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Abstract. Dealing with user preferences is becoming a widespread issue
in novel data-intensive application domains, such as electronic catalogs,
e-commerce, multimedia databases, and real estates. Given a set of pref-
erences, an important problem is to efficiently determine which are the
“best” objects, according to such preferences. In this paper we assume
that preferences are expressed in a qualitative way over the tuples of a
relation schema (e.g., I prefer product A to product B), which is quite
natural from the user point of view and also includes, as a proper sub-
case, quantitative preferences defined by means of a scoring function.
Starting from an analysis of basic properties of (qualitative) preferences,
we consider the Best operator, which can be used to smoothly embed
preferences in queries of relational algebra. We study general properties
of this operator and present a practical algorithm for its computation.
We show how the algorithm improves the simple nested-loops approach
and can lead to faster response times.

1 Introduction

Several modern applications nowadays are faced with the problems of manag-
ing user preferences. A remarkable example arises in e-commerce Internet sites
(marketplaces, electronic shops, and others), which provide information on thou-
sands, even millions, of products. Effectively supporting user search and browsing
over such large repositories entails the problem of properly understanding user
needs, filtering out unrelevant items, helping the user to formulate the most
appropriate queries, and presenting results ranked according to their presumed
relevance. Similar issues arise in multimedia databases, when the user looks for
objects similar to a given one. In this case, the problem is that the notion of
similarity can be a subjective one, thus the system has to “learn” it and then
to exploit the acquired knowledge about user preferences to retrieve the most
relevant objects [3].



In the database field, the problem of expressing and managing user prefer-
ences has received growing attention in the last few years [1, 4, 6, 8, 9, 11–15]. In
many approaches [1, 7–9, 12] preferences are expressed quantitatively by defining
a scoring function that is a weighted linear combination of attributes’ values
(which have therefore to be numeric). Since the scoring function associates each
tuple with a numeric score, tuple t1 is preferred to t2 if the score of t1 is higher
than the score of t2. However, it has been observed that quantitative preferences
have a limited expressive power, since they can only define linear orders over
tuples, and as such they cannot be used to model more complex patterns of
preferences [10]. For this reason qualitative preferences have also recently been
considered from database researchers [4, 6]. Rather than relying on the existence
of a scoring function, with qualitative preferences one just assumes that tuples
can be compared using some computable function that, in the typical case, de-
fines a partial order over the tuples, but in the general case it is just a binary
relation between the objects of a database.

In this paper we consider qualitative preferences and, for the sake of gener-
ality, disregard issues related to how (that is, in which language) preferences are
expressed. This means that we do not rely on any linear order on “dimensions”
or similar properties. With this in mind, we first argument about some basic
properties of qualitative preferences and clarify some issues which are relevant
for query evaluation. To this purpose, we introduce the Best operator, discuss
its properties, and then turn to consider how Best queries can be evaluated. In
particular, unlike previous works, we consider the case where not only the “best”
(i.e., highest ranked) tuples are to be computed [4, 6], but possibly also tuples
with a lower rank are to be returned. This leads us to develop a basic algorithm
whose major aim is to limit as much as possible the number of comparisons
between tuples, which in the worst case are O(n2) for a relation with n tuples.
The algorithm can also be adapted to work with cyclic preferences.

The paper is organized as follows. In Section 2 we introduce the basic notions
and investigate some general issues about preferences. In Section 3 we present the
Best operator and study its general properties. Then, in Section 4, we propose an
algorithm for computing the Best operator and discuss possible improvements
of this algorithm. Finally, in Section 5, we list a set of practical and theoretical
open issues.

Because of space limitation, the proofs of the various results are omitted and
can be found in the full paper [5].

2 Qualitative Preferences

In this section we introduce the basic notion of user (qualitative) preferences. In
order to simplify the notation, we will refer to the relational model [2] but the
various notions and results can be extended to more involved data models, like
an XML-based or an object oriented one.

