Where to build a temple, and where to dig to find one

Greg Aloupis* | Jean Cardinalf |

Abstract

In this paper, we analyze the time complexity of find-
ing regular polygons in a set of n points. We use two
different approaches to find regular polygons, depend-
ing on their number of edges. Those with o(n?-0%)
edges are found by sweeping a line through the set of
points, while the larger polygons are found by ran-
dom sampling. We can find all the polygons with
high probability in O(n?9%8+¢) expected time for ev-
ery positive e. This compares well to the O(n?136+¢)
deterministic algorithm of Brass [1]. Our method
can also be used to find incomplete regular polygons,
where up to a constant fraction of the vertices are
missing.

1 Introduction

The focus of this study is on the detection of regular
structure in point sets. Our motivation comes from
observations that have been published concerning ex-
traordinary symmetries in the placements of ancient
towns, temples and other important locations. Specif-
ically, the oracle of Delphi has been measured to be
the apex of isosceles triangles with at least seven pairs
of ancient Greek cities'. The same is true for the
oracle at Dodoni, while the small island of Delos is
the apex of at least thirteen isosceles triangles. All
three of the central locations were considered to be
among the most important of places, and in fact Del-
phi was considered to be the navel of the world. In
general, one may find seemingly countless collinear-
ities, reflective symmetries, partial n-gons and net-
works of isosceles triangles when looking at the graph
of cities in the ancient world, from the British Isles to
the Middle East.

We will not concern ourselves further questioning
whether such structures were carefully constructed or

*greg.aloupis@ulb.ac.be

fjcardin@ulb.ac.be

fAspirant du F.N.R.S., sebastien.collette@ulb.ac.be

$Department of Computer and Information Science, Poly-
technic University, 5 MetroTech Center, Brooklyn NY 11201.
Research supported in part by NSF grants CCF-0430849 and
OISE-0334653. http://john.poly.edu.

9Chercheur qualifié du F.N.R.S.,
stefan.langerman@ulb.ac.be

Il Computer Science Department, Université Libre de Brux-
elles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium.

lFor an informal, illustrative and detailed account, see
http://www.geocities.com/sfetel/en/geometry.htm.

Sébastien Collettef I

John Tacono® Stefan Langerman¥ |

instead an expected result on large complete geomet-
ric graphs. However, the topic generates other inter-
esting questions. If one chooses a particular location
as a temple, it is not difficult to construct cities (at
least on paper) so that the temple becomes the cen-
ter of several symmetries. What about the opposite?
Given a set of existing cities, where should one de-
cide to place a temple? Or, to ask differently, where
should one look for a hidden temple?

2 Previous Work

Given a set of n points, we wish to find the maximum
subset which satisfies a specific symmetry or struc-
ture.

The algorithm by Brass [1], for finding maximum
symmetric subsets in a set of points, is capable of
handling reflective lines, translations, rotational sym-
metries and repeated sets. The time complexity is
O(n?136%<) for every positive e.

Brass noted that another result of his algorithm was
to find all regular polygons contained in the set, which
is remarkable because there exist sets of n points con-
taining O(n?) regular polygons.

The bound of Brass was reached by analyzing
the maximum number of possible isosceles triangles
formed by a set of points in the plane. Pach and
Agarwal [2] gave a simple bound of O(n?+1/3) for that
problem. This was improved informally by Pach and
Tardos [3] to O(n?-136%€) for every positive e.

3 Model of Computation

We assume that all coordinates and other values are
stored in a format that allows constant time equality
testing and hashing. As hashing is only used to speed
up one dimensional searches, it can be substituted
with a comparison-based structure at a logarithmic
addition cost which is absorbed into the e. Further-
more, as exact computation methods are typically not
used, comparison based structures can be used to al-
low equality tests to be substituted with proximity
tests for suitably small proximities to compensate for
any small discrepancies in the computation.

4 Results

We improve the time complexity for detecting max-
imal regular polygons in point sets, although unlike

x x X x
X N %
X x x
x
x % *
X x x
x X x §>< X
X)X X x
X » X X
x X Xy X x x
" x %X x Xx X x
£3
x X x XX
x x X
X x X x X, X
% x X X
x x X xx X
X x X ®x x X X
w Xx X% X X x x x
x x
X X
* X X xx S
x x
x x X x x X
x o x
X
Xx X X X x X
X X x x X X
X X X X x x
x % X X
X i x

Figure 1: Can you find all of the regular k-gons in
this figure? Solution is in Figure 2.

the algorithm by Brass, our algorithm is randomized.

Our new bound is O(n?9%8+¢). Notice that the
fractional component in the exponent of n has been
halved. This is no coincidence. Our algorithm is de-
signed to reduce this fraction by a factor of 2. Thus,
any improvement over the result of Pach and Tardos
will be directly reflected in our algorithm.

