull, SSH was the most

important predictor of all variables considered, and for

Fork-tailed Storm-Petrel, Red-necked Phalarope, and

TABLE 3. Important and moderately important variables for each species-specific predictive model.

Variable

Proportion of variance explained for each species

BFAL BOGU BRAC BRPE CAAU CAGU COMU

Latitude 0.100 0.044 0.060 0.111 0.039 0.058 0.031
Minimum depth 0.016 0.065 0.022 0.249
Mean depth 0.021 0.040 0.034 0.077
Contour index 0.040 0.063 0.156 0.015 0.020
Distance to 200-m isobath 0.099 0.158 0.023 0.053 0.044 0.024 0.042
Distance to 1000-m isobath 0.106 0.046 0.027 0.033 0.090 0.024 0.026
Distance to 3000-m isobath 0.024 0.021 0.014 0.065 0.065 0.116
Distance to nearest land 0.021 0.073 0.275 0.248 0.070 0.201 0.044
Chlorophyll 0.051 0.015 0.016
SST 0.024 0.026 0.015
SSH 0.026 0.032 0.019 0.042
Day of year 0.038 0.106 0.017 0.015 0.081 0.119 0.031
Year
Transition date
SOI 0–2 months before 0.018
PDO 0–2 months before 0.035 0.025
NPGO 0–2 months before 0.033
SOI 3–5 months before
PDO 3–5 months before
NPGO 3–5 months before 0.053
Total proportion deviance explained 0.602 0.653 0.717 0.647 0.716 0.656 0.738

Notes: For each species-specific model, the top 10 variables (out of 20) and the proportion of deviance explained for each
variable are shown. Variables with a proportion of deviance explained �0.075 are in boldface (see Results: Predictor variables).
Species codes are in Table 1.
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Sooty Shearwater, it was the second most important

predictor.

Day of year, reflecting seasonal variation in abun-

dance and/or occurrence, was also included in all

species’ models, although it was never the most

important predictor. With the exception of Glaucous-

winged Gull, year was generally not an important

predictor. Transition date was never included among

the top 10 variables for any species. The generally low

predictive contribution of these last two variables, year

and transition date, which reflect annual variation, may

be attributed to the inclusion of other variables in the

species models that may have better captured year-to-

year variation in relevant ecological influences, specifi-

cally CHL, SST, SSH, SOI, PDO, and NPGO.

Among the six oceanographic variables considered

(three indices 3 two time periods), NPGO 3–5 months

previous to the month of the cruise was more often a

moderately important predictor variable than the other

five variables, but in no case did an oceanographic index

demonstrate a large proportion of deviance explained

(proportion of deviance , 0.050; Table 3).

To summarize, the variables with highest predictive

value were informative on location, especially proximity

to land and to the various isobaths.

Single-species predictive maps.—We used the predic-

tive models (summarized in Table 3) to create predictive

maps for each of the four months within each year (4 3

11 years, plus a 12th year for October¼45 maps in total)

for each species. To illustrate the species-specific

predictions, we present results for one species, Cassin’s

Auklet (Ptychoramphus aleuticus). The pattern of

predicted abundance of this species differed somewhat

between February (averaged over all years; Fig. 3A) and

May (averaged over all years; Fig. 3B). In February

(immediately before the onset of breeding), only two

areas of high predicted abundance for Cassin’s Auklet

are evident: off the northwest tip of Vancouver Island

and surrounding San Nicolas Island, one of the

California Channel Islands. By May (middle of the

breeding season), areas of high abundance are more

widespread, although still close to the coast, with San

Nicolas and Santa Catalina Islands in southernmost

California being the only hotspots that are some

distance from the coast. In May, nearly the entire

region of northern California and southern Oregon has

high predicted abundance (Fig. 3B); single-species maps

for each of the 16 species are available online.10

We can also use Cassin’s Auklet to illustrate the

calculation of importance and persistence for a single

species (Fig. 4). The pattern of importance was similar

for all four months (importance calculated over all

seasons shown in Fig. 4A). The ‘‘core’’ areas identified

include northern Vancouver Island, northern California

(from the Golden Gate north), and southern California

(Channel Islands and San Diego region), but excluding

the mainland coast of southern California. For this

species, areas that, on average, demonstrated high

predicted abundance (Fig. 3) also demonstrated high

consistency in predicted abundance among years (Fig.

