
Where-What Network 1: “Where” and “What”

Assist Each Other Through Top-down Connections

Zhengping Ji and Juyang Weng

Embodied Intelligence Laboratory

Michigan State University, Lansing, USA

Email: {jizhengp, weng}@cse.msu.edu

Danil Prokhorov

Toyota Technical Center

Ann Arbor, USA

Email: danil.prokhorov@tema.toyota.com

Abstract—This paper describes the design of a single learning
network that integrates both object location (“where”) and
object type (“what”), from images of learned objects in natural
complex backgrounds. The in-place learning algorithm is used to
develop the internal representation (including synaptic bottom-
up and top-down weights of every neuron) in the network, such
that every neuron is responsible for the learning of its own
signal processing characteristics within its connected network
environment, through interactions with other neurons in the same
layer. In contrast with the previous fully connected MILN [13],
the cells in each layer are locally connected in the network. Local
analysis is achieved through multi-scale receptive fields, with
increasing sizes of perception from earlier to later layers. The
results of the experiments showed how one type of information
(“where” or “what”) assists the network to suppress irrelevant
information from background (from “where”) or irrelevant
object information (from “what”), so as to give the required
missing information (“where” or “what”) in the motor output.

I. INTRODUCTION

The primate visual pathways have been extensively in-

vestigated in neuroscience: branching primarily from V2,

two primary pathways exist, called the dorsal pathway and

the ventral pathway, respectively. The dorsal stream begins

with V1, through V2, the dorsomedial area and MT (also

known as V5), to the posterior parietal cortex. The control

of attention employment is believed to mostly take place in

the dorsal pathway, sometimes called the “where” pathway.

The ventral stream begins from V1, through V2, V4, and to

the inferior temporal cortex. The ventral stream, also called

the “what” pathway, is mainly associated with the recognition

and identification of visual stimuli.

Attention and recognition are known as a chicken-and-

egg problem. Without attention, recognition cannot do well;

recognition requires attended areas for the further processing.

Without recognition, attention is limited; attention does not

only need bottom-up saliency-based cues, but also top-down

target-dependant signals.

Bottom-up Attention Studies in psychology, physiology,

and neuroscience provided qualitative models for the bottom-

up attention, i.e., attention uses different properties of sensory

inputs, e.g., color, shape, and illuminance to extract saliency.

The first explicit computational model of bottom-up attention

was proposed by Koch & Ullman in 1985 [6], in which a

“saliency map” is used to encode stimuli saliency at every

lactation in the visual scene. More recently, Itti & Koch et

al. 1998 [5] integrated color, intensity, and orientation as

basic features, and extracted intensity information in six scales

for attention control. An active-vision system, called NAVIS

(Neural Active Vision) by Baker et al. 2001, was proposed

to conduct the visual attention selection in a dynamic visual

scene [1].

Top-down Attention Volitional shifts of attention are also

thought to be performed top-down, through spacial defined and

feature-dependant weighting of the various feature maps. The

successful modeling of the “where” pathway, then, involves

the integration of bottom-up and top-down cues, such as to

provide coherent control signals for the focus of attention,

and the interplay between attentional tuning and object recog-

nition. Olshausen et al. 1993 [8] proposed a model of how

visual attention can solve the object-recognition problem of

position and scale invariance. A top-down attention model

was discussed by Tsotsos et al. 1995 [12], who implemented

attention selection using a combination of a bottom-up feature

extraction scheme and a top-down selective tuning scheme.

Mozer et al. 1996 proposed a model called MORSEL [7], to

combine the object recognition and attention, in which the

attention is shown to help recognition. Rao et al. 2004 [9] de-

scribed an approach that allowed a pair of cooperating neural

networks, to estimate object identity and object transforma-

tions, respectively. A top-down, knowledge-based recognition

component, presented by a hierarchical knowledge tree, was

introduced by Schill et al. 2001 [10], where object classes

were defined by several critical points and the corresponding

eye movement commands that maximize the information gain.

Deco & Rolls 2004 [2] presented a model of invariant object

recognition that incorporated feedback biasing of top-down

attentional mechanisms on a hierarchically organized set of

visual cortical areas. A more extreme view is expressed by

the “scanpath theory” of Stark & Choi 1996 [11], in which

the control of eye movements is almost exclusively under top-

down control.

