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Abstract. Predicting a driver’s route would be useful for warning a driver of 
upcoming road hazards, informing about traffic situations, and serving relevant 

advertising. There are many clues to a driver’s future route, including their past 
behavior and likely destination. Another clue is the driver’s turn choices at a 
sequence of intersections. Strung together, the turn choices form a route. This 

paper develops a basic algorithm, and variations, to predict the aggregate turn 

behavior of drivers at intersections. Given an intersection with a few different 

turn options, including the option to continue straight ahead, our goal is to infer 

the proportion of drivers who will take each option. For ground truth, we use 

raw turn counts gathered for government traffic studies by our local 

municipality at 40 different intersections. Our basic turn prediction algorithm is 

based on the assumption that drivers tend to choose roads that offer them more 

destination options. This matches our intuition that turning onto a short, dead 

end road is relatively rare compared to turning onto a highway “on” ramp. The 
best performing algorithm predicts turn proportions with a median error of 

0.142.  

Keywords: Location prediction, driver turn prediction, route prediction, driver 

behavior, intersections, turn counts, turn proportions 

1   Introduction 

Predicting a driver’s route would be useful to warn the driver about impending road 
hazards, to inform of upcoming traffic situations, and to deliver relevant location-

based advertising about soon-to-be-near businesses. With more vehicles carrying 

navigation systems, the sensing, computation, and display required for making and 

using route predictions is becoming widespread. Route prediction would be simple if 

the driver planned and followed a route using the vehicle’s navigation system. We 
assert, however, that most of the time drivers know where they’re going, and so do 
not use the navigation system for route planning. Quantitative support for this 

assertion comes from usage statistics of GM’s OnStar system. OnStar is an onboard, 

pushbutton system for driving assistance that includes the ability to get turn-by-turn 

directions on the vehicle’s display. As of July 2008, the service was handling 600,000 
monthly requests for driving directions from its 5 million subscribers [10]. Combined 



 

with the fact that American drivers take about 1500 driving trips per year [1], OnStar 

subscribers ask for directions for only about 1% of their trips. If this holds true for 

drivers in general, then predicting routes based on driving directions is not a solution 

that will work very often. 

With only rare explicit clues about a driver’s route, researchers have resorted to a 
variety of implicit clues. One clue is the driver’s past behavior, normally measured 
with GPS, which is a reliable indicator of future routes if the driver is driving in a 

familiar area. For instance, Patterson et al. [7] used GPS traces and a dynamic Bayes 

net to infer, in real time, a moving person’s mode of transportation (i.e. bus, foot, car) 

and a prediction of their route based on historical behavior. The work in [5] used a 

Markov model, trained from past behavior, to predict the next few road segments that 

a driver would take. Froehlich and Krumm [3] predicted entire routes from GPS 

traces by looking at which previous route a driver appeared to lock onto partway into 

the trip. The Predestination system [6] predicted a driver’s destination based partly on 

past behavior and partly on geographic features. The research found, unsurprisingly, 

that land covered by water or ice made for less popular destinations than commercial 

and residential areas.  

In this paper, we aim to augment route prediction by inferring which direction a 

driver will turn, if at all, at a given intersection. Instead of relying on the driver’s 
personal GPS traces as in [3], [5], and [7], we instead look at general geographic 

features as in [6]. This leads to general, probabilistic predictions at each intersection 

that apply to all drivers. Specifically, for each intersection, we infer which proportion 

of drivers will chose each option, including the option of continuing along the same 

road. 

The intuition behind our predictions is that drivers tend to choose the road that will 

give them more destination options. Thus, choosing to turn down a dead end road is 

likely rare compared to choosing to turn onto a highway “on” ramp. This is illustrated 
more generally with the intersection shown in Figure 1. Here, a westbound driver has 

14 counts measured (1.33%)

0.02% predicted

233 counts measured (22.28%)

26.76% predicted

799 counts measured (76.39%)

73.23% predicted

approach road

 
Figure 1: Driving westbound, counts show drivers’ choices at the intersection. 
Our turn prediction algorithm is based on our intuition that it is less likely to turn 

toward directions with fewer possible destinations. In this example, the proportion 

of westbound vehicles going straight into the small loop was measured at 1.33% 

by road sensors. Our basic algorithm estimated the proportion at 0.02% because 

of the paucity of destinations compared to the other choices at the intersection. 