4B), although this was not true for every species.

Multispecies hotspot determination

Predicted hotspots based on standardized abundance,

summed over all species, showed strong seasonal

variation. For February, the Gulf of the Farallones

and nearby Monterey Bay constituted the only clear

hotspot region, although the western Channel Islands

TABLE 3. Extended.

Proportion of variance explained for each species

FTSP GWGU HEEG HERG LHSP RNPH SAGU SOSH WEGU

0.240 0.220 0.065 0.035 0.072 0.045 0.079 0.039 0.110
0.070 0.036 0.032 0.028 0.020
0.016 0.014 0.090 0.024 0.032 0.017 0.027

0.016 0.024 0.016 0.015
0.023 0.042 0.083 0.023 0.059 0.040 0.023

0.065 0.015 0.051 0.041 0.039 0.017
0.014 0.014 0.023 0.039 0.043 0.022 0.038 0.025

0.040 0.263 0.031 0.079 0.124 0.063 0.180 0.301
0.061 0.068 0.028 0.017 0.048

0.068 0.027 0.017
0.136 0.051 0.025 0.025 0.097 0.220 0.084 0.017
0.028 0.056 0.177 0.059 0.045 0.038 0.036 0.060 0.030
0.042 0.103 0.031

0.040
0.019

0.016 0.030
0.047 0.028 0.065 0.028

0.694 0.654 0.794 0.582 0.527 0.662 0.592 0.710 0.663

10 hwww.prbo.orgi
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appeared as an incipient hotspot (Fig. 5A). The northern

California Current demonstrated no hotspots. In

contrast, in May the coast of the Olympic Peninsula

was a very evident hotspot, as was Heceta Bank, north

of Cape Blanco in Oregon (see Fig. 1 for locations). The

Gulf of the Farallones and Monterey Bay continued to

show high summed standardized abundance in May.

Other spatially restricted hotspots were found near Cape

Mendocino in northern California and the western

Channel Islands (Fig. 5B). In contrast, in October the

Gulf of the Farallones/Monterey Bay region demon-

strated relatively low summed abundance, with the

Olympic Peninsula/southern Vancouver Island being an

area of moderately high abundance, together with

southern California (Fig. 5D).

Averaging across seasons, areas of high summed,

standardized abundance were associated with the

Olympic Peninsula coast, Heceta Bank, Cape

Mendocino, Gulf of the Farallones, Monterey Bay, the

Channel Islands, and the mainland coast of southern

California (Fig. 6A). The pattern for hotspots identified

by the importance criterion was generally similar to that

of summed, standardized abundance (Fig. 6B).

No hotspots, whether for summed abundance or

importance, were apparent more than ;90 km offshore

(Fig. 6A, B).

There was also substantial overlap between areas

identified as highly persistent and those identified as

having high summed abundance and/or high species

importance (compare Fig. 6C with Fig. 6A, B).

However, some areas showing high relative persistence

were not as evident using summed abundance or

importance criteria, such as the northwest tip of

Vancouver Island. Conversely, Heceta Bank demon-

strated high summed abundance and high importance,

but was not a persistence hotspot (Fig. 6C).

FIG. 3. Cassin’s Auklet (Ptychoramphus aleuticus) predicted abundance (birds/km2) by specified month, averaged over all years,
for (A) February and (B) May.
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Weighting all three criteria equally produced a

combined-criterion hotspot map for the California

Current (Fig. 7). All hotspots identified using the

combined criterion were evident, with one or more of

the single criteria. We highlight three areas that appeared

as hotspots, but that are not currently included inMarine

Protected Areas, or only partially so: Heceta Bank, Cape

Mendocino, and the southern Channel Islands (Fig. 7).

