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Abstract

When a data point, measured over a bin of �nite width, is to be compared to theoretical

or model probability density functions, neither the central value of the bin nor the weighted

mean value (the barycentre) of the abscissa within the bin is the appropriate place to plot

the data point. It is shown that such data points ought to appear where the value of the

predicted function is equal to its mean value over the wide bin. Some consequences of

commonly used but incorrect alternative data presentation methods in particle physics

are discussed.
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1 Introduction

It often occurs in high energy particle physics experiments that measurements are made of

physical variables whose number density distributions vary rapidly (e.g. exponentially) over

the experimentally accessible range. Measurements in regions of small number density are often

of considerable interest. One example would be transverse momentum spectra with respect to

jet axes, where there is much to be gained in making the measurements out to as large values

of transverse momentum as possible. Another example is the measurement of a fragmentation

function, the momentum fraction of a quark or gluon jet carried by a particular species of

particle. Here too, the measurements at high values of momentum fraction, where the rates for

light quark and gluon fragmentation are relatively low, are likely to be the most interesting.

One consequence of a rapid variation in rate with the variable of interest is that the experimenter

is often forced to choose wide bins for the data in regions of low number density in order that

statistical errors are kept reasonably small. Care in presentation of the data is then needed

since the underlying, and presumably unknown, number density distribution in the data will

be changing sharply over the wide bins.

2 Measuring number densities

In a sample of real events, suppose that the measured number of entries in a bin of some

variable x, of width �x from x1 ! x2, is nmeas. The usual approximation for the value of the

true density distribution function g(x) measured in the data, at some value of x within the bin,

is

gmeas =
nmeas

�x
(1)

It is important to bear in mind that gmeas is not a genuine measurement of the function g(x)

at any particular value of x, but its expectation value is related to this underlying function by

hgmeasi =
1

�x

Z
x2

x1

g(x)dx (2)

Only in the limit �x ! 0 does hgmeasi ! g(x); for a bin of non-zero width hgmeasi gives the

average value of g(x) within the bin. Nevertheless, it is common practice to present such mea-

surements, nmeas=�x, as measurements of di�erential rates dN=dx, or after e�ciency corrections

as di�erential cross sections d�=dx, and to plot them at a particular value of x.

2.1 Plotting the measured densities

At which value of x within the bin should gmeas be regarded as a measurement of g(x)? A

number of possible answers to this question have been used in the presentation of data in the

literature, and we give a few examples below. The two most common methods are to plot the

data either at the centre of the bin

xc = x1 +�x=2 (3)

2



as, for example, in reference [1], or at the mean value of x for the entries within the bin

x =

Z
x2

x1

xg(x)dx

�Z
x2

x1

g(x)dx (4)

An example of the latter, often called the barycentre, may be found in reference [2]. In one

paper this latter quantity is described as \the centre of gravity of the corresponding bin" [3],

and in another paper as the \weighted averages" [4]. In general a vertical error bar will be

included to represent the measurement error on the function value, but a horizontal `error bar'

across the bin may [5], or may not [6], appear.

It is shown below that none of these methods are strictly correct and that they may give a quite

misleading impression of the trends in the data. Before introducing the position xlw, which we

show to be the correct value of x to plot the data, we give an example.

2.2 Example: an exponential density function

As a simple example to illustrate the problem let us assume that the function g(x) = ae�bx

represents the true number density distribution in a given data sample. This exponential form

for g(x) gives a good representation of hadron fragmentation functions in high energy jets, as

well as of transverse momentumdistributions of hadrons with respect to jet axes. To be speci�c

let us consider the function g(x) = 10
4
� e�6x, with the data binned in the ranges of x from

0.0{0.1, 0.1{0.3, 0.3{0.6 and 0.6{1.0. For each bin, Table 1 gives the expected values for: the

average number of entries, hnmeasi; the corresponding value of hgmeasi; the statistical uncertainty

�(gmeas) in gmeas; the centre of each bin (xc); and the mean value of x, or the barycentre, for

the entries within the bin (x).

In Figure 1 the function g(x) is compared with the expectation values of gmeas. Various possible

choices are shown for the x coordinate within the bin at which the data may be plotted. Since

the expected average number of entries per bin, and thus the hgmeasi values given in Table 1,

have been calculated assuming a precise knowledge of the true g(x) then the plotted points

might na��vely be expected to lie exactly on the curve of g(x). However, the �gure shows clearly

that the choice of the barycentre x (the squares) or the bin centre xc (the triangles), to be found

frequently in published literature, both give a misleading impression and suggest systematic

deviations from the number density distribution to which the data actually correspond. In

this particular example the choice of barycentre gives data points lying systematically below

the curve, while the choice of bin centre gives points above the predicted curve. The size of

these deviations becomes larger as the bins become wider to accommodate increasing statistical

errors.