We denote by R(X) a relation scheme, where R is the name of the relation
and X = A1, . . . , Ak is a set of attributes. We also assume that each attribute



A ∈ X has associated a set of values D called the domain of A. A tuple t over
a scheme R(X) associates with each A ∈ X a value taken from its domain. A
relation r over a scheme R(X) (also called an instance of R(X)) is a finite set
of tuples over R(X).

Preferences over a relational scheme R(X) can be naturally expressed by a
collection of pairs of tuples over R(X): each pair specifies the preference of one
tuple over another one.

Definition 1 (Preference relation). A (qualitative) preference relation �
over a relational scheme R(X) is a binary relation over

∏k
i=1 Di. We denote a

single preference (t1, t2) ∈ � by t1 � t2 and say that t1 is preferable to t2.

Example 1. Let us consider the following relation.

Make Model Color Price
t1 BMW 330 Black 30K
t2 Ford Escort White 20K
t3 Toyota Corolla Silver 15K
t4 Ferrari 360 Red 100K

A set of qualitative preferences over it, possibly expressed by a potential cus-
tomer, can be the following: t1 � t2, t3 � t2, t4 � t1 and t3 � t1.

A preference relation can be naturally represented by means of a directed
graph G� that we call preference graph. In this graph, nodes correspond to
tuples and there is an edge from a node t1 to a node t2 if t1 � t2. For instance,
the preference graph for Example 1 is reported in Figure 1. It is remarkable that
several properties of preference relations can be expressed and studied in terms
of properties of the corresponding graph.

t1

t2

t3t4
Fig. 1. A preference graph

Note that Definition 1 does not put any a priori hypothesis on the binary
relation �. Usually, in many applications, � is at least a (strict) partial order,
i.e. � is irreflexive (we never have t �� t), asymmetric (we never have both
t1 � t2 and t2 � t1), and transitive (if t1 � t2 and t2 � t3 then also t1 � t3).
Intuitively, while reflexivity does not make sense in this context, asymmetry
prevents “inconsistencies” among preferences and transitivity yields a simple
way to infer preferences.

In some practical cases, however, both asymmetry and transitivity may fail
to hold. For instance, when preferences are obtained by taking into account
single properties of tuples. Consider as a simple example the following symmetric
preferences: I like Ferrari more than Toyota, but Toyota is preferable to Ferrari
for its price. Similarly, as an example of nontransitive preferences, consider the



following: I prefer the color of car t1 to the color of car t2, and the model of car
t2 to the model of car t3, but I have no reason to prefer car t1 to car t3. Since
however symmetric and, more in general, cyclic preferences (t1 � t2 � . . . tn � t1
for some finite n) lead to ambiguous situations, we introduce a “stronger” notion
of preference under which a tuple t1 is preferable to a tuple t2 only if the converse
does not hold.

Definition 2 (Strong preference relation). Given a preference relation �
over R(X), we say that t1 is strongly preferable to t2, denoted by t1 �� t2, if
and only if t1 � t2 and t2 �� t1.

Example 2. Consider the relation of Example 1 and assume that t1 � t2, t3 � t2,
t2 � t4 and t2 � t1. Then we have t3 �� t2 and t2 �� t4, but t1 ��� t2 and
t2 ��� t1.

A strong preference relation is a preference relation itself for which we can show
that if � is transitive then �� is a partial order.

Two other natural notions among tuples can be derived from the above defi-
nitions. The first one is called indifference since it holds between tuples for which
an explicit preference does not exist. More precisely, we say that t1 is indifferent
to t2 (written t1 ‖ t2) iff neither t1 � t2 nor t2 � t1 hold.

The notion of likeness concerns those tuples for which the given preferences
do not allow us to establish that one is better than the other. In particular, we
say that t1 is like t2 (written t1 ≈ t2) if both t1 � t2 and t2 � t1 hold.

Example 3. Consider again the relation of Example 1 and assume that now the
set of preferences is: t1 � t2, t4 � t1, t3 � t2, t4 � t2 and t2 � t1. Then we have
t1 ‖ t3, t3 ‖ t4 and t1 ≈ t2.