Aforementioned mechanisms of selective visual attention

play significant roles in the biologically plausible architectures

for object recognition (called attention-based recognition) in

the ventral “ stream”. However, it remains an open issue for the

recognition models to integrate neurobiological models con-

cerned with attentional control in the dorsal “where” stream.

As pointed out by Itti & Koch 2001 [4], this integration will,
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in particular, account for the increasing efforts on an object-

based spatial attention.

In this paper, we propose a developmental network, called

“Where-What” Network 1 (WWN-1), for a general sensorimo-

tor pathway, such that recognition and attention interact with

each other in a single network. As this is a very challenging

design and understanding task, we concentrate on (1) the

network design issue: how such a network can be designed so

that attention and recognition can assist each other; (2) how to

understand a series of theoretical, conceptual, and algorithmic

issues that arise from such a network. To verify the mecha-

nisms that are required for both design and understanding, in

the results presented, we limit the complexity of “where” and

“what” outputs,

The following technical characteristics required by devel-

opmental learning make such work challenging: (1) Integrate

both bottom-up and top-down attention; (2) Integrate attention-

based recognition and object-based spacial attention interac-

tively; (3) Enable supervised and unsupervised learning in any

order suited for development; (4) Local-to-global invariance

from early to later processing, through multi-scale receptive

fields; (5) In-place learning: each neuron adapts “in-place”

through interactions with its environment and it does not need

an extra dedicated learner (e.g., to compute partial derivatives).

The WWN-1 uses the top-k mechanism to simulate in-place

competition among neurons in the same layer, which is not

in-place per se but is still local and computationally more

efficient as it avoids iterations with a layer. Rather than the

simulations of fMRI data, the engineering performance of

recognition rate and attended spatial locations are presented

for an image dataset in the experiment.

In what follows, we first explain the structure of the pro-

posed WWN-1. Key components of the model are presented

in Section III, IV, V, addressing local receptive field, cortical

activation and lateral connections, respectively. Section VI

provides the algorithm of weight adaptation in the proposed

network. Experimental results are reported in Sec. VII and

concluding remarks are provided in Sec. VIII.

II. NETWORK OVERVIEW

Structurally, the “Where-What” Network 1 is a set of

connected two-dimensional cortical layers, each containing a

set of neurons, arranged in a multi-level hierarchy. The number

of levels of neurons is determined by the size of local receptive

fields and staggered distance, discussed in Sec. III. An example

of the network is shown in Fig.1. Its network architecture and

parameters will be used in our experiments of Sec. VII. The

network operates at discrete times t = 0, 1, .... Each neuron is

placed at a 2D position in a layer, so that each layer forms a

grid of n × n neurons.

The external sensors are considered to be on the bottom

(layer 0) and the external motors on the top (layer N ). Neurons

are interconnected with nonnegative weights. For each neuron

(i, j), at level l (0 < l < N), there are four weight vectors,

as illustrated in Fig.2:

Level l

Level l + 1

Level l - 1

Neigborhoods with lateral excitation

Neigborhoods with lateral inhibition

Local input field

Local effector field 

Fig. 2. For in-place learning, neurons are placed (given a position) on
different levels in an end-to-end hierarchy – from sensors to motors.
A neuron has feed-forward, horizontal, or feedback projections to it.

1) bottom-up weight vector w
b

i,j that links connections

from its local input field in the previous level;

2) top-down weight vector w
t
i,j that links connections

from its effector field, either local or global, in the next

level;

3) lateral weight vector w
h

i,j that links inhibitory connec-

tions from neurons in the same layer (long range).

4) lateral weight vector w
e
i,j that links excitatory connec-

tions from neurons in the same layer (short range).

III. LOCAL RECEPTIVE FIELDS

Hubel and Wiesel (e.g., [3]) explained that receptive fields

of cells at one cortical area of the visual system are determined

by input from cells at an earlier area of the visual system. In

this manner, small, simple receptive fields could be combined

to form large, complex receptive fields. Localized connections

are utilized in the WWN-1, providing a structural basis for

local attention. Attention selection needs to suppress neuronal

responses whose receptive fields fall out of the attended

receptive field.