Our goal is to accurately compute the percentages at arbitrary intersections 



 

the choice of turning left or right or proceeding straight through the intersection. The 

option of proceeding straight is likely unattractive for most drivers, because it leads to 

a small loop road. Turning left or right leads to many more possible destinations. 

Indeed, the measured proportion of westbound drivers going straight through this 

intersection was about 1.3%. Our basic algorithm, explained subsequently, estimated 

the proportion at 0.02%. 

The ground truth for the example in Figure 1, and for all our tests, came from our 

local, municipal government’s traffic study data and our own road map data, which 

we describe next. 

2   Turn Counts and Road Map Data 

The ground truth data for our research came from road sensors temporarily installed 

by our local municipality to study traffic volumes. We combined this data with a 

digital road map to develop our algorithm for predicting turn proportions. This section 

describes the ground truth and road map data. 

 

2.1   Turn Counts 

Our ground truth data consisted of turn counts measured at the 40 intersections shown 

in Figure 2. Our local city of Redmond, Washington  USA contracts with companies 

to set up tube sensors on the road to count the number of vehicles passing in a given 

 
Figure 2: We analyzed 40 intersections shown by the black squares in Redmond, 

Washington USA. 



 

period of time. With tube sensors deployed on all roads approaching and departing an 

intersection, it is possible to compute the number of vehicles that took any given 

departure road for any given approach road. The counts for each intersection are split 

by the approach road, date, and period of the day (morning, midday, evening). Figure 

1 shows example counts for one approach to one intersection during the evening of 

one day. The turn proportions, which we are ultimately trying to predict, are 

computed in the obvious way from the count data. Since count data is not available at 

all intersections in the world, our algorithm seeks to compute the proportions using 

other data. Turn count data can also be derived from cameras [8]. 

The turn data we used is available on our city’s Web site [2] as a pdf file. A sample 

of the file is shown in Figure 3. We used an optical character reader, along with some 

manual editing, to convert the pdf document into a digital spreadsheet. For the 40 

intersections we examined, there were a total of 1224 different turn count studies 

performed dating back to 1994, spread over different days and different times of day.  

2.2   Road Map 

We used a digital road map as an integral part of our prediction algorithm. Our road 

map data came from our institution’s mapping product group. It gives the geometry 
and topology of the road network. Roads are represented as road segments, where 

 
Figure 3: This is a sample of the original pdf file containing the turn count data 

that we used. We subjected it to an OCR program to extract the numbers. 

  
(a) (b) 

Figure 4: (a) The black dots mark the centers of the 83,353 road segments we used 

in our analysis.  (b) Close-up 



 

each is typically a short section of road that goes between two intersections. Road 

segments can also terminate at road name changes and dead ends. Almost all the 

segments go between two connected intersections, and the average length of a road 

segment in our area of interest was 131 meters. Each road segment contains its length, 

approximate speed limit, and allowable driving directions (i.e. one-way vs. two-way). 

The two ends of each road segment contain a list of attached road segments, thus 

representing the road network as a classic graph with nodes (intersections) and edges 

(road segments). 

Our turn prediction algorithms, detailed subsequently, look at the driving times 

between pairs of road segments to assess which ones are closest in time after each 

turn choice. Toward this end, we need to know about the locations and driving times 

on the roads in our area of interest. Since we do not have the storage nor 

computational power to look at all the road segments in our digital map, which covers 

North America, we limited our analysis to a 45km × 45km square approximately 

centered on the 40 intersections we analyzed. The centers of the 83,353 road segments 

in this square are shown in Figure 4(a), with a close-up in Figure 4(b). 