2.3 The correct position for plotting measured number densities

For the data properly to represent the true number density distribution in Figure 1, the points

should lie on the curve of g(x). They should therefore be plotted at the value of x at which

the function value g(x) is equal to the expectation value of gmeas; as we observed above, hgmeasi

corresponds to the average value of g(x) within the bin. It becomes particularly important to
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Figure 1: The function g(x) = 10
4
� e�6x with three sets of points showing di�erent possible

choices for the abscissa value. The bin ranges, g(x) values and the various x values are given

in Table 1.
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bin range 0.0{0.1 0.1{0.3 0.3{0.6 0.6{1.0

hnmeasi 752.0 639.2 230.0 41.4

hgmeasi 7519.8 3195.9 766.5 103.5

�(gmeas) 274.2 126.4 50.5 16.1

xc 0.050 0.200 0.450 0.800

x 0.045 0.180 0.407 0.727

xlw 0.048 0.190 0.428 0.762

Table 1: For the function g(x) = 10
4
� e�6x is given the expected values in each bin of: the

average number of entries, hnmeasi; the corresponding value of hgmeasi; the statistical uncertainty

�(gmeas) in gmeas; the centre of each bin (xc); the mean value of x for the entries within the bin

(x), and the value xlw at which the function is equal to its average value over the bin.

use this correct value of x, which we will refer to as xlw, when the data are measured in bins of

large width. The equation de�ning xlw is therefore

g(xlw) =

1

�x

Z
x2

x1

g(x)dx (5)

The appropriate values of xlw for our speci�c example are given in the last row of Table 1 and

are plotted as the circles in Figure 1.

Equation 5 cannot in general be solved, since g(x) is usually unknown and is indeed what one

is trying to measure. However a theory or model, for example a Monte Carlo simulation, may

be available to predict a distribution f(x) that is a reasonable approximation, at least in shape,

to the true number density function g(x). If a linear relation between g(x) and f(x) can be

assumed, viz. g(x) = �f(x) + �, then equation (5) can easily be shown to be equivalent to

f(xlw) =

1

�x

Z
x2

x1

f(x)dx (6)

and this can now in principle be solved for xlw either analytically or numerically.

A possible alternative to the use of xlw would be to plot the data at x or xc and to calculate

a correction to the ordinate gmeas such that a point corresponding to the expectation value

hgmeasi for a particular bin would lie on the curve g(x). We do not recommend this alternative

for a number of reasons. The values gmeas within the bins represent the primary experimental

measurements. They can be used for many purposes for which the above problem is irrelevant.

For example, they can be integrated over x to give the total number of entries and, as will be

seen in Section 2.6, they can be compared directly with model predictions if these are calculated

in the same bins as used for the data. It would in any case be rather confusing to have a di�erent

set of values gmeas for the graphical representation of the data than for all others purposes. A

much more satisfactory solution is to plot the data at the correct value of x (i.e. xlw) in the

�rst place.
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2.4 Comparison with the bin centre and barycentre

Let us return to the example of an exponential number density function f(x) = ae�bx
. Appli-

cation of equation 6 gives

xlw = x1 +
1

b

n
ln (b�x)� ln

�
1 � e�b�x

�o
(7)

From equation 4 the mean value of x for the entries within the bin, or the barycentre, is

x =

x1 +
1
b
� (x2 +

1
b
)e�b�x

1� e�b�x
(8)

The bin centre, xc = x1+�x=2, gives the third possible location for plotting a data point. For a

wide bin these three values of x may di�er signi�cantly from one another, as was demonstrated

in Table 1 and Figure 1.

A particular example (taken as representative from many in the literature) of a wrong choice of

x position for plotting data points may be found in Figure 4 of reference [7]. Here a measured

fragmentation function for �-mesons is compared with a Monte Carlo model prediction. The

largest x bin covers the range 0.229-0.686 and the data point is plotted at the bin centre,

xc = 0:457, with a horizontal bar to cover the full bin width. The measured point lies over one

standard deviation above the model curve which has a shape proportional to e�7:9x. In this

case, the corresponding value of xlw would be 0.395, and at this value of x the measurement

would lie almost exactly on the prediction. From the data given in [7] we have reproduced, in

Figure 2a, the data points and the curve. Figure 2a also shows the e�ect of using xlw as the

position of the highest-x data point.