It is interesting to note that even if � is a partial order, the indifference
relation is not necessarily transitive. Consider for instance the case in which we
simply have: t1 � t2 and t3 � t4 which is trivially a partial order. Then t1 ‖ t3,
t3 ‖ t2 but t1 and t2 are not indifferent. In this case, it is probably inappropriate
to call it indifference since it would actually represent incomparability among
tuples. Conversely, it is easy to show if � is transitive then ≈ is an equiva-
lence relation, that is, it is a reflexive, symmetric and transitive relation. For its
practical relevance it is also useful to consider the transitive closure, �∗, of a
preference relation �.

3 Querying with Preferences

In this section we present and investigate an operator that, combined with the
standard operators of relational algebra [2], can be used to specify queries over
a database with preferences. This operator is called Best (denoted by βm� ) its
behavior is quite natural: β1

�(r) returns all the tuples t of a relation r for which
there is no tuple in r better than t according to �. If the user is not satisfied
from the basic result, this operation can be applied iteratively: at each step it
returns the best tuples of r, excluding the tuples retrieved in previous steps.



Definition 3 (Best operator). Let r be a relation over a scheme R(X) and
let � be a qualitative preference relation over R(X). The Best operator βm� of
rank m > 0 is defined as follows:

– β1
�(r) = {t ∈ r | �t′ ∈ r, t′ � t}

– βm+1
� = β1�(r − ⋃m

i=1 βi�(r))

Example 4. Consider the preferences of Example 1: t1 � t2, t3 � t2, t4 � t1 and
t3 � t1. Then we have β1

�(r) = {t4, t3}, β2
�(r) = {t1} and β3

�(r) = {t2} .

Used together with the other operators of relational algebra, the Best oper-
ator can be profitably used in queries where preferences are taken into account.

Example 5. Let us consider again Example 1. The Make and the Model of the
best cars, according to the given preferences, whose price is less than 50K can
be obtained by the following expression: πMake,Model(β1

�(σPrice<50K (r))).

We now consider some interesting properties of the Best operator. The first
one establishes that the Best operator is somehow insensitive on the transitivity
of �.

Theorem 1. Let � be a preference relation over a scheme R(X), then for each
instance r of R(X) and each i > 0, βi�(r) = βi�∗(r).

Other interesting properties of the Best operator can be defined and checked
by considering the directed graph G� associated with the preference relation �.
We recall that a source of a graph is a node with no incoming edges, a path is
a sequence of nodes connected by edges, the length of a path composed by n
nodes is n − 1. We have the following results.

Lemma 1. Let � be a preference relation and G� be its preference graph.

1. β1
�(r) returns the sources of G�.

2. If G� is acyclic then, for every t ∈ r, t ∈ βk+1
� (r) where k is the length of

the longest path from any source of G� to t.
3. The fixpoint of G� is equal to the length of the longest path from any source

of G� to a node of G� involved in a cycle.
4. If G� is acyclic then the fixpoint of βm

� (r) is equal to the length of the longest
path in G�.

4 Evaluating the Best Operator

In this section we propose an algorithm for computing the Best operator, demon-
strate its correctness, and discuss possible improvements of this algorithm. Ini-
tially, we assume that the preference relation is a partial order. By Theorem 1,
the assumption of transitivity does not imply a loss of generality, whereas the
hypothesis of asymmetry (as well as irreflexivity) will be later relaxed.



Let us start with a basic result that fixes a lower bound for the computation
of the Best operator. The basic operation in this computation consists in verify-
ing whether a tuple is preferable to another: we assume that this task requires
constant time. Thus, the time computational complexity will be measured in
terms of the number of such comparisons.

Theorem 2. The computation of the Best operator requires O(n2) time in the
worst case, where n is the cardinality of r.

We point out that the above result is valid not only for the first application
of the Best operator but for the whole computation, which may require several
iterations, until a fixpoint is reached.