DISCUSSION

In this study, we have collected and synthesized at-sea

observations of seabird aggregations and combined this

information with data on physical and biological

features of the marine environment to predict the

distributions of multiple species of seabirds over the

broad reach of the California Current System. Through

the use of data collected in a standardized manner and

applying a single set of analytical procedures, we were

able to combine information from multiple organiza-

tions and investigators to cover a large geographic area

and draw on 11 years of seabird monitoring. This has

provided a robust basis for identifying aggregation

hotspots of seabird species, one that emphasizes patterns

FIG. 4. Predicted (A) importance and (B) persistence for Cassin’s Auklet. Importance was calculated over all years and seasons
for each species, and a weighted average was then calculated over all species. Cells were sorted according to predicted densities. We
identified the smallest set of cells (i.e., cells with the highest predicted density) that together constituted 25% of the species’ total
predicted abundance; these were scored as ‘‘2’’ (‘‘core’’ cells). The next-highest set of cells that constituted 50% of the species’ total
predicted abundance, but were not ‘‘core’’ cells, were scored as ‘‘1’’ (‘‘shoulder’’ cells). All other cells were scored 0 (see Criterion 2:
Important ‘‘core’’ areas for individual species). Persistence was calculated over all seasons; shown is the number of years (out of 11)
that the prediction cell is in the 95th percentile in terms of predicted abundance. The persistence score for a cell was calculated by
individual month, as well as over all seasons. Because the persistence score was only calculated within a specified month, it reflected
variation among years, but not seasonal fluctuations in abundance of a species.
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emerging at a large spatial scale and over a temporal

scale that exceeds a decade in duration.

Conducting an analysis at this broad spatial and

temporal scale inevitably involves trade-offs. Our

information on SSH was obtained at a spatial scale

(283;22 km cell) that provides only a coarse resolution

of oceanic currents and eddies, yet proximity to eddies

has been identified as an important predictor in other

studies (Ballance et al. 2006, Hyrenbach et al. 2006,

Louzao et al. 2006, Ainley et al. 2009). At a fine spatial

scale, distributions of seabirds are influenced by a wide

array of factors, such as salinity, water-column struc-

ture, depth of chlorophyll maximum, fine-scale dynamic

height, or prey densities (Ainley et al. 2009, Tremblay et

al. 2009), for which data are not available at the scale of

the entire CCS.

Our focus in this analysis, however, was not on the

fine-scale use of habitats by particular seabird species in

localized areas, but on the identification of multispecies

foraging aggregations across the entire California

Current. This is the scale at which initial decisions are

being made regarding priorities for MPA locations and

for which information about the likelihood of occur-

rence of multiple species of interest is critical (Ocean

Policy Task Force 2010, Ray 2010).

To identify areas supporting multispecies aggrega-

tions of seabirds, we relied on three criteria, reflecting

abundance, importance, and persistence of locations.

This approach has the advantage of not relying on a

single criterion, whose choice may be open to question.

Instead, the application of all three criteria provides a

robust methodology for combining predictions across

species. At the same time, the use of multiple criteria

allows the opportunity to identify a hotspot that might

be overlooked if one relied upon only a single criterion.

FIG. 6. Hotspot maps for each criterion, calculated over all seasons, for all 16 seabird species. (A) Standardized abundance,
averaged over all years, summed over all species. (B) Importance, a weighted average calculated over all years and species (see
Methods: Multispecies hotspot determination: Criterion 2: Important ‘‘core’’ areas for individual species). (C) Persistence (number of
years that the prediction cell is in the 95th percentile in terms of summed standardized abundance).

 
FIG. 5. Standardized abundance, by month, summed over all 16 seabird species and averaged over all years for: (A) February,

(B) May, (C) July, and (D) October. For each species and cell, mean predicted abundance (estimated number of birds observed per
cell, adjusted for survey cell area) was determined (calculated over all years, separately by month). For each species, all mean
abundance values were standardized to mean abundance ¼ 0 and SD of abundance ¼ 1. Standardized values were then summed
over all species.
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Software to identify potential reserve locations (par-

ticularly Zonation) has been developed that considers

multiple criteria (Moilanen and Wintle 2006, Moilanen

2007). Zonation has been used to model probability of

occurrence (e.g., Moilanen 2007), but it can also be

implemented using predicted abundances. To implement

this program requires specifying importance of connec-

tivity for each species. In contrast, software such as

Marxan (Ball and Possingham 2000, Wilson et al. 2005)

has an important limitation: it can identify reserve

solutions, but it does not provide hierarchic ranking of

priority areas, which was one of our goals.

Hyrenbach et al. (2000) identified three types of

features to explain aggregations of pelagic predators:

static bathymetric features, persistent hydrographic

features (e.g., fronts occurring at predictable locations),

and ephemeral hydrographic features (cf. Hooker et al.