We used these road segment centers for two purposes. One was to anchor the text 

description of the intersections in the pdf file (Figure 3) with a digital representation 

that we could compute with. Specifically, for 40 intersections listed in the pdf file, we 

manually clicked on our map of road segment centers to indicate the road segments 

corresponding to the intersection’s approach and departure roads. The second use of 

the road segment centers was to compute driving times between all pairs of road 

segment centers. For this we used the standard Dykstra algorithm, with the cost of 

driving each road segment computed as the time to traverse it driving at its speed 

limit. With          road segments, there were  (   ) driving times to 

compute, or about 7 billion. Note that the driving time between two road segments 

depends on which segment is the start point due to one-way road restrictions. We 

computed these driving times on a 100-node computing cluster over a period of about 

one week and stored the results in a database. In the end, this computation gave us a 

  
(a) (b) 

Figure 5: Map (a) shows our area of interest. The dots in (b) are shaded 

proportionately with the computed driving time from a point near the center of the 

map. Darker shading indicates a longer drive. 



 

table of driving times between any pair of roads segments in our area of interest. A 

visualization of the driving times from a point near the center of our map is shown in 

Figure 5. 

These driving times were an integral part of our basic prediction algorithm, which 

we describe in the next section. 

3   Turn Proportion Prediction: Basic Algorithm 

Our basic turn prediction algorithm stems from the assertion that drivers rarely turn 

down dead-end roads, because there are not many destinations available there. This is 

illustrated in Figure 1, where measurements show that drivers rarely chose to drive 

into the small loop to the west of the intersection. A second assertion is that drivers 

take the most efficient route, in terms of time, to their destination. We know there are 

exceptions to both these assertions, but they do lead to a simple algorithm that works 

well. 

The schematic diagram in Figure 6(a) is the basis of a simplified example to 

explain our algorithm. The black lines are roads forming an intersection. Entering the 

intersection from the approach road to the south, a driver has three choices about 

which departure road to chose: west (left turn), north (straight ahead), and east (right 

turn). Each circle on the roads represents the center of a road segment, and the driver 

is currently on the road segment marked with an uppercase X, traveling north toward 

the intersection. (In actuality, road segments are normally separated by intersections, 

but we omit the other intersections in this schematic for simplicity.) 
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(a) (b) 

Figure 6: (a) A schematic intersection for explaining our prediction algorithm. 

The driver is on road segment X and will go toward W, N, or E with probability 

proportional to the number of destinations along each direction. (b) For the 

intersection in Figure 1, the black dots show the destinations reachable most 

efficiently for a turn to the north, and the white dots for a turn to the south. The 

four barely visible gray dots show the destinations for going straight through the 

intersection. 



 

Importantly, we assume that each road segment represents a possible destination 

for the driver. Clearly this is not exactly correct, since a single road segment may 

contain zero or several actual destinations, like stores, houses, etc.. We attempt to 

mitigate this problem in the first variation of our basic algorithm. But, using this 

assumption, the centers of the road segments in the schematic diagram serve as 

possible destinations for the driver, and we assume the driver is headed toward one of 

them along the most time-efficient route. Our goal is to assign a symbol to each 

possible destination where the symbol corresponds to which way the driver would 

turn at the intersection to get there most efficiently in terms of time. For instance, in 

the schematic, some destinations are marked “e”, meaning the driver would turn east 
(right) to get to those in the least possible time. 

To assign a symbol, we compute the most efficient turn that it would take to get 

there, and assign the symbol according to that turn. Referring to the schematic, we 

compute the time cost of each turn from the approach road segment X to the three 

departure roads, marked with uppercase W, N, and E. These time costs are X→W 

(left), X→N (straight), and X→E (right), which come from the driving time 

computations described in the previous section. Of course, these time costs are 

relatively short, usually a few seconds, because the points are so close together. In the 

schematic, there is an unassigned road segment marked with y. To assign a symbol to 

this segment, we compute the time cost of driving to it via each of the three possible 

turns. These time costs are X→W→y, X→N→y, and X→E→y. We find the 
minimum of these time costs and give the corresponding symbol to y, which in this 

case would be e, because X→E→y is the minimum time cost. 