Each neuron receives its input from a restricted region in

the previous layer, called local input field. Fig. 3 shows the

organization of square input fields in a layer consisting of n×n
neural units. Where a connection falls outside of the neuronal

plane, the input is always 0. Let Sl and dl be the number of

neurons and staggered distance in the current layer l. The total

number of input fields, namely, the number of neurons in the

next layer is thus determined by:

Sl+1 =

(√
Sl

dl

)2

(1)
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Layer 3: “ What ” Motor
Number of neurons: 5

Input field size: 40x40

Receptive field size: 40x40

Layer 0: Input
Number of pixels: 40x40

  

Object size: 20x20

Layer 1: Orientation selective filters 
Number of neurons: 40x40
Input field size: 11x11

Receptive field size: 11x11

Layer 3: “ Where ” Motor
Number of neurons: 40x40

Input field size: 11x11

Receptive field size: 31x31

Effector field size: 11x11

Layer 2: 
Number of neurons: 40x40
Input field size: 11x11

Receptive field size: 21x21

Effector field size (where): 11x11

Effector field size (what): 5

Fig. 1. The specific network architecture and parameters in our experiment.

For n×n neurons shown in Fig. 3, therefore, there are n×n
neurons in the next layer, when the staggered distance is set

to be 1.

Neural units (n x n)

Stagger
distance

... ...

.

.

.

 

.

.

.

Size of input field 

Neuron

Fig. 3. Input field boundaries and numbering scheme for neurons
in a layer. When the local input field falls out of the input neuronal
plane, the corresponding inputs are zeros (black areas in the figure).

The overlapped square input fields allow the network to

obtain alternative receptive fields at multiple scales and posi-

tions. Fig. 4 shows how the receptive fields increase from one

layer to the next until the entire input is covered with a single

receptive field. This representation provides information for

receptive fields at different locations and with different sizes.

IV. CORTICAL ACTIVATION

From Layer 1 to Layer N − 2 of the proposed network,

the layer responses are computed the same way as described

in [13], except that local connections are applied here. The

pre-response zi,j of the neuron (i, j) is determined by

zi,j = gi

(

(1−α)
w

b
i,j(t) · xi,j(t)

‖wb
i,j(t)‖‖xi,j(t)‖

+α
w

t
i,j(t) · yi,j(t)

‖wt
i,j(t)‖‖yi,j(t)‖

)

where xi,j is the local bottom-up input and yi,j is the local or

global top-down input. g is its nonlinear (or a piecewise linear

approximation) sigmoidal function. α (0 ≤ α ≤ 1) denotes a

specific weight that controls the maximum contribution by the

25

9

17

     sizes of

    receptive 

       fields

 layer 

number

0

1

2

3

Fig. 4. The architecture of receptive fields in different scales and
positions. The size of the receptive field in a particular layer is 8
larger than its previous layer in this diagram (shown at the right),
whereas the size of input field is set to be 9 at each layer.

Level N-1

Level N

"Where"  motor

"What"  motor

1
t
w

2
t
wi,j i,j

Fig. 5. Top-down projection onto Layer N − 1.

top-down versus the bottom-up. The length normalization of

xi,j and yi,j ensures that the bottom-up part and top-down

part are equally scaled.

Layer N − 1, however, receives the top-down projection

from both “where” motor layer and “what” motor layer (see

Fig. 5). Thus, the pre-response zi,j of the neuron (i, j) is
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determined by

zi,j = gi

(

(1 − α)
w

b
i,j(t) · xi,j(t)

‖wb
i,j(t)‖‖xi,j(t)‖

+

α
(

(1−β)
w

t1
i,j(t) · y1

i,j(t)

‖wt1
i,j(t)‖‖y1

i,j(t)‖
+β

w
t2

i,j(t) · y2
i,j(t)

‖wt2
i,j(t)‖‖y2

i,j(t)‖
)

)

w
t1

i,j and w
t2

i,j are top-down weights received from

“where” and “what” motors, respectively. y
1

i,j and y
2

i,j

are the top-down inputs from the “where” motor and “what”

motor, respectively. β (0 ≤ β ≤ 1) is the weight that controls

the maximum contribution by the “what” motor.

V. NEURON COMPETITION

Lateral inhibition is a mechanism of competition among

neurons in the same layer. The output of neuron A is used

to inhibit the output of neuron B, which shares a part of

the input field with A, totally or partially. As an example

shown in Fig.6, the neighborhood of lateral inhibition contains

(2h−1)×(2h−1) neurons, because neuron (i, j) and (i, j−h)
do not share any input field at all. We realize that the net effect

of lateral inhibition is (a) for the strongly responding neurons

to effectively suppress weakly responding neurons, and (b)

for the weakly responding neurons to less effectively suppress

strongly responding neurons. Since each neuron needs the

output of other neurons in the same layer and they also need

the output from this neuron, a direct computation will require

iterations, which is time consuming. To avoid iterations, we

use the following local top-k mechanism.