Our main result appears as Theorem 7 at the end of
this section. The remainder of the section is devoted
to presenting lemmata that guide us to the Theorem.

Lemma 1 In time O(n?%8logn) we can find all <
nY968_gons in a set S of n points.

Proof. First, we compute all line segments defined by
pairs of points in S, and we view this as an embedded
graph. We compute a hash table at each vertex con-
taining incident edges which are stored by key value
and length.

Let ¢, = 7T7277r, and ® = {3, ¢4, ... Ppo.00s }. Thus,
® is the set of all angles formed by three adjacent ver-
tices in a regular < n%9%8_gon. Thus, for any edge,
it is possible to determine using the set ® and the
hash tables at its incident vertices if there is a pos-
sible neighboring edge that could be in a < n%068.
gon. This can be done in O(n°068) table lookups,
and therefore time.

The algorithm is a line sweep. As we sweep
we keep the messages of the following form on the
edges that intersect the sweep line: “possible k-gon
above/below.” Edges could carry several messages
at one time, and edges deliver their messages to the

right endpoint of the edge when the sweep line arrives
there.

The sweep proceeds in the normal manner, from left
to right, where at vertices we process several types of
events:

e Origination Event. This event detects the pos-
sible leftmost point of a k-gon. If two edges of
the same length are to the right of the active
vertex and are at angle ¢y, then we give a “pos-
sible k-gon below” signal to the upper edge and a
“possible k-gon above” signal to the lower edge.

e Propagation Event. This event traces a possible
k-gon though one edge on its upper or lower por-
tion. If a “possible k-gon above/below” signal is
received from an edge, and if there is a right fac-
ing edge of the same length and angle ¢ away
from the edge delivering the message, the mes-
sage is propagated to this right facing edge. (The
orientation of the angle is determined by whether
the signal is an above or below signal). If there
is no such right-facing edge, the message is dis-
carded, as what we thought might be a k-gon is
not.

e Termination Event. This event occurs when we
detect the rightmost vertex of a k-gon. If a vertex
receives a “possible k-gon above” and a “possible
k-gon” below signals from edges on the left of the
same length, angle ¢; apart, and in the proper
orientation, then we have finished the process of
discovering a complete k-gon. We output the de-
scription of the k-gon (the center, rotation, and
gonality can be easily determined from the infor-
mation at hand), and we do not propagate the
two incoming signals.

Hopefully, the correctness of the method is clear
from the above description. We now focus on the
runtime. It takes O(n?logn) time to perform a line
sweep. (The astute reader will realize that a topolog-
ical sweep could be used instead at a cost of O(n?),
but as that log gets absorbed in the big-O, this ob-
servation is not critical). As there are only 2n0-068
possible signals, if all of them appeared on all O(n?)
edges, this would create a total of O(n?%®) signals
to handle over the entire sweep. Propagation and ter-
mination events are done with table lookup and take
constant time for each event. Generating all origina-
tion events takes O(n%8) table lookups for each inci-
dent edge to the right, as all angles in ® are searched.
Thus, the total runtime is O(n?%8) if we allow hash-
ing, and O(n?*%%logn) in the model of computation
described above. (]

Definition 1 A prime-skip triangle of a k-gon is an
isosceles triangle formed by three vertices of the k-gon

where the two non-apex vertices defining the equal
sides of the isosceles triangle are at a number p of
vertices away from each other with p and k relatively
primes for k odd and with p/2 and k/2 relatively
primes for k even.

Observation 1 Given a prime-skip triangle of a k-
gon G and the parity of k, k and thus G can be
uniquely determined in logarithmic time.

The simplest way to determine which one it is in
constant time is to build two lookup tables of size
O(n?), one for even polygons and the other for the
odd ones. If we do not allow hashing, a logarithmic
factor is added as we have to look in a binary search
tree. The following follows directly from the proba-
bility that a fixed number and one picked at random
are relatively prime (Euler’s totient or ¢ function):

Observation 2 Given a k-gon G, a random isosce-
les triangle is prime-skip with probability m for
some constant C'.

Lemma 2 The sum of complexities of all > n%-068-
gons is at most n?008+e,

Proof. Let k; be the number of i-gons in a fixed
set S of n points. The sum of the complexities
of all > n%%8.gons is 7" o06sik;. Any k-gon
generates ©(k?) isosceles triangles. Thus there are
S 0.00s O(i?/ loglogi)r; prime-skips, and therefore
distinct, isosceles triangles. We know from [3] that
there are O(n?1367¢) isosceles triangles in a set of n
points and thus:

Z 7 oy = O(n24136+6)
e loglog

where the logs are absorbed by the € and since
n0-068 <4 < n gives

n

n0.068 § ilii

§=n,0.068

_ O(n2.136+e)

and by dividing we obtain

n

Z ik = O(n2.068+e)

i=n0.068

This last equation is exactly the statement of the
lemma. g

Definition 2 A more-than-half-full k-gon is a subset
of the vertices of a regular k-gon containing at least
k/2 points.