Another example of data points that have been plotted in the wrong place may be found in

Figure 9 of reference [8], showing fragmentation functions for �(1020) and K
�

(892)
0
mesons in

Z
0
decay. In this case, the bin barycentres have been chosen, with the result that data points at

high x appear further to the left of the predicted curve than they ought to be. The impression

is then given of a more steeply falling experimental spectrum than is actually the case. For the

K
�

spectrum, for example, the highest x bin covers the range 0.3-1.0 with the the barycentre

at 0.45. Since the Monte Carlo curve falls approximately as e�6:2x, the value of xlw in this case

is 0.54. Again we have reproduced, in Figure 2b, the data for the K
�

as plotted in [8] together

with the curve of the tuned JETSET Monte Carlo prediction and the e�ect of shifting the

highest-x point to its proper position, xlw.

In the special case that g(x) varies linearly with x, g(x) = ax + b, then x = xlw = xc and

there is no ambiguity as to where to plot the data points. It follows for any arbitrary g(x)

that if the width of a bin is su�ciently small that g(x) may be taken to vary approximately

linearly over the bin then the error caused by plotting the data at x or xc may be small. For

example, Figure 3 shows the data of Table 1 and Figure 1 plotted with narrower bins in order

to reduce the di�erence between the values of x, xlw and xc. However, the requirement that the

bin widths be kept small in the above sense may then preclude measurements being given in

the region of low number density because the observed number of entries per bin is too small.

Examples of this approach may be found in references [9].
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Figure 2: Examples from the published literature to illustrate the e�ect of incorrect choice of x

value for plotting data: fragmentation functions in e
+
e
�

annihilation for (a) �-mesons [7] and

(b) K
�

(892)
0
-mesons [8].
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Figure 3: The function g(x) = 10
4
� e�6x with three sets of points showing di�erent possible

choices for the abscissa value. The data have been rebinned with respect to Figure 1 in order

to reduce the di�erence between the values of x, xlw and xc.
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2.5 Errors on the value of the correct position

It has been demonstrated above that a knowledge of the shape of the underlying number density

function g(x) is needed in order to calculate the correct position at which to plot a measured

data point within a wide bin in x. If, as will generally be the case, g(x) is not precisely

known then this will introduce an uncertainty in the correct value of xlw. As an example let

us consider again the values of gmeas given in Table 1. Let us further assume that previous

measurements have �rmly established the functional form g(x) / e�6x in the range x < 0:6,

but that the value given in the last column of Table 1 represents the �rst measurement in the

range x > 0:6. If the functional form g(x) / e�6x is assumed to be valid also in the range

x > 0:6 then the appropriate value of xlw can be calculated precisely. However, if a possible

variation in the shape of g(x) in this region is considered then an uncertainty in the correct

value of xlw is introduced. This is demonstrated in Figure 4. The solid curve shows g(x) / e�6x

and the plotted full circle shows the corresponding value of xlw = 0:762, which has been given

in Table 1 and can be calculated from equation 7. The dashed curve shows g(x) / e�4:8x in

the range x > 0:6 and the plotted diamond shows the corresponding value of xlw = 0:769.

The dotted curve shows g(x) / e�7:6x in the range x > 0:6 and the plotted triangle shows

the corresponding value of xlw = 0:753. The functions g(x) / e�4:8x and g(x) / e�7:6x have

been chosen because the associated `measured' points lie o� of the curves by approximately one

standard deviation. It would therefore be consistent with the given assumptions to represent

the measurement by a point plotted at xlw = 0:762 with a horizontal error bar extending over

the range 0:753 < xlw < 0:769. By comparing the plotted circle in Figure 4 with the dashed

and dotted curves it can be seen that if the uncertainty in xlw had not been taken into account

then these curves would have been excluded at the level of more than one standard deviation.

2.6 Presenting data and predictions in the form of histograms

In order to make a quantitative comparison between a set of experimental data and the predic-

tions of a theory or model then an alternative, and perhaps simpler, procedure is often used.

The model predictions can be calculated for the same bins in which the data are presented

using

npred =

Z
x2

x1

f(x)dx (9)

Data and predictions can then be considered as two histograms, which can be compared directly,

perhaps by a �t to free parameters in the theory or model. For the purposes of this quantitative

comparison the question of choosing the correct x value within the bin is then irrelevant.