We also check to see if a candidate destination can be reached more efficiently by 

making a U-turn. In the schematic, these are marked “s”, which means that X→s was 
less than going through any of W, N, and E. 

The predicted turn proportions are simply the proportion of destinations marked 

with the same symbol. In the schematic, there are three destinations marked W or w, 

two marked N or n, and four marked E or e (including the just-assigned y). Thus the 

predicted turn proportions would be W: 3/9, N: 2/9, and E: 4/9. We do not include the 

U-turn destinations, because U-turns are rare. 

Figure 6(b) shows results from this basic algorithm applied to real data for the 

intersection shown in Figure 1. The black dots are reachable most efficiently by 

turning north, and these make up 73.23% of the total dots. The white dots (22.28%) 

are reachable most efficiently by turning south. The four barely visible gray dots 

(0.02%) are reachable most efficiently by going straight. Note that the dots do not 

cover all the possible destinations shown in Figure 4(a), because many of the dots are 

reachable most efficiently by making a U-turn. People familiar with the area would 

recognize that a U-turn leads quickly to a highway, which is the most efficient way to 

get to destinations on the western side of the map, where there are no dots in Figure 

6(b). 

Processing all turn reports, the median absolute error between our predicted 

proportions and the actual proportions was 0.219. If we process only the reports from 

the most recent day for each intersection, then the median absolute error drops 

slightly to 0.192. This is likely because the more recent data reflects changes in the 

road network, e.g. new roads and closed roads. 



 

4   Normalizing Out Destination Density: Triangles Variation 

One potential problem with our basic algorithm is the non-uniform density of the road 

segments that we use to represent destinations. A neighborhood with many 

intersections will have more road segments, and will thus artificially inflate the 

attractiveness of turning toward it. This non-uniformity is apparent in the road 

segment centers shown in Figure 4(b). 

One way to alleviate this problem is to create a uniform tessellation of the map to 

normalize the density of the road segments. A convenient tessellation is the 

Hierarchical Triangular Mesh (HTM) [9], which uses a covering consisting of 

triangles, as shown in Figure 7. Different levels of the hierarchy give different, nearly 

uniform sized triangles. Figure 7 shows level 12, and the triangles covering our area 

of interest have an average area of 5.1 square kilometers. To move to a finer level in 

the hierarchy, each triangle at the current level is split into four smaller triangles. For 

our experiment, we used level 12, which covered our region of interest with 640 full 

or partial triangles. 

In the basic algorithm, destinations (road segments) are associated with the turn 

direction that gives the most time efficient route to the destination. (Destinations that 

are most efficiently reachable by a U-turn are eliminated.) Each associated destination 

casts a vote for its associated turn direction, and the votes are normalized to get turn 

proportions. In this new variation of the algorithm, triangles cast votes instead of 

destinations. More specifically, a triangle casts one vote for a turn direction if it 

contains one or more destinations that are associated with that turn direction. If a 

triangle contains destinations associated with more than one turn direction, it casts 

one vote for each turn direction. 

With this technique, a densely clustered set of destinations should not become 

over-represented in the final result. In fact, the algorithm modification helps, but only 

slightly. The median proportion error for the modified algorithm was 0.198 compared 

  
(a) (b) 

Figure 7: For our region of interest in (a), (b) shows the 640 level 12 triangles of 

the Hierarchical Triangular Mesh. The average area of these triangles is 5.1 

square kilometers. 



 

with 0.219 for the basic algorithm. Using only the most recent turn counts at each 

intersection, the modified algorithm improved the median error from 0.192 to 0.183. 

