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A b s t r a c t .  

A task-oriented system is one that performs the minimum effort neces- 

sary to solve a specified task. Depending on the task, the system decides 

which information to gather, which operators to use at which resolution, 

and where to apply them. We have been developing the basic framework of 

a task-oriented computer vision system, called TEA, that uses Bayes nets 

and a maximum expected utility decision rule. In this paper we present a 

method for incorporating geometric relations into a Bayes net, and then 

show how relational knowledge and evidence enables a task-oriented system 

to restrict visual processing to particular areas of a scene by making camera 

movements and by only processing a portion of the data in an image. 

1 I n t r o d u c t i o n  

An important component in an active vision system is a spatially-varying sensor that 

can be pointed in space (using a pan-tilt platform) to selectively view a scene. Thus the 

system can not view the entire scene at once. We assume the sensor provides a peripheral 

image that is a low-resolution image of the entire field of view from one camera angle, 

and a fovea that is a small high-resolution image that can be selectively moved within the 

field of view. Spatially-varying sensors can be constructed in many ways: using special 

sensor array chips, two cameras with different focal lengths, or programmed in software. 

The main reason for using a pointable spatially-varying sensor is the computational 

advantage it affords. Only a portion of the scene is imaged (and analyzed) at a time 

and even then only a portion of the potential image data is used. However, in exchange 

for this advantage a new problem is introduced: deciding where to point the camera (or 

fovea) and also what visual operations to run. 

Our approach to this problem uses Bayes nets and a maximum expected utility de- 

cision rule. Bayes nets encode prior knowledge and incorporate visual evidence as it is 

gathered. The decision rule chooses where to point the camera (or fovea) and what visual 

operators to run. 

This paper presents expected area nets, a method for incorporating geometric rela- 

tions into a Bayes net, and shows how they can be used to restrict visual processing to 

particular areas of a scene. Section 2 summarizes our overall system, called TEA-l,  and 

Section 3 presents the expected area net in detail. Section 4 explains how TEA-1 uses the 

expected area net: 1) to move cameras, 2) to create and use masks that process only a 

portion of an image, and 3) to make decisions while considering relational and location 

information. Experimental results are presented in Section 5. Section 6 contains some 

concluding remarks. 

* This material is based upon work supported by the National Science Foundation under Grants 
numbered IRI-8920771 and IRI-8903582. The Government has certain rights in this material. 
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2 T E A - l :  A F r a m e w o r k  f o r  S t u d y i n g  T a s k - O r i e n t e d  V i s i o n  

This section summarizes the TEA-1 system, our second implementation of TEA, a general 

framework of a task-oriented computer vision system. The reader is refered to [10] for 

a detailed description of TEA-1. Earlier work involving TEA-0 and TEA-1 appears in 

[8, 9]. 
Ma in  C o n t r o l  Loop.  In TEA, a task is to answer a question about the scene: Where 

is the butter? Is this breakfast, lunch, dinner, or dessert? We are particularly interested 

in more qualitative tasks: Is this an informal or fancy meal? How far has the eating 

progressed? (Our example domain is table settings.) The TEA system gathers evidence 

visually and incorporates it into a Bayes net until the question can be answered to a 

desired degree of confidence. TEA runs by iteratively selecting the evidence gathering 

action that maximizes an expected utility criterion involving the cost of the action and 

its benefits of increased certainties in the net: 1) List all the executable actions. 2) Select 

the action with highest expected utility. 3) Execute that action. 4) Attach the resulting 

evidence to the Bayes net and propagate its influence. 5) Repeat, until the task is solved. 

Bayes  Nets .  Nodes in a Bayes net represent random variables with (usually) a 

discrete set of values (e.g. a utensil node could have values (knife, fork, spoon)). Links 

in the net represent (via tables) conditional probabilities that a node has a particular 
value given that  an adjacent node has a particular value. Belief in the values for node 

X is defined as BEL(x )  -- P(x  I e), where e is the combination of all evidence present 

in the net. Evidence, produced by running a visual action, directly supports the possible 
values of a particular node (i.e. variable) in the net. There exist a number of evidence 

propagation algorithms, which recompute belief values for all nodes given one new piece 

of evidence. Several references provide good introductions to the Bayes net model and 
associated algorithms, e.g. [2, 5, 7]. 

C o m p o s i t e  Bayes  Net .  TEA-I uses a composite net, a method for structuring 
knowledge into several separate Bayes nets [10]. A PART-0F net models subpart relation- 

ships between objects and whether an object is present in the scene or not. An ezpected 

area net models geometric relations between objects and the location of each object. 