1999). Our results point to the value of the first class of

features in identifying hotspots. At the broad spatial

scale of the California Current, we found that seabird

foraging hotspots were best predicted by bathymetric

features, especially those related to ocean depth and

proximity to or distance from land. As a result, the

spatial location of predicted hotspots was fairly consis-

tent from season to season and year to year. The

consistency of predicted locations supports the value of

permanently sited MPAs.

Oceanographic variables, other than SSH, made only

modest contributions to the predictive models.

However, the rankings of variables in the predictive

FIG. 7. Hotspot map, combining all criteria. Average z scores are shown; the z score was calculated for each criterion separately
and then averaged (see Methods: Multispecies hotspot determination; Combining all three criteria). Insets show hotspot areas that
are currently not, or only partially, protected: Heceta Bank, Cape Mendocino region, and southern Channel Islands. The boundary
of the Channel Island National Marine Sanctuary is shown in the inset for southern Channel Islands.
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models also reflect the spatial scale of the modeling. In

explaining variation in abundance of individual species

from British Columbia to southern California, it is not

surprising that bathymetric or topographic variables

predominate over variables such as SST or change in

SST, which may contribute to variation in abundance at

finer spatial and temporal scales (10 km or less; variation

among days or weeks). In fact, SST has often been

found to be an important explanatory variable of

seabird distribution and abundance in studies conducted

at finer spatial scales than that of our analysis (Ainley et

al. 2009, Garthe et al. 2009, Tremblay et al. 2009).

Although our focus here is on a multispecies

assessment, there was considerable variation among

species in the importance of specific predictor variables

(Table 3). For example, distance to nearest land was a

highly important variable for some species but had low

predictive value for other species, such as the Fork-tailed

Storm-Petrel. Differences in the importance of predictor

variables are not surprising, given the variety of body

sizes, food habits, and life-history strategies among the

16 species that we considered. For example, the

distribution of some species (e.g., Sooty Shearwaters)

may be determined during migration, when pelagic

foraging areas are of high value, yet for others (e.g.,

Common Murres) the critical period may be the

breeding season, when foraging areas near breeding

colonies are most important (Hooker and Gerber 2004,

Lascelles et al. 2009). Information on the location and

size of breeding colonies is not yet available for much of

the California Current, although other studies (Louzao

et al. 2006, Ainley et al. 2009) have incorporated such

information into analyses of spatial distribution at a

more local scale.

Because species vary in features of their ecology and

life history, the hotspots predicted for one species may

not be the same as those predicted for other species. The

identification of multispecies hotspots as candidate

MPAs will therefore depend on which set of species is

considered. This, in turn, will reflect management and

conservation priorities. If these priorities emphasize a

few individual species (e.g., threatened or endangered

species), the predicted hotspots will differ from those

identified by considering a wide variety of species, as we

have done here. MPAs are intended to protect (insofar

as possible) entire functioning ecosystems, so a multi-

species approach, even one focused on a particular

taxon such as seabirds, seems not only appropriate but

necessary.

Although current legislation may provide only limited

protection for marine wildlife, the National Marine

Sanctuary System provides a legal framework that could

facilitate development of a network of MPAs. Many of

the predicted hotspots that we identified are currently

within National Marine Sanctuary boundaries, includ-

ing the Cordell Bank, Gulf of the Farallones, and

Monterey Bay National Marine Sanctuaries (NMS) in

central California; Channel Island NMS in southern

California; and Olympic Coast NMS in Washington.

Other predicted hotspots, however, are not currently

protected. In particular, the broader area around the

Channel Islands that is not included in the Channel

Islands NMS and the coastal area north of Cape

Mendocino in northern California to Heceta Bank on

the central Oregon coast represent clear gaps in current

marine protection. Our analysis also identified two

additional gaps farther north. The Swiftsure,

Amphetrite, and La Perouse Banks complex immedi-

ately north of the Olympic Coast NMS is not protected,

nor is the area off the northern end of Vancouver Island.

Efforts by CWS/Environment Canada to develop a

Marine Wildlife Area (equivalent to an MPA) adjacent

to the Scott Islands off the northwest coast of

Vancouver Island are currently under way (K.

Morgan, personal communication).

Human threats to the marine ecosystem may be as

great in northern California, Oregon, and Washington

as in central and southern California (Halpern et al.