For any neuron (i, j) in the layer l (1 < l ≤ N ), we sort

all the pre-responses from neurons, centered at positions inside

the input field of neuron (i, j). After sorting, they are in order:

z1 ≥ z2 ≥ ... ≥ zm. The pre-responses of top-k responding

neurons are scaled with non-zero factor. All other neurons

in the neighborhood have zero responses. Suppose the pre-

response zi,j of neuron (i, j) is the top q in the local inhibitory

neighbors, i.e. zi,j = zq. Its response z′i,j is then

z′i,j =

{

zi,j × (zq − zk+1)/(z1 − zk+1) if 1 ≤ q ≤ k
0 otherwise

In other words, if the pre-response of neuron (i, j) is the

local top-1, then this response is the same as its pre-response.

Otherwise, its pre-response is lower than its pre-response, to

simulate lateral inhibition. A larger k gives more information

about the position of the input in relation with the top-k

winning neurons. However, an overly large k will violate the

sparse coding principle (i.e., neurons should be selective in

responding so that different neurons detect different features).

In our experiments, k is set at 5% of the number of neurons

in the local input field. Sparse-coding is a result of lateral in-

hibition, stimulated by the local top-k rule. It allows relatively

few winning neurons to fire in order to disregard less relevant

feature detectors.

Input field of neuron

      (i, j-h)

Input field of neuron 

       (i, j)

hjiz
−, jiz ,

        Neighborhood 

        of lateral inhibition

          

Fig. 6. The neuron (i, j) has a (2h−1)× (2h−1) neighborhood of
lateral inhibition, while neuron (i, j) and neuron (i, j − h) did not
share any input fields.

VI. WEIGHT ADAPTATION

After the responses have been computed, the connection

weights of each neuron are updated if the neuron has non-

zero response. Both the bottom-up and top-down weights adapt

according to the same biologically motivated mechanism:

the Hebb rule. For a neuron (i, j) with non-zero response

(along with its 3 × 3 neighboring neurons), the weights are

updated using the neuron’s own internal temporally scheduled

plasticity:
{

w
b

i,j(t) = ω1w
b

i,j(t − 1) + ω2z
′

i,jxi,j(t)
w

t
i,j(t) = ω1w

t
i,j(t − 1) + ω2z

′

i,jyi,j(t)

The 3×3 updating rule is to model the lateral excitation on the

short-range neighboring neurons, in order to achieve a smooth

representation across the layer.

The scheduled plasticity is determined by its two age-

dependent weights:

ω1 =
ni,j − 1 − µ(ni,j)

ni,j

, ω2 =
1 + µ(ni,j)

ni,j

,

where ni,j is the number of updates that the neuron has gone

through, with ω1 + ω2 ≡ 1. µ(ni,j) is a plasticity function

defined as

µ(ni,j) =

⎧

⎨



0 if ni,j ≤ t1,
c × (ni,j − t1)/(t2 − t1) if t1 < ni,j ≤ t2,
c + (ni,j − t2)/r if t2 < t

where plasticity parameters t1 = 20, t2 = 200, c = 2, r =
2000 in our implementation.

Finally, the neuron age ni,j is incremented: ni,j ← ni,j +1.

All neurons that do not fire (i.e., zero-response neurons) keep

their weight vector and age unchanged for long-term memory.

VII. EXPERIMENT

Fig. 1 shows a specific set-up of parameters and architecture

implemented in our experiment, where α = 0.3, β = 0.5
for the training process. As a first study of the proposed

framework, “what” motors are simplified to define 5 different

objects, which are shown in Fig. 7(a). The images of objects

are normalized in size, in this case to 20 rows and 20 columns.
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Each object is placed in 5 different regions (R1, ..., R5 in Fig

7(b)), defined by “where” motors. For each object-position

combination, different backgrounds (each has 40× 40 dimen-

sions) are randomly selected from natural images1. Thus, there

were 5 (positions) ×20 (backgrounds)= 100 samples for each

object class, and 500 samples in total.