Section 3 presents the expected area net in detail. Associated with each object is an IS-A 

tree, a taxonomic hierarchy modeling one random variable that has many mutually ex- 
clusive values [7]. Task specific knowledge is contained in a task net. There is one task 

net for each task, for example "Is this a fancy meal?", that TEA-1 can solve. Each of 

the separate nets in the composite net, except the task net, maintains its B E L  values 

independently of the other nets. Evidence in the other nets affects the task net through a 

mechanism called packages, which updates values in evidence nodes in the task net using 
copies of belief values in the other nets. 

Act ions .  TEA-1 uses the following description of an action: 

- Precondition. The precondition must be satisfied before the action can be executed. 

There are four types of precondition: that a particular node in the expected area net 

be instantiated, that it not be instantiated, that it be instantiated and within the 

field of view for the current camera position, and the empty precondition. 

- Function. A function is called to execute the action. All actions are constructed from 

one or more low-level vision modules, process either foveal image or peripheral image 
data, and may first move the camera or fovea. 

- Adding evidence. An action may add evidence to several nets and may do so in several 

ways (see [7]): 1) A chance node can be changed to a dummy node, representing 

virtual or judgemental evidence bearing on its parent node. 2) A chance node can 
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be instantiated to a specific value. Object locations get instantiated in the expected 
area net. 3) Evidence weight can be added to an IS-A type of net. 

Each kind of object usually has several actions associated with it. TEA-1 currently has 

20 actions related to 7 objects. For example, the actions related to plates are: The 

p e r - d e t e c t - t e m p l a t e - p l a t e  action moves the camera to a specified position and uses a 

model grayscale template to detect the presence and location of a plate in the peripheral 

image. P e r - d e t e c t - h o u g h - p l a t e  uses a Hough transform for plate-sized circles for the 

same purpose. P e r - c l a s s i f y - p l a t e  moves the camera to a specified position, centers a 

window in the peripheral image there, and uses a color histogram to classify that  area 

as paper or ceramic. F o r - c l a s s i f y - p l a t e  moves the fovea (but not the camera) to a 

specified location and uses a color histogram to classify the area as paper or ceramic. 

C a l c u l a t i n g  a n  A c t i o n ' s  Ut i l i ty .  The utility U(c~) of an action a is fundamentally 

modeled as U(a) = Y(a)/C(c~), a ratio of value Y(a) and cost C(a). The value of an 

action, how useful it is for toward the task, is based on Shannon's  measure of average 

mutual  information, Y(a) = I(T, ea), where T is the variable representing the goal of 

the task and ea is the combination of all the evidence added to the composite net by 

action a.  An action's cost is its execution time. The exact forms of the cost and utility 

functions depend on the expecLed area net and will be given in Section 4. 

An important  feature of the TEA-1 design is that  a different task net is plugged into 

the composite net for each task the system is able to solve. The calculation of an action's 

value depends on the task net. Thus the action utilities directly reflect the information 

needs of the specific task, and produce a pattern of camera and fovea movements and 

visual operations that  is unique to the task. 

3 A n  E x p e c t e d  A r e a  ( O b j e c t  L o c a t i o n )  B a y e s  N e t  

Geometric relations between objects are modeled by an expected area net. The expected 
area net and PART-0F net have the same structure: A node in the PART-0F net identifies a 

particular object within the sub-part structure of the scene, and the corresponding node 

in the expected area net identifies the area in the scene in which that  object is expected 

to be located. Fig. 1 shows the structure of one example of an expected area net. 

In TEA-1 we assume a fixed camera origin. The location of an object in the scene is 

specified by the two camera angles, O = (r ~tilt), that  would cause the object to be 

centered in the visual field. The height and width of an object 's image is also specified 

using camera angles. 

Thus a node in the expected area net represents a 2-D discrete random variable, 0. 

BEL(O) is a function on a discrete 2-D grid, with a high value corresponding to a scene 

location at which the object is expected with high probability. Fig. 2(a)-(b) shows two 

examples of expected areas. Note that  these distributions are for the location of  the 

center of the object, and not areas of the scene that may contain any part of the object. 

Each node also contains values for the height and width of the object. Initially these are 

expected values, but  once an object is located by a visual action the detected height and 

width are stored instead. The height and width are not used in belief calculation directly, 

but  will be used to calculate conditional probabilities on the links (see below). 