Corollary 3 The sum of complexities of all more-
than-half-full > n%%8_gons in a set S of n points is
at most n2-068+e

Figure 2: Here we show all of the regular k-gons in
the point set illustrated in Figure 1.

Proof. This is an easy variant of Lemma 2, as the
more-than-half-full condition does not change any-
thing but constants buried in the big-O. O

Lemma 4 Given a prime-skip triangle T, we can de-
termine one of the following:

e if the candidate k-gon containing T is less-than-
half-full, then we can answer T is not part of a
k-gon” in expected O(1) time;

e otherwise we can decide in O(k) time whether T
is part of a k-gon or not.

Proof. By Observation 1, given an isosceles triangle
T, we lookup in the table to find the corresponding &
(The astute reader will notice that we could get two
different k, one even and one odd. But this does not
increase the complexity). We also find the center of
that candidate polygon by determining the circum-
center of T.

Given T, the center of the polygon, and the value
of k, one knows the location of all vertices on the can-
didate polygon. We then check to see if all of the
vertices in the candidate polygon are present. We
check all £ — 3 of them in random order. If any one
vertex is not present we terminate the check and out-
put nothing. If all vertices are present, we output the
candidate k-gon.

As we always spend at most O(k) time checking
each candidate k-gon, if the candidate k-gon is more-
than-half-full, we trivially spend O(k) time. If the
candidate k-gon is not more-than-half-full, over half

of the k — 3 tests will fail. Since the tests are ordered
randomly, we expect to perform at most 2 tests, and
thus expect to spend only O(1) time performing the
tests in this case. O

Lemma 5 For any > n%%8_gon G, in a set of points

defining T isosceles triangles, Q(1/T?) of the isosceles
triangles are in G.

Proof. According to a personal communication of
Pach and Tardos cited in [1], the maximum number
T of isosceles triangles among n points in the plane
is O(n2136%€) Any > n%0%8_gon G defines ©(n135)
isosceles triangles. Thus, Q(1/T?) of the isosceles tri-
angles have all three points in G. (I

Corollary 6 For any > n%%8_gon G, in a set of

points defining T' isosceles triangles, (of

1
T?loglogn)
them are prime-skip triangles in G.

Proof. Follows from Lemma 5 and Observa-
tion 2. O

Theorem 7 With high probability, we can find all
regular polygons in a set S of n points in the plane in
expected time O(n?068+¢),

0.068

Proof. Using Lemma 1, all regular < n -gons can
be found in time O(n?:%%®). We thus focus on the case
of large polygons, that is, > n?%%%_gons.

The algorithm proceeds as follows: we pick
©(n%loglogn logn) random isosceles triangles

formed from the vertices of S. Corollary 6 and
the solution to the coupon collector problem indi-
cates that we will now have with positive constant
probability at least one prime-skip isosceles triangle
from every > n%%8.gon. Lemma 4 explains how
we can determine which isosceles triangles come
from k-gons and which do not. Since O(1) expected
time is spent checking those that are not part of a
k-gon, we spend O(n?loglogn logn) time checking
all such triangles. In order to check those that are
part of a k-gon, or at least a partially full k-gon,
we spend time linear in the gonality for each check.
Corollary 3 states that the sum of the gonalities of
all more-than-half-full > n%%8_gons is O(n?-%68) thus
giving this same bound on the time to perform this
class of checks, as we take care of not checking two
times the same k-gon by using a table of already
seen k-gons, with their center and orientation. As
we picked O(n?loglogn logn) triangles, the total
complexity is O(n?068+¢),

O

5 Variants

While we have focused on the case of finding regu-
lar k-gons, our algorithm can be used to find all k-
gons where a constant fraction of the points in the

k-gon are missing, by using a Monte Carlo version of
Lemma 4. The identification of such almost-complete
symmetric sets of historical sites can aid the computa-
tional archaeologist identify possible locations for ex-
ploratory missions in search of buried ruins. This vari-
ant has the same runtime as the original algorithm.

Also, by processing all k-gons with the same cen-
ter, more complex types of symmetry can be easily
detected.

6 Acknowledgments

We would like to thank Boris Aronov, Jean Chapelle
and Erik Demaine for interesting discussions about
chords, polygons, and Euclid in general.

References

[1] P. Brass. On finding maximum-cardinality sym-
metric subsets. Computational Geometry - Theory
and Applications, 24(1):19-25, 2003.

[2] J. Pach and P. K. Agarwal. Combinatorial geom-
etry. Wiley-Interscience, 1995.

[3] J. Pach and G. Tardos. Personal communication
cited in [1].

s
5

e
bs" {

T

FEAT

el
i

4
4

7

\

Y(Q