Now, although in some cases O(n2) comparisons are necessarily needed to
completely determine the result of the Best operator, it is also true that the
actual computational effort might strongly depend on (the structure of) the
preference relation and on how an algorithm is able to exploit it. Although
a nested-loops algorithm can be easily applied here [4], it is evident that it
will perform poorly in the general case, since it will execute O(n2) comparisons
regardless of the underlying preference relation.

We now present an algorithm that, unlike nested-loops, can compare tuples
multiple times, but it can achieve much faster response times because of the way
it organizes its search space.

Let us consider a relation r and a preference relation � that is a partial order.
The algorithm for the evaluation of βi�(r) is composed by a number of phases,
one for each iteration of the Best operator. In turn, each phase consists of a set
of one or more scans over a set Ci of candidate tuples which might belong to
the output Outi of the i−th phase. At the end of each scan only one tuple is
selected and inserted into Outi .

First phase In the first phase we set C1 = r. Each tuple of C1 is extracted and
processed, in any order but one at time. Let t be first tuple extracted from C1

in the first scan, which temporarily plays the role of selected tuple. We compare
t with another tuple t′ extracted from C1. Three cases are possible:

1. t‖ t′: in this case we just put t′ in a set U1 of unresolved tuples and t remains
the selected tuple;

2. t � t′: in this case we put t′ in a set Dt�, which contains the tuples dominated
by t according to �, and t remains the selected tuple; if t′ belongs to another
set Dt′′

� it is deleted from it;
3. t′ � t: in this case t′ becomes the selected tuple and t is added to the set

Dt′
�, which contains the tuples dominated by t′ according to �; if t belongs

to another set Dt′′� , it is deleted from it.

The algorithm proceeds by processing in this way all the tuples in C1.
Let t be the selected tuple we get at the end (that is, when C1 = ∅). We can

show that there is no tuple among all the processed ones that dominates t and
so t ∈ β1

�(r). However, there might be some tuple t′ in U1 dominated by t that



has not been compared with t. For this reason, we also compare t with all the
tuples in U1 for which this comparison has no been done yet: if a tuple t′′ in U1

is actually dominated by t, we put t′′ in the set Dt
� and delete it from U1. At the

end of this job, we finally put t in the set Out1 , in which we collect the tuples
to be returned as output of the first phase. This completes the first scan.

At this point, if U1 is not empty, we copy in C1 all the tuples in U1, we empty
U1, we select a tuple in C1 and repeat the whole procedure, i.e. execute another
scan at the end of which another tuple will be selected and inserted in Out1 .
When, at the end of a scan, we obtain U1 = ∅ the first phase is concluded.

Following phases In the second phase, we put in C2 only the tuples in the sets
Dt

�, for each t ∈ Out1. Note that this strongly reduces the search space. We then
select a tuple from C2 and proceed as in the first phase. As before, the second
phase terminates when the set U2 is empty.

The subsequent phases proceed similarly. Each phase starts by inserting in
Ci only the tuples in the sets Dt�, for each t ∈ Outi−1. We can show the following
result.

Theorem 3. The basic algorithm correctly computes the result of β� over a
relation r of cardinality n and requires O(n2) time in the worst case.