5   Considering Trip Time Expectations: Trip Times 

     Probabilities Variation 

We felt justified in limiting our set of candidate destinations to a certain local area, 

because we know that most vehicle trips are not overly lengthy. In fact, statistics from 

the U.S. 2001 National Household Transportation Survey (NHTS) [4] give the 

histogram of driving times for typical trips shown in Figure 8. It seems natural to 

reduce the effect of candidate destinations that are far away from the intersection in 

question, since there is a smaller chance of them being the driver’s actual destination. 
This is the modification we explore in this section. 

While the black bars in Figure 8 give the probabilities of trips of certain lengths, 

the drivers we are trying to model have already begun their trip. We do not know how 

long they have been already driving, so we cannot apply a simple trip time 

distribution to their candidate destinations. Instead, we must compute a distribution of 

remaining trip time, given that we do not know the elapsed time. 

We derived a probability distribution of remaining trip times by imagining two 

random choices: 

 

1) The driver chooses a trip time according to the trip time distribution in Figure 8 

(black bars). Of course drivers do not consciously chose a trip time when they begin a 

trip, but the NHTS says that their actual trips do implicitly follow the distribution. 

 

2) The imaginary observer picks a random observation time uniformly distributed 

from zero to the driver’s total trip time. For our scenario, this is the time at which the 

driver reaches the intersection in question. 

 
 

Figure 8: The black bars show a distribution of trip times from [4]. The gray bars 

show a distribution we derived giving the amount of time remaining in a trip if the 

elapsed time is not known. 
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With these two random variables, the distribution of remaining trip times is computed 

as the gray bars in Figure 8. Note that the distribution of remaining times skew less 

than the distribution of trip times. In fact, not counting the ambiguous “>39” bin, the 
mean trip time is 16.9 minutes, while the mean remaining trip time is 12.2 minutes. 

This matches our intuition in that a driver’s remaining trip time will always be less 
than the total trip time, unless the trip was observed at the beginning. 

We used the probabilities of remaining trip times to modulate the voting weight of 

destinations associated with different turn directions. Recall that in the basic 

algorithm, all destinations associated with a given turn direction had an equal vote for 

that turn direction. In this modified algorithm, for a given candidate destination, we 

first find the driving time to that destination from the point of the intersection. This is 

the remaining driving time. We use this to look up the probability of that destination 

from our probability distribution of remaining trip times. This probability is the 

destination’s vote magnitude. We normalize these magnitudes to compute predicted 

turn proportions. The overall effect of this scheme is to reduce the weight of votes 

from distant destinations that the driver is unlikely to have chosen as a destination. 

Using the same test data as for the previous two algorithms, the median proportion 

error of this algorithm variation was 0.204, slightly better than the basic algorithm, 

but slightly worse than the triangles algorithm. Using only the most recent turn data 

from each intersection, the median error was 0.183, the same as the triangles 

algorithm, and better than the basic algorithm’s 0.192. 

6   Trip Time Weights: Trip Time Weights Variation 

The algorithm above using trip time probabilities showed that considering trip times 

improved performance over the basic algorithm. This algorithm weighted each 

destination by the probability of the remaining trip time. We also investigated a 

weighting that simply applied a decaying exponential to the trip times. After 

associating a candidate destination with a turn choice, that destination’s vote for the 
turn was computed as      where   is the computed driving time in seconds. This has 

the effect of down-weighting more distant destinations. After sweeping through 

possible values of  , we found that values in the range [0.00,0.05] worked best. 

Figure 9 shows the median proportion error for our 40 test intersections as a function 

of  . Note that these values were computed with only the most recent turn counts for 

each intersection. The minimum occurs at        , which gave a median error of 

0.142. For all the turn counts, including the older reports, the median error was 0.163. 

Both of these are better than the basic algorithm, whose corresponding median errors 

were 0.219 and 0.192. 