A root node R of an expected area net has an a priori probability, P(OR), which we 

assume is given. A link from node A to node B has an associated conditional probability, 

P(OB [ OA). Given a reasonable discretization, say as a 32x32 grid, each conditional 

probability table has just over a million entries. Such tables are unreasonable to specify 
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Fig. 1. The structure of an expected area net. The corresponding PART-OF net is similar. 

(a) (b) (c) (d) 

Fig. 2. The expected area (a) for setting-area (a place setting area) before the location of any 
other object is determined, and (b) for napkin after the location of the tabletop and plate have 
been determined. The relation maps (c) for setting-area given tabletop, and (d) for napkin given 
setting-area. 

and cause the calculation of new belief values to be very slow. Next we present a way to 

limit this problem. 

Rela t ion  Maps  Simplify Specif icat ion o f  Probabi l i t ies .  We make the following 

observations about the table of P(OB I Oa) values: 1) The table is highly repetitious. 

Specifically, ignoring edge effects, for every location of object A the distributions are 

all the same if they are considered relative to the given location of object A. 2) Belief 

calculations can be sped up by detecting terms that will have zero value. Therefore, rather 

than calculate all values of the distribution, we should use a function to calculate selective 

values. 3) The distribution depends on the size of object A. We assume the expected 

height and width of object A's image are known, but whenever an action provides direct 

observations of the object's dimensions those values should be used instead. 

Our solution is to compute values of the conditional probabilities using a special 

simplified distribution called a relation map. A relation map assumes that object A has 

unity dimensions and is located at the origin. The relation map is scaled and shifted ap- 

propriately to obtain values of the conditional probability. This calculation is performed 

by a function that can be called to calculate select values of the conditional probability. 

Note that the spatial resolution of the relation map grid can be less than that of the 
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expected area grid. Fig. 2(c)-(d) shows two examples of relation maps that were used in 
the calculation of the two expected areas shown in Fig. 2(a)-(b). 

Given an expected area grid that is 32x32 (NxN) and a relation map grid that is 
16x16 (MxM),  all the values for one link's conditional probability table can be obtained 

by specifying only 256 (M s) values. The brute force approach would require that 1048576 

(N 4) values be specified. 

Speed ing  up  Ca lcu la t ion  of  Bel ief  Values.  When the set of expected locations for 

an object covers a relatively small area of the entire scene, the table of P(0B [ 0A) values 

contains a large number of essentially zero values that can be used to speed up the belief 

propagation computation. The equations for belief propagation (and our notation) c a n  

be found in [7]. We do not give all the equations here for lack of space. The calculation 
of new BEL(z) values for node X, with parent node U, contains two key equations: 

~r(z) = ~ j  P(z ] uj)Trx(uj) and Ax(u) = ~'~i P(zi  [ u)A(z~). These summations involve 

considerable time since x and u both denote a 2-D array (grid) of variables. Time can be 

saved in the first equation by not summing a term (which is an array) when it is multiplied 

by an essentially zero value. Specifically, for all j where rx (uj) is essentially zero, we do 
not add the P(x [ uj)rx(uj) term (an array) into the summation. Similar savings can 

be obtained in the second equation. For any given value of i, the P(zi [ u)),(zi) term 

(an array) contains essentially zero values everywhere except for a few places (a small 

window in the array). We locate that window and only perform the sum for values inside 

the window. 
C o m b i n i n g  Loca t ion  I n f o r m a t i o n .  The expected area for node B is actually cal- 

culated not from a single node like node A, but by combining "messages" about expected 

areas sent to it from its parent and all its children. This combination is performed within 

the calculation of BEL(B). Generally, it is useful to characterize relations as "must-be", 

"must-not-be" and "could-be". Combination of two "must-be" maps would then be by 

intersection, and in general map combination would proceed by the obvious set-theoretic 

operations corresponding to the inclusive or exclusive semantics of the relation. In TEA- 

l, however, all the relations are "could-be", and the maps are essentially unioned by the 

belief calculation. 

4 U s i n g  e x p e c t e d  a r e a s  

M o v i n g  camera s .  Actions in TEA-1 that must move the camera to the expected loca- 
tion of a specific (expected) object, say X, will move the camera to the center of mass of 

the expected area for object X. (This happens even if the expected area, when thresh- 

olded to a given confidence level, is larger than the camera's field of view. That  case 

could be handled by making several camera movements to cover the expected area.) 