Example 6. Let r = {t1, t2, t3, t4, t5} and assume we have the following prefer-
ences: t1 � t2, t4 � t1, t4 � t2, t4 � t3, t5 � t2 and t5 � t3. Initially, we set
C1 = r. Let t1 be the first tuple extracted from C1 and so the initial selected
tuple. If we now extract t2, t1 remains the selected tuple as t1 � t2 and we set
Dt1� = {t2}. Assume we now extract t3: since t1 and t3 are indifferent, t1 remains
again the selected tuple and we set U1 = {t3}. If we then extract t4, this tuple
becomes the selected tuple as t4 � t1 and we set Dt4� = {t1}. Finally, we extract
t5 from C1 that is indifferent to t4 and so we set U1 = {t3, t5}. We now need
to compare t4 with t3, which is in U1 and has not been compared with it. Since
t4 � t3, we add t3 to Dt4� , we delete it from U1, and set Out1 = {t4}. We now
repeat the procedure by setting C1 = U1 = {t5}. Since now C1 is a singleton,
we just set Out1 = {t4, t5} and since U1 = ∅, this conclude the first phase. In
the second phase we put in C2 only the tuples in Dt4� , that is: t1 and t3, and
proceed similarly. Since t1 and t3 are indifferent, we get Out2 = {t1, t3} and also
the second phase is concluded. We then have C3 = {t2} and so we immediately
obtain Out3 = {t2}. The algorithm terminates here as Dt2� = ∅.

Several variants of the basic algorithm can be defined for the purpose of
taking into account more general cases and of improving its efficiency.

Let us first consider the case in which � is neither asymmetric nor irreflexive.
The most effective way to deal with this case is to resort to the �� relation, under
which two tuples t1 and t2 such that t1 ≈ t2 are returned in the same iteration
of the Best operator.

The algorithm can be modified accordingly: at each iteration of the i-th
phase, we keep a set of selected tuples Si instead of just one tuple. When a tuple
t′ is extracted from the set Ci, we compare t′ with one tuple t in Si. Then, besides



the three cases considered in the basic algorithm, we can also have t ≈ t′. In this
case, we just add t′ to Si. In the other cases, we proceed as in the basic version
of the algorithm, with the only difference that if t′ � t, we set Dt′

� = Dt′
�∪Si and

Si = {t′}. Note that, as before, only one comparison is needed at each iteration
with a representative in Si. This is because ≈ is an equivalence relation.

With respect to the efficiency of the algorithm, we note that the crucial
operation of the algorithm consists in the extraction of a tuple from the set Ci

of candidates. Then, performance can be improved with an appropriate choice
of such a tuple based on the preference relation itself. Differently from what it
might appear at first sight, it turns out that is convenient to extract tuples form
Ci in reversed order of preference. In fact, in this way, the selected tuple changes
frequently and, as a consequence, dominated tuples are distributed among several
sets Dt�. It follows that the cardinality of such sets is minimized. Since the set of
candidate tuples is obtained at each phase as union of the sets Dt

�, for each t in
the output of the previous phase, this in turn implies a reduction of the search
space.

Another improvement can be obtained by employing special properties of
relation ‖. For instance, when ‖ is an equivalence relation. In this case, if at a
certain iteration of the i-th phase t is the selected tuple and we find t′ � t, t′

becomes the selected tuple and we can set Dt′
� = Dt′

� ∪ {t} ∪ Ui and empty Ui.
We can show that with this change the correctness of the algorithm is preserved
and the number of comparisons is generally reduced.

5 Final Discussion

In this paper we have considered the problem of querying database relations
when qualitative preferences are defined over them. Starting from an analysis of
basic properties of (qualitative) preferences, we have introduced and studied the
Best operator, which can be used to embody preferences in queries. Although
the computation of this operator has an inherent quadratic complexity, much
better results can be obtained depending on the structure of preferences. To this
end, since the only available algorithm for qualitative preferences was based on
a nested-loops evaluation style, we have introduced an algorithm that tries to
limit the number of comparisons among tuples by reducing the “search space”
at each iteration.

Starting from this algorithm, a number of open problems remain to be solved.
We list only a few of them.

– Devising a disk-based algorithm for computing the Best operator on large
relations appears to be a challenging problem. For the efficient management
of the Dt

� sets of dominated tuples a paged index could be considered.
– From a theoretical point of view it would be useful to identify specific pat-

terns of preferences and characterize the algorithm complexity accordingly.
– Devising a specific strategy for performing an effective scan over the set of

candidate tuples is also a relevant issue. This seems to be tightly related to



the theoretical problem of the minimum number of comparisons needed to
infer a partial order.
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