 

7   Discussion 

 

The performance of the basic algorithm and the three variations, triangles, trip time 

probabilities, and trip time weights, is summarized in Table 1 and Figure 10. From 

these it is apparent that the basic algorithm works fairly well, and that the first two 

variations help slightly. The fact that the basic algorithm works as well as it does 

supports our original assertion that the number of available destinations that are 

  
(a) (b) 

Figure 10: These are the cumulative error distributions in proportion predictions 

for the basic algorithm and three variations. (a) shows the error for all the turn 

count reports, and (b) shows the error for only the most recent daily report(s) from 

each intersection. 
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Figure 9: This shows the median proportion error as a function of the exponential 

weighting factor a using only the most recent turn reports from each intersection. 

The minimum error is 0.142 at a=0.018. 
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efficiently reachable after a turn is a good indication of the turn’s popularity. There is 

a slight improvement in performance when using only the most recent turn count data, 

which is likely because newer turn counts represent the most current configuration of 

the road network. 

It is somewhat surprising that two of the more sophisticated versions of the 

algorithm, Triangles and Trip Time Probabilities, improved performance only 

slightly. The triangle algorithm compensates for the uneven density of destinations, 

but it may be that, given enough destinations, the density approaches uniform 

anyway. The trip time probabilities algorithm was designed to account for the 

expected distribution of trip times. It may be that the intersections we chose to study 

did not represent uniform samples of drivers’ elapsed trip times. This problem is 
plausible, since our intersections were near a retail center and a large office campus, 

both of which are likely the start or end points of driving trips. 

The last variation of our algorithm, Trip Time Weights, worked best. This 

algorithm encodes our intuition that distant destination candidates are less important 

that nearby ones. It also demonstrates the advantage of having an adjustable 

parameter (the constant   in the exponent) to optimize over. 

Other variations of our basic algorithm may work better. Some candidate 

destinations may be much more attractive than others. Our Trip Times Probabilities 

algorithm variation tried to assess the relative attractiveness of destinations based on 

their distance in time, with nearby destinations being generally more attractive. But, 

other attractiveness factors are probably more predictive, and their attractiveness 

likely varies by the time of day and the day of the week. On weekdays, commuters 

drive toward easily describable types of destinations in the morning and evening. 

Likely more popular on weekends are restaurants and entertainment venues. The 

locations of different types of businesses as potential destinations are available via 

digital Yellow Pages listings. An analysis of GPS traces or even machine learning on 

turn counts could be used to discern drivers’ destination preferences. This would 

probably lead to skewed results using our limited data, however, since we had only 40 

intersections in a fairly limited area. In fact, being familiar with the region, the two 

dominant destinations are a shopping mall and a large software maker. 

8   Conclusion 

This paper presented algorithms that predict drivers’ turn proportions at road 

intersections. This can be a useful adjunct to algorithms that predict a driver’s route, 

Table 1: Median proportion errors with different algorithm variations and different 

data sets. Performance is generally better using only the most recent turn count 

data. “Trip Time Weights” performs best. 
  Algorithm 

  Basic Triangles Trip Time 

Probabilities 

Trip Time 

Weights 

Median 

Error 

All Turn 

Counts 
0.219 0.198 0.204 0.163 

Most Recent 

Turn Counts 
0.192 0.183 0.183 0.142 

 



 

which is in turn useful for giving advanced warnings and advertising. The basic 

algorithm is based on the assumption that drivers tend to turn toward directions that 

give them more possible efficiently reachable destinations. Using road segments as 

candidate destinations, along with a table of drive times between these destinations, 

our basic algorithm finds which destinations are most efficiently reachable via each 

possible turn direction. One variation of the basic algorithm, called Triangles, 

attempts to normalize out the effects of variations in the density of candidate 

destinations. Another variation, called Trip Time Probabilitiess, weights destination 

candidates according to a distribution of drivers’ trip times. The basic algorithm 

worked well, with slight improvements from the first two algorithm variations. A 

third variation that down-weights distant destinations worked best. We speculated that 

the general approach could be improved more with a richer representation of the 

attractiveness of candidate destinations. 
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