P r o c e s s i n g  Only  a P o r t i o n  of  an  I m a g e .  Every action related to a specific object 

X processes only the portion of the image that is covered by the expected area of object 

X, when thresholded to a given confidence level. Let I E (0, 1) be the confidence level, 

which usually will be chosen close to 1 (typically 0.9). Let G~ be the smallest subset of 

all the grid points Gx for node X (that corresponds with object X) in the expected area 
net, such that their probabilities add up to I. G~ is the portion of the scene that should 
be analyzed by the action. Each action in TEA-1 creates a mask that corresponds to the 

portion of the current image data (i.e. after a camera movement) that overlaps G~,  and 

processes only the image pixels that are covered by that mask. 

Dec id ing  wi th  E x p e c t e d  Areas .  TEA-I ' s  utility function for an action has the 

following features: 1) Costs are proportional to the amount of image data processed. 
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2) It deals with peripheral actions that detect an object but don't otherwise generate 

information for the task. 3) It considers that an action may have the impact of making 

the expected areas of other objects smaller. Recall that the utility of an action a is 

fundamentally modeled as a ratio of value V(a) (average mutual information) and cost 

C(a) as explained near the end of Section 2. 

An action a related to a specific object X has a cost proportional to the amount of 

image data that it processes. Thus TEA-1 defines the cost as C(a) = rtaCo(a), where 

C0(a) is the execution time of action a if it processed a hypothetical image covering 

the entire scene, r~ is the ratio of the expected area for object X and the area of the 

entire scene. So the value of r~ is the size of the subset G~ divided by the size of the 

set Gx. rtx = 1 means that object X could be located anywhere in the entire scene. 

Over time, as other objects in the scene are located and as more and tighter relations 

are established, the value of r~ approaches zero. (Soon we will use a more accurate 

cost function that has an additional term for the cost of moving the camera or fovea, 

c ( a )  = c . . . .  (a)  + 

TEA-1 uses the following "lookahead" utility function U(a) for action a. 

U ( a ) -  V(a)+V(fl)  + H  Z AU(X) (1) 
6(a) + c(z) XENe$ 

where 

v(7) 
---- argmaz'rEPre(a) 6(7) 

AU(X)= max [ V(7) 
,~a~.o.,~x) $'xCo(7) r c0(7)' 

The first term in equation (1) accounts for the future value of establishing the location of 

an object. Pre(a)  is the set of actions 7 such that EITHER 7 has a precondition satisfied 

by executing action a OR 7 is already executable and V(7)/C(7) < Y(a)/C(a). The 

second term in equation (1) accounts for the impact of making expected areas smaller so 

that future actions will have lower costs, s~ is like r~ except it assumes that the location 

of action a 's  associated object is known. H 6 (0, 1) is a gain factor that specifies how 

much to weigh the second term relative to the first term. See [7] and [10] for more details 

about I and U respectively,'. 

5 Experimental Results 

A Basic R u n  of  the  Sys tem.  The task of deciding whether a dinner table is set for a 

fancy meal or for an informal meal was encoded in a task net, and TEA-1 was presented 

the scene shown in Fig. 3, which shows a "fancy" meal. The sequence of actions executed 

by TEA-1 is summarized by the table in Fig. 3. The a priori belief of the table setting 

being fancy is 0.590, compared with 0.410 that it is informal. As the system executed 

actions to gather specific information about the scene, the belief that the setting is 

a fancy one approaches 0.974. The graphics on the right of the figure illustrate the 

sequence of camera movements executed by the system. Fig. 4 illustrates the execution 

of a few actions in the sequence, showing each action's results after any camera (or fovea) 

movement has been made and the expected area mask has been applied. 
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time U(a)a ,  an action BEL(i)  

0 a priori 0.410 

1 10.0 t ab l e  0.400 

2 10.5 per-detect-hough-cup 0.263 

3 42.8 pe r - c l a s s i fy -cup  0.343 

4 11.3 per-detec t -hough-pla te  0.340 
5 11.9 p e r - c l a s s i f y - p l a t e  0.041 

6 29.9 p e r - d e t e c t - u t e n s i l  0.041 

7 58.8 p e r - c l a s s i f y - u t e n s i l  0.033 
8 4.3 per -de tec t -napkin  0.026 

9 3.3 roy-c la s s i fy -cup  0.026 

10 2.4 f o r - c l a s s i f y - p l a t e  0.026 
11 1.7 per-detect-hough-bowl 0.026 

12 0.6 p e r - d e t e c t - b u t t e r  0.026 

13 0.4 r o y - v e r i f y - b u t t e r  0.026 
1 

Fig. 3, The sequence of actions selected and executed by TEA-1 is shown in the table at left. 