2009). Combined with our results, the analysis of

Halpern et al. (2009) indicates that the hotspot region

extending from Cape Mendocino to Heceta Bank may

represent a high priority for conservation. This is also an

area that has not been extensively surveyed for seabirds

in comparison to areas farther north in Washington and

southern British Columbia or farther south in central

and southern California.

The CCS-wide modeling presented here has the

advantage of allowing us to compare areas of predicted

aggregation in one part of the CCS with areas elsewhere

in the CCS, areas that may not have been well studied in

the past. For international and national entities, it is

useful to compare hotspots in British Columbia with

those in California in order to prioritize efforts. Models

developed on a finer scale may capture habitat

associations that are more relevant to individual species,

providing predictions that may be useful in refining the

placement of protected areas. Broadscale CCS-wide and

fine-scale local modeling efforts can play complementary

roles in determining priorities for targeting areas for

protection or in identifying areas deserving of systematic

surveys to support their designation as MPAs.

Marine ecosystems are dynamic, and are likely to

become even more dynamic over the coming decades as

climate change and biotic depletion (Hilborn et al. 2003)

impact the spatial and temporal distribution of marine

hotspots in the CCS. To the extent that hotspots are

anchored by fixed bathymetric and geographic features,

they may be resilient to such changes. Determining the

limits of resiliency may be essential to forward-looking

marine spatial planning and making wise investments in

MPAs.
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In J.-C. Vié, C. Hilton-Taylor, and S. N. Stuart, editors. The
2008 review of the IUCN red list of threatened species. IUCN,
Gland, Switzerland. hhttp://cmsdata.iucn.org/downloads/
status_of_the_world_s_marine_species.pdfi

R Development Core Team. 2009. R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Ray, G. C. 2010. Coastal and marine spatial planning: a policy
waiting to happen. Aquatic Conservation: Marine and
Freshwater Systems 20:363–364.

Spear, L., N. Nur, and D. G. Ainley. 1992. Estimating absolute
densities of flying seabirds using analyses of relative
movement. Auk 109:385–389.

Suryan, R. M., F. Sato, G. R. Balogh, K. D. Hyrenbach, P. R.
Sievert, and K. Ozaki. 2006. Foraging destinations and
marine habitat use of short-tailed albatrosses: a multi-scale
approach using first-passage time analysis. Deep Sea
Research II 53:370–386.

Tasker, M. L., P. Hope Jones, T. Dixon, and B. F. Blake. 1984.
Counting seabirds from ships: a review of methods employed
and a suggestion for a standardized approach. Auk 101:567–
577.

Teck, S. J., et al. 2010. Using expert judgment to estimate
marine ecosystem vulnerability in the California Current.
Ecological Applications 20:1402–1416.

Tremblay, Y., S. Bertrand, R. W. Henry, M. A. Kappes, D. P.
Costa, and S. A. Shaffer. 2009. Analytical approaches to
investigating seabird–environment interactions: a review.
Marine Ecology Progress Series 391:153–163.

Wilson, K. A., M. I. Westphal, H. P. Possingham, and J. Elith.
2005. Sensitivity of conservation planning to different
approaches to using predicted species distribution data.
Biological Conservation 122:99–112.

Worm, B., H. K. Lotze, and R. A. Myers. 2003. Predator
diversity hotspots in the blue ocean. Proceedings of the
National Academy of Sciences USA 100:9884–9888.

Yen, P. P. W., W. J. Sydeman, S. J. Bograd, and K. D.
Hyrenbach. 2006. Spring-time distributions of migratory
marine birds in the southern California Current: oceanic
eddy associations and coastal habitat hotspots over 17 years.
Deep Sea Research Part II 53:399–418.

Yen, P. P. W., W. J. Sydeman, and K. D. Hyrenbach. 2004.
Marine bird and cetacean associations with bathymetric
habitats and shallow-water topographies: implications for
trophic transfer and conservation. Journal of Marine Systems
50:79–99.

Yen, P. P. W., W. J. Sydeman, K. H. Morgan, and F. A.
Whitney. 2005. Top predator distribution and abundance
across the eastern Gulf of Alaska: temporal variability and
ocean habitat associations. Deep Sea Research II 52:799–822.

APPENDIX A

Survey coverage (Ecological Archives A021-101-A1).

APPENDIX B

Summarization of seabird observations (Ecological Archives A021-101-A2).

September 2011 2257PREDICTING SEABIRD HOTSPOTS