However, for the purposes of a graphical presentation then a histogram of the model predictions

within wide bins does not give a very useful representation of the shape of the underlying

distribution. For example see Figure 5a which shows the values of gmeas given in Table 1. Many

possible guesses at the underlying number density distribution might be drawn as curves that

at �rst sight roughly follow the shape of the histogram. Of course, the curve representing the

true underlying number density distribution g(x) crosses the horizontal line for each bin at the

appropriate value of xlw. Therefore, a more useful representation of the shape of the underlying

distribution may be obtained by adding a point at the appropriate value of xlw within each

bin as in Figure 5b. By removing the vertical lines from Figure 5b we arrive at an alternative
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Figure 4: Demonstration of the uncertainty in xlw that can result from an uncertainty in the

shape of the underlying number density function. The solid curve and the plotted circle corre-

spond to the assumption g(x) / e�6x. The dashed curve and the plotted diamond correspond

to the assumption g(x) / e�4:8x. The dotted curve and the plotted triangle correspond to the

assumption g(x) / e�7:6x.
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Figure 5: Some alternative ways of presenting a histogram of the values of gmeas given in Table 1.
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method of presenting the histogram (see Figure 5c). The horizontal lines in Figure 5c are then

a purely conventional device to indicate the bin ranges and are not generally to be interpreted

as error bars; if they were, then they would render impotent any quantitative comparison

between the points and possible model curves. We may therefore note that their presence is

not an acceptable excuse for plotting the points at an incorrect value of x (for example x or

xc)! Indeed, these horizontal bars serve to give the eye a somewhat misleading impression of

agreement between data and predicted curves, as was the case in Figure 2a above.

In Figure 6 we propose an alternative way to indicate the bin ranges, by means of short

vertical lines at the edges of the plot. This has the advantage of clearly separating the primary

information, the data and their genuine errors, from such secondary details as the bin ranges.

The potentially misleading e�ect of the horizontal bars is thus avoided.

The results of two experiments may be compared most easily if they both use the same binning

to present their data. Unfortunately this will not normally be the case. If the comparison is to

be made on the basis of points in g(x) measured over wide bins then a consistent calculation

of the relevant values of xlw for the two datasets must be ensured.

3 More complicated situations

We have so far considered the measurement of a number density distribution g(x) as a function

of a single variable x. We have shown that within a wide bin the observed number density gmeas

should be regarded as a measurement of g(x) at the position xlw given by equation 5. It is

important to stress that more complicated situations may arise, in which xlw is not the correct

position at which to plot data within a wide bin. However, in such cases some thought along

the lines that led to equation 5 should allow the correct position to be deduced.

As an example of a more complicated situation, let us consider that in the presence of the

varying number density function g(x) we wish to measure the functional dependence of a

second variable q(x) as a function of x. A speci�c example, as in for example [10], is the

measurement of the average transverse momentum component of tracks with respect to the jet

axis, as a function of the momentum component parallel to the axis. A second example is the

measurement in [11] of spin-density matrix elements for quasielastic photoproduction of vector

mesons in bins of the four-momentum transfer, t, from the photon to the meson. The cross

section, d�=dt, falls exponentially with t, necessitating the use of wide bins at large values of

t; there is in addition a slow variation of the measured spin-density matrix elements with t.

The expectation value for the measured q(x) for the entries within a bin in x, of width �x from

x1 ! x2 is given by

hqmeasi = q =

Z
x2

x1

q(x)g(x)dx

�Z
x2

x1

g(x)dx (10)

Only in the limit �x! 0 does hqmeasi ! q(x); for a bin of non-zero width we have to decide at

which value of x within the bin qmeas should be regarded as a measurement of q(x). By analogy

with the discussion that led to equation 5 we can easily see that the correct value of x is that

point (x0
lw
) at which the function q(x0

lw
) is equal to the average value of q(x) for the entries
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Figure 6: Our prefered way of presenting the values of gmeas given in Table 1. The bin ranges

are indicated by means of the short vertical lines at the edges of the plot. This avoids the

potentially misleading e�ect of using horizontal `error bars' for this purpose.
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bin range 0.0{0.1 0.1{0.3 0.3{0.6 0.6{1.0

hqmeasi 7.442 3.036 0.663 0.076

x0
lw

0.042 0.170 0.388 0.698

Table 2: For the function q(x) = 10 � e�7x measured in the presence of the varying number

density function g(x) = 10
4
� e�6x is given in each bin: the expected value of qmeas and the

appropriate value of x0
lw
. The corresponding values of x, xlw or xc may be found in Table 1.

within the bin. Thus the de�ning equation for x0
lw

is

q(x0
lw
) =

Z
x2

x1

q(x)g(x)dx

�Z
x2

x1

g(x)dx (11)

In general, x0
lw

will not be equal to x, xlw or xc.