Each line corresponds to one cycle in the main control loop. The belief values listed are those 

after incorporating the results from each action. The BEL(i)  column shows BEL(in formal) ,  
and BEL( formal )  = 1 - BEL(i) .  The path drawn on the wide-angle picture of the table scene 

at the right illustrates the camera movements made in the action sequence. 

Fig. 4. Processing performed by individual actions. Image pixels outside the expected area mask 

are shown as gray values. (a) Results from the per-detect-hough-plate action executed at time 

step 4. (b) Results from the per-detect-napkin action executed at time step 8. The mask prevents 
the red napkin from being confused with the pink creamer container just above the plate. (c) 

Results from the roy-classify-plate action executed at time step 10. A zoomed display of the fovea 

centered on the plate is shown. Note: Fig. 5(b) shows results from the per-detect-hough-cup 

action executed at time step 2. 

E x p e c t e d  A r e a s  S h r i n k  O v e r  T i m e .  As more objects are located via actions, 

the expected areas for the remaining objects (not yet located by actions) get nar- 

rower. Assume that  TEA-1 has located (in order) the tabletop, then the plate, and 

finally the napkin. Fig. 5 shows how the cup's expected area gets narrower and how the 

p e r - d e t e c t - h o u g h - c u p  action would hypothetically perform after each additional object 

is located. Parts (a) and (e) show the si tuation before any other objects have been lo- 

cated. The expected area is rather large, much larger than the field of view. The camera 

movement, made to the center of the cup's expected area, is much higher than the true 
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location of the cup, and the action mistakenly detects the creamer container as the cup. 
The situation improves once the tabletop is located, as shown in parts (b) and (f)..The 

expected area is (almost) small enough to fit in the field of view and its center corre- 

sponds better with the cup's actual location. A small portion of the image is masked out 

by the expected area, and the cup is correctly detected, but this is just lucky since the 
creamer and many other objects are still in the unmasked area. Parts (c) and (g) show 

the situation after the plate has been located. The cup's expected area is much smaller. 
Finally, in parts (d) and (h), once the napkin has been located, the cup's expected area 

is small enough that the action is very likely to detect the cup correctly. 

6 Concluding Remarks 

Several people are investigating the use of Bayes nets and influence diagrams in sensing 

problems. The most relevant work comes from two groups: Levitt 's group was the first to 

apply Bayes nets to computer vision [I, 6]. Dean's group is studying applications in sensor 
based mobile robot control, using a special kind of influence diagram called a temporal 

belief network (TBN) [3, 4]. More recently, they have used sensor data to maintain an 
occupancy grid, which in turn affects link probabilities in the TBN. 

The current TEA-1 system design, incorporating expected area nets, provides a frame- 

work that enables the system to make decisions about moving a camera around and about 
selectively gathering information. Thus we can begin using TEA-1 to study questions re- 

garding task-oriented vision [8, 9, 10]. 
Deciding where to move a camera (or fovea) is an interesting problem. TEA-1 does 

the simplest thing possible by moving to the center of the expected area of one object. 

If several objects of interest should fall in the field of view, then it may for example be 

better to move the camera to the center of that set of objects. In our experiments to 

date, TEA-1 has relied mainly on camera movements to get the first piece of information 

about an object, while fovea movements are mostly used for verification. This behavior 

is determined by the costs and other parameters associated with actions. Another inter- 

esting problem is to consider the tradeoffs between a camera and a fovea movement. A 

camera movement is expensive and an action following one processes a completely new 

area of the scene, which means there is risk of not finding anything, but if something 

is found it will likely have large impact for the task. Alternatively, a fovea movement is 
cheap but produces image data near an area already analyzed, so there is a good chance 

of finding some new information, but it will tend to have a small impact on the task. 
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Fig. 5. Performance of a cup detection action as the cup's expected area narrows over time: 

(a) before any objects have been located, (b) after the .tabletop has been located, (c) after the 

tabletop and plate have been located, (d) after the tabletop, plate and napkin have been located. 

The cup's expected areas in (a)-(d) are plotted separately in (e)-(h). These plots must be rotated 

90 degrees clockwise to match the images in (a)-(d). 
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