R1 R2

R 3 R4

R5

"Apple"                "Horse"                     "Motor"                 "Person"                 "Table"

(a)

(b)

Fig. 7. (a) Five objects defined by “what” motor. When an object,
e.g. “apple” appears in the image, the corresponding neuron in “what”
motor is set to be 1 and all others to be 0. (b) Five regions defined by
“where” motors. When an object appears in one region, e.g., R1, all
the neurons in R1 are set to be 1 and others set to be 0. The “what”
and “where” motors supervise the learning of neurons weights in
previous layers, through the top-down connections described in Fig.
5

A. Development of Layer 1

We first develop the features in Layer 1 of the proposed

model. 500,000 of 40× 40-pixel image patches are randomly

selected from thirteen natural images 1 (no object presence),

learnt through the in-place learning algorithm described from

Sec. III to Sec. VI, without supervision by motors (α = 1
by the off-line feature development). The developed bottom-

up synaptic weights of all neurons in Layer 1 are shown as

image patches in Fig. 8. They clearly show localized patterns

because each has a local input field with size 11×11. Many of

the developed features resemble the orientation selective cells.

B. Recognition Through Attention

To evaluate the performance of recognition, the network

weights are incrementally updated using one frame of training

images at a time. After the network updated for each training

sample, the network is tested for the recognition rate of all

the samples, where β = 0 to disable the top-down supervision

from “what” pathway. The attended region is supervised by the

“where” motor, using 11×11 local effector fields, to guide the

agent’s attention. As shown in Fig. 9, with the guided attention,

approximately 25% of samples are sufficient to achieve a 90%

recognition rate. However, the recognition rate is only about

1available from http://www.cis.hut.fi/projects/ica/imageica/

Fig. 8. Bottom-up synaptic weights of neurons in Layer 1, developed
through randomly selected patches from natural images.

45% if the attention motor is not available (all zeros) during

the testing. This is a test to show how top-down “where”

supervision helps recognition of “what”.

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. training samples

R
e

co
g

n
iti

o
n

 r
a

te

with attention
without attention

Fig. 9. Recognition rate with incremental learning, using one frame
of training images at a time.

C. Attention Through Recognition

To examine the effect of top-down “what” supervision in

identifying where the object is, we only supply the information

of “what” in the “what” motor during tests, where β = 1.

The representation of supervision here is global , i.e., the

input size of top-down connection from “what” motor is 5.

Examples of attention results are shown in Fig.10, where the

network presents better attention capability with the assistance

of “what” supervision. This is a test for how top-down “what”

supervision helps location finding of “where”.

The bottom-up weights of “what” and “where” motors are

shown in Fig. 11. The Fig. 11(a) shows that each “what”
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(a)

(b)

(c)

Fig. 10. (a) Examples of input images; (b) Responses of attention
(“where”) motors when supervised by “what” motors. (c) Responses
of attention (“where”) motor when “what” supervision is not avail-
able.

motor detects the corresponding features at different locations

(i.e., position invariance for “what” motors). The Fig. 11(b)

indicates that each “where” motor’s bottom-up weight vector

gives the average pattern in its input field across different

objects. They are selective as not every input component fires

across different objects.

"Apple" "Horse" "Motor" "Person" "Table"

(a)

(b)

Fig. 11. (a) Bottom-up weights of “what” motors in Layer 3. (b)
Bottom-up weights of “where” motors in Layer 3.

VIII. CONCLUSION

Locally connected WWN-1 proposes local feature detectors

at every layer. When two kinds of motor layers are connected

with Layer 2, top-down connections from one motor layer

helps the output from another motor layer in an interesting

way. Specifically, (1) when the “what” motor is on during

stimuli presentation, the features that are (learned to be) asso-

ciated with this particular object are boosted from top-down

attention (i.e., expectation). These boosted object-specific fea-

tures suppress the features that respond to background. Such

suppression enables the “where” motors to report locations

where features are boosted. (2) Conversely, when the “where”

motor is on during stimuli presentation, the features that

are (learned to be) associated with this “where” motor are

boosted from top-down attention (i.e., covert attention instead

of overt eye saccade). These boosted features correspond-

ing to attended object suppress the features that respond to

background. Such suppression leads to a significant boost in

foreground recognition rate with presented natural background

(from 45% to 100% in the experiment). Both the bottom-up

and top-down attention mechanisms have been integrated in

the top-k spatial competition rule, as it takes into account both

bottom-up feature inputs and top-down expectation inputs. The

future studies will include general positions, variable sizes, and

with-in-class object variations. More complete analysis with

the model, in terms of memory efficiency and computational

efficiency, will also be carried out.
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