3.1 Example: exponential variation

For example let us consider an exponential form for g(x) = ae�bx
and for q(x) = ce�dx

. Solution

of equation 11 for this case gives

x0
lw

= x1 +
1

d

(
ln

 
(b+ d)

b

!
� ln

�
1� e�(b+d)�x

�
+ ln

�
1 � e�b�x

�)
(12)

To be speci�c let us reconsider our previous example of the number density function g(x) =

10
4
� e�6x with the data binned in the ranges of x from 0.0{0.1, 0.1{0.3, 0.3{0.6 and 0.6{1.0, as

given in Table 1 and Figure 1. In addition let us take q(x) = 10 � e�7x. For each bin, Table 2

gives the expected value of qmeas and the corresponding value of x0
lw
. In Figure 7 the function

q(x) is compared with the expected values of qmeas plotted as stars at x0
lw
. For comparison the

data are also plotted as squares at x, as circles at xlw and as triangles at xc, showing that none

of these three choices is appropriate and that in this speci�c example they all lie systematically

above the function. We note that in this case the measurement errors on qmeas will depend on

the experimental conditions and so we cannot show any error bars in the �gure.

3.2 Example: linear variation

In the case where q(x) may be taken to be varying linearly over a bin, as would be appropriate

in the examples [10, 11] quoted above, the solution of equation 11 is x0
lw

= x, indicating the

choice of the barycentre as the correct position of the measured data point. Thus, while this

choice has been shown to be incorrect for plotting the underlying number density, it turns out

to be appropriate for a second variable measured in the presence of the varying number density.

In fact it is easy to show from equation 11 that this result remains true for any functional form

of the density g(x) so long as q(x) may be assumed to be a linear function of x over the width

of the bin.
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Figure 7: The function q(x) = 10�e�7x measured in the presence of the varying number density

function g(x) = 10
4
� e�6x with four sets of points showing di�erent possible choices for the

abscissa value.
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4 Summary and Conclusions

We now summarize the main conclusions we have reached concerning the measurement of a

number density distribution g(x) within wide bins in x.

� The expectation value for an experimental measurement hgmeasi corresponds to the av-

erage value of g(x) within the bin (equation 2). Therefore the result of a particular

experiment, gmeas, should be regarded as a measurement of g(x) at the value xlw of x

at which the function value g(xlw) is equal to the average value of g(x) within the bin

(equation 5). It is particularly important to use the correct value xlw when the data are

measured in bins of large width.

� Regarding gmeas as a measurement of g(x) at xc, the bin centre, or at x, the mean value

of x for the entries within the bin, is in general incorrect and can only be justi�ed if g(x)

can be regarded as varying linearly over the width of the bin. We give examples from the

published literature to illustrate this point (see Figure 2).

� The fact that one has to assume a shape for the underlying number density distribution

in order to calculate xlw has a number of consequences:

{ The assumptions made in a particular analysis should be described in the associated

publication.

{ An uncertainty in the knowledge of the underlying number density distribution will

result in an uncertainty in the calculated values of xlw. This must be taken into

account when comparing experimental measurements with a curve predicted by a

theory or model.

{ When comparing the results of two experiments a consistent choice of how to calcu-

late the appropriate values of xlw must be ensured for the two sets of data.

{ A quantitative comparison is simpli�ed if the theoretical predictions are calculated

for the same bins used to analyse the experimental data. Similarly the comparison of

two sets of experimental data is simpli�ed if they are both presented with the same

binning. The values within each bin can thus be compared directly and the question

of choosing the correct x value within the bin is then irrelevant for this purpose.

� We note that the common practice of using horizontal `error bars' to indicate bin ranges

can sometimes give a misleading impression of consistency in cases where measurements

and predictions actually disagree. In Figure 6 we propose an alternative way to indicate

the bin ranges | by means of short vertical lines at the edges of the plot | that avoids

this problem.

� Although we mainly discuss the measurement of a number density distribution as a func-

tion of a single variable we give examples of how more complicated situations may be

treated using a similar approach.

� It is clear that choosing bins to be as narrow as possible within the constraints of limited

data and Monte Carlo statistics helps to minimize the ambiguity in the interpretation of

the resulting data points.
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