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Abstract

Let G be a non-trivial group, S ⊆ G \ {1} and S = S−1 := {s−1 | s ∈ S}.
The Cayley graph of G denoted by Γ(S : G) is a graph with vertex set G and two
vertices a and b are adjacent if ab−1 ∈ S. A graph is called integral, if its adjacency
eigenvalues are integers. In this paper we determine all connected cubic integral
Cayley graphs. We also introduce some infinite families of connected integral Cayley
graphs.

1 Introduction and Results

We say that a graph is integral if all the eigenvalues of its adjacency matrix are integers.
The notion of integral graphs was first introduced by Harary and Schwenk in 1974 [12].

In 1976 Bussemaker and Cvetković [7], proved that there are exactly 13 connected
cubic integral graphs. The same result was independently proved by Schwenk [16] who
unlike the effort in [7] avoids the use of computer search to examine all the possibilities.
However the work of Schwenk [16] was inspired and stimulated by Cvetković attempt [9]
to find the connected cubic integral graphs where he had displayed twelve such graphs,
and had restricted the remaining possibilities to ninety-five potential spectra, Schwenk
has produced a complete and self-contained solution.

It is known that the size of a connected k-regular graph with diameter d is bounded

above by k(k−1)d
−2

k−2
(see, for example [10]). In [9], it is noted that if we know the graph is

integral then d 6 2k because there are at most 2k +1 distinct eigenvalues. Consequently,
the upper bound of the size of a connected k-regular integral graph is

n 6
k(k − 1)2k − 2

k − 2
.
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Using Brendan McKay’s program geng for generating graphs, nowadays it is easy to
see that there are exactly 263 connected integral graphs on up to 11 vertices (see [3, 4]).
In 2009 Alon et al. [1] show that the total number of adjacency matrices of integral

graphs with n vertices is less than or equal to 2
n(n−1)

2
−

n

400 for a sufficiently large n. For
the background and some known results about integral graphs, we refer the reader to the
survey [5].

The problem of characterizing integral graphs seems to be very difficult and so it is
wise to restrict ourselves to certain families of graphs. Here we are interested to study
Cayley graphs. Let G be a non-trivial group with the identity element 1, S ⊆ G \ {1}
and S = S−1 := {s−1|s ∈ S}. The Cayley graph of G denoted by Γ(S : G) is the graph
with vertex set G and two vertices a and b are adjacent if ab−1 ∈ S. If S generates G
then Γ(S : G) is connected. A Cayley graph is simple and vertex transitive.
We denote the symmetric group and the alternating group on n letters by Sn and An,
respectively. Also Cm and D2n are used for the cyclic group of order m and dihedral group
of order 2n (n > 2).
The main question that we are concerned here is the following:
Which Cayley graphs are integral?
It is clear that if S = G\{1}, then Γ(S : G) is the complete graph with |G| vertices and so
it is integral. Klotz and Sander [14] showed that all nonzero eigenvalues of Γ(Un : Zn) are
integers dividing the value ϕ(n) of the Euler totient function, where Zn is the cyclic group
of order n and Un is the subset of all elements of Zn of order n. W. So [17] characterize
integral graphs among circulant graphs. By using a result of Babai [2] which presents the
spectrum of a Cayley graph in terms of irreducible characters of the underlying group, we
give some infinite families of integral Cayley graphs.
The study of Cayley graphs of the symmetric group generated by transpositions is interest-
ing (See [11]). In this paper we show Γ(S : Sn) is integral, where S = {(12), (13), . . . , (1n)}
and n ∈ {3, 4, 5, 6}. We also characterize all connected cubic integral Cayley graphs and
introduce some infinite family of connected integral Cayley graphs.
The main results are the following.

Theorem 1.1 There are exactly seven connected cubic integral Cayley graphs. In par-
ticular, for a finite group G and a subset S = S−1 6∋ 1 with three elements, Γ(S : G) is
integral if and only if G is isomorphic to one the following groups: C2

2 , C4, C6, S3, C3
2 ,

C2 × C4, D8, C2 × C6, D12, A4, S4, D8 × C3, D6 × C4 or A4 × C2.

Theorem 1.2 Let D2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m + 1, d | n (1 < d < n)
and S = {ak | k ∈ B(1, n)} ∪ {adk | k ∈ B(1, n

d
)} ∪ {bak | k ∈ B(1, n)} ∪ {badk | k ∈

B(1, n
d
)}. Then Γ(S : D2n) is integral.

Theorem 1.3 Let T4n = 〈a, b | a2n = 1, b2 = an, b−1ab = a−1〉, n = 2m + 1 (n 6= 1) and
S = {ak | 1 6 k 6 2n − 1, k 6= n} ∪ {ab, an+1b}. Then Γ(S : T4n) is integral.

Theorem 1.4 Let U6n = 〈a, b | a2n = b3 = 1, a−1ba = b−1〉, n = 2m + 1 (n 6= 1) and
S = {a2kb | 1 6 k 6 n − 1} ∪ {a2kb2 | 1 6 k 6 n − 1} ∪ {a2k+1b | 0 6 k 6 n − 1}. Then
Γ(S : U6n) is integral.
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2 Preliminaries

First we give some facts that are needed in the next section. Let n be a positive integer.
Then B(1, n) denotes the set {j | 1 6 j < n, (j, n) = 1}. Let ω = e

2πi

n and

C(r, n) =
∑

j∈B(1,n)

ωjr, 0 6 r 6 n − 1. (2.1)

The function C(r, n) is a Ramanujan sum. For integers r and n, (n > 0), Ramanujan
sums have only integral values ( See [15] and [18]).

Lemma 2.1 Let ω = e
πi

n , where i2 = −1. Then

i)
2n−1
∑

j=1

ωj = −1.

ii) If l is even, then
n−1
∑

j=1

ωlj = −1.

iii) If l is odd, then
n−1
∑

j=1

ωlj + ω−lj = 0.

Proof. The proof is straightforward. �

Lemma 2.2 Let G = Cn = 〈a〉, d | n (1 < d < n) and Ad = {adk | k ∈ B(1, n
d
)}. Then

A−1
d = Ad.

Proof. Let n = dk′ and adk be an arbitrary element of Ad. Since (k − k′, k′) = 1 and
(adk)−1 = an−dk = adk′

−dk = a(k′
−k)d, (adk)−1 ∈ Ad. So A−1

d ⊆ Ad. It is easy to see that
|A−1

d | = |Ad|. Hence A−1
d = Ad. �

Lemma 2.3 [2] Let G be a finite group of order n whose irreducible characters (over
C) are ρ1, . . . , ρh with respective degrees n1, . . . , nh. Then the spectrum of the Cayley
graph Γ(S : G) can be arranged as Λ = {λijk | i = 1, . . . , h; j, k = 1, . . . , ni} such that
λij1 = . . . = λijni

and

λt
i1 + . . . + λt

ini
=

∑

s1,...,st∈S

ρi(Π
t
l=1sl), (2.2)

for any natural number t.

Lemma 2.4 [13] Let Cn = 〈a〉. Then irreducible characters of Cn are ρj : ak 7→ ωjk,
where j, k = 0, 1, . . . , n − 1.

Lemma 2.5 [13] Let G = Cn1×· · ·×Cnr
and Cni

= 〈ai〉, so that for any i, j ∈ {1, . . . , r},
(ni, nj) 6= 1. If ωt = e

2πi

nt , then n1 · · ·nr irreducible characters of G are

ρ
l1...lr

(ak1
1 , . . . , akr

r ) = ωl1k1
1 ωl2k2

2 · · ·ωlrkr

r (2.3)

where li = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , r.
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Lemma 2.6 Let G be a group and G = 〈S〉, where S = S−1 and 1 /∈ S. If a ∈ S and
o(a) = m > 2, then Γ(S : G) has the cycle with m vertices as a subgraph.

Proof. Observe that 1 − a − a2 − · · · − am−1 − am = 1 is a cycle with m vertices. �

Lemma 2.7 Let G = 〈S〉 be a group, |G| = n, |S| = 2, S = S−1 6∋ 1. Then Γ(S : G) is
integral if and only if n ∈ {3, 4, 6}.

Proof. It is clear that Γ(S : G) is a connected 2-regular graph. Thus Γ(S : G) is the
cycle with n vertices. By checking the eigenvalues of the cycles, one can easily see that
the only integral cycles are ones with 3, 4 or 6 vertices. This completes the proof. �

Lemma 2.8 Let G be the cyclic group 〈a〉, |G| = n > 3 and let S be a generating set of G
such that |S| = 3, S = S−1 and 1 6∈ S. Then an/2 ∈ S. Also if ar ∈ S and o(ar) = m > 2,
then (n, r) = 1 or (n/2, r) = 1.

Proof. Let (n, r) 6= 1 and (n/2, r) 6= 1. Then 〈ar〉 6= G. Suppose (n/2, r) = d, where
d 6= 1, then 〈ar, an/2〉 = 〈ad〉. Since d | n, G 6= 〈ad〉. Hence 〈ar, an/2〉 6= G. This
contradicts the fact that S generates G. �

Lemma 2.9 Let G be the cyclic group 〈a〉, |G| = n > 3 and let S be a generating set
of G such that |S| = 3, S = S−1 and 1 6∈ S. Then Γ(S : G) is integral if and only if
n ∈ {4, 6}.

Proof. Let Γ(S : G) be integral. Then S = {an/2, ar, a−r}, where (n, r) = 1 or (n/2, r) =
1. If λ is the eigenvalue of Γ(S : G) corresponding to irreducible character of ρ1. Then
by Lemmas 2.3 and 2.4, λ = ρ1(a

r) + ρ1(a
−r) + ρ1(a

n/2) = 2 cos(2πr/n) − 1. Since λ is
integer, cos(2πr/n) ∈ {±1/2,±1, 0}. We consider the following cases:
Case1: Let (n, r) = 1. Then if cos(2πr/n) ∈ {−1/2,−1, 1}, then n ∈ {1, 2, 3}, which is
false. If cos(2πr/n) = 0, then n = 4 and r = 1 or 3. So S = {a, a2, a3}. If cos(2πr/n) =
1/2, then n = 6 and r = 1 or 5. So S = {a, a3, a5}.
Case2: Let (n, r) 6= 1 and (n/2, r) = 1. Without loss of generality we can assume r < n/2.
Similarly if cos(2πr/n) ∈ {−1, 0, 1/2, 1}, then r = 1, which is false. If cos(2πr/n) = −1/2,
then n = 6 and r = 2 or 4. So S = {a2, a3, a4}.
Conversely, if n = 4, then Γ(S : G) is complete graph K4 and so is integral.
If n = 6, S1 = {a, a3, a5} and S2 = {a2, a3, a4}, then by Lemmas 2.3 and 2.4, Γ(S1 : G)
and Γ(S2 : G) are integral with spectra of [−3, 04, 3] and [−22, 02, 1, 3] respectively. �

Lemma 2.10 Let G1 and G2 be two groups and G = G1 × G2 such that Γ(S : G) is
integral, where S = S−1 6∋ 1 with three elements. Let S1 = {s1 | (s1, g2) ∈ S, g2 ∈
G2} \ {1}. Then Γ(S1 : G1) is integral.

Proof. Let χ0 and ρ0 be the trivial irreducible characters of G1 and G2, respectively.
Let λi0 and λi be the eigenvalues of Γ(S : G) and Γ(S1 : G1) corresponding to irreducible
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characters of χi × ρ0 and χi, respectively. Since S generates G and S = S−1 6∋ 1 with
three elements, |S1| = 2 or 3. If |S1| = 2, then by Lemma 2.3,

λi0 =
∑

(g1,g2)∈S

(χi × ρ0)(g1, g2) =
∑

s1∈S1

χi(s1) + 1

and so λi0 = λi + 1. If |S1| = 3, then by Lemma 2.3,

λi0 =
∑

(g1,g2)∈S

(χi × ρ0)(g1, g2) =
∑

s1∈S1

χi(s1) = λi

and so Spec(Γ(S1 : G1)) ⊆ Spec(Γ(S : G)). However Γ(S1 : G1) is integral. Furthermore
if |S1| = 2, then −1 6 λi0. �

Lemma 2.11 Let G be a finite abelian group such that is not cyclic and let G = 〈S〉,
where |S| = 3, S = S−1 and 1 6∈ S. Then Γ(S : G) is integral if and only if |G| ∈ {4, 8, 12}.

Proof. Let Γ(S : G) be integral. If all of elements of S are of order two, then G = C2
2

or G = C3
2 . So |G| = 4 or 8. Otherwise G = Cm × C2 where m is even. By Lemmas

2.7, 2.9 and 2.10, we conclude that m ∈ {3, 4, 6}. Since m is even, m ∈ {4, 6}. Hence
|G| ∈ {4, 8, 12}.
Conversely, if |G| = 4, then Γ(S : G) = K4 and so is integral.
Let |G| = 8. Then G = C3

2 or C4×C2. If G = C3
2 and S = {(b, 1, 1), (1, b, 1), (1, 1, b)}, then

by Lemma 2.3, Γ(S : C3
2) is integral with spectrum of [−3,−13, 13, 3]. If G = C4 ×C2 and

S = {(a, 1), (a3, 1), (1, b)}, then by Lemma 2.3, Γ(S : C4 × C2) is integral with spectrum
of [−3,−13, 13, 3].
Let |G| = 12. Then G = C6 × C2. If S = {(a, 1), (a5, 1), (1, b)}, then by Lemma 2.3,
Γ(S : C6 × C2) is integral with spectrum of [−3,−22,−1, 04, 1, 22, 3]. �

Lemma 2.12 Let D2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m + 1, and Γ(S : D2n) be
integral, where D2n = 〈S〉, |S| = 3, S = S−1 and 1 6∈ S. Then

i) −3 is the simple eigenvalue of Γ(S : D2n) if and only if all of elements of S are of
order two.

ii) If [−3,−2l1 ,−1l2, 0l3 , 1l4, 2l5, 3] is the spectrum of Γ(S : D2n), then l1 = l4, l2 = l5
and 4 | l3. Furthermore l1, l2 are even.

iii) If n 6= 3, then Γ(S : D2n) is bipartite.

Proof. i) Let −3 be the simple eigenvalue of Γ(S : D2n). By Lemma 2.3 and using
characters table D2n, −3 is the eigenvalue of Γ(S : D2n) corresponding to irreducible
character χm+1. So all of elements of S are in conjugacy class of b.
Conversely, if all of elements of S are of order two, then S ⊆ b (the bar indicates conjugacy
class). By Lemma 2.3 and using characters table of D2n, the eigenvalue of Γ(S : D2n)
corresponding to irreducible character χm+1 is −3.
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ii) Since −3 is the simple eigenvalue of Γ(S : D2n), S ⊆ b. By Lemma 2.3 and
using characters table of D2n, the eigenvalues of Γ(S : D2n) corresponding to irreducible
characters χj (1 6 j 6 m), are negative. Thus l1 = l4 and l2 = l5. Furthermore since the
multiplicity of the eigenvalues of corresponding to irreducible characters of degree two is
2, l1 and l2 are even and 4 | l3.

iii) Let ar ∈ S, where 1 6 r 6 m. It is clear that (n, r) = 1. Since n 6= 3 and
(n, r) = 1, 2 cos(2πr/n) is not integer. Let λ11 and λ12 be eigenvalues of Γ(S : D2n)
corresponding to irreducible character χ1. By Lemma 2.3 and using characters table of
D2n, λ11 +λ12 = 2 cos(2πr/n). This contradicts the fact that Γ(S : D2n) is integral. Thus
S ⊆ b and so −3 is an eigenvalue of Γ(S : D2n). Therefore, Γ(S : D2n) is bipartite. �

Lemma 2.13 Let S = {(12), (13), . . . , (1n)} and n ∈ {3, 4, 5, 6}. Then Γ(S : Sn) is
integral.

Proof. It is clear that Γ(S : S3) is a cycle with six vertices and so is integral with
spectrum of [−2,−12, 12, 2]. By using the following program written in GAP [19] and
thanks to the GRAPE package of L.H. Soicher, one can easily see that Γ(S : S4), Γ(S : S5)
and Γ(S : S6) are integral graphs with spectra as follows:

[−3,−26,−13, 04, 13, 26, 3],

[−4,−312,−228,−14, 030, 14, 228, 312, 4],

[−5,−420,−3105,−2120,−130, 0168, 130, 2120, 3105, 420, 5],

respectively.

LoadPackage("grape");

### The following function admat constructs the adjacency matrix

### of a given graph G with n vertices

admat:=function(G,n)

local B,A,i,j;

A:=[];

for i in [1..n] do

B:=[];

for j in [1..n] do

if (j in Adjacency(G,i))=true then Add(B,1); else

Add(B,0); fi;

od;

Add(A,B);

od;

return A;

end;

#### The following function listcompress converts a multiset to a set

#### of ordered pairs whose first components are exactly the

#### elements of the corresponding set to the multiset
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#### and the second one is the multiplicity of the first

#### component in the multiset

listcompress:=function(L)

local l;

l:=Set(L);

return List(l,i->[i,Size(Filtered(L,j->j=i))]);

end;

## Example: Computing the spectrum of the Cayley graph of

## the symmetric group of degree 6 on the set

## [(1,2),(1,3),(1,4),(1,5),(1,6)]

G:=CayleyGraph(SymmetricGroup(6),[(1,2),(1,3),(1,4),(1,5),(1,6)]);

### Construct the required Cayley graph

A:=admat(G,720);

p:=CharacteristicPolynomial(A);

r:=RootsOfUPol(p); #roots of the characteristic polynomial of A

SpectrumOfS6:=listcompress(r); #Spectrum of G

�

We end this section by the following conjecture.

Conjecture 2.14 Let n > 4 be an arbitrary integer and S = {(12), (13), . . . , (1n)} be
the subset of the symmetric group Sn of degree n. Then Γ(S : Sn) is integral. Moreover,
{0,±1, . . . ,±(n − 1)} is the set of all distinct eigenvalues of Γ(S : Sn).

3 Proof of Our main results

In this section we prove our main results.
Proof of Theorem 1.1. Let Γ(S : G) be integral. Since Γ(S : G) is a cubic integral
graph, Γ(S : G) is of type Gi, for 1 6 i 6 13 (see [16]). Since the number of vertices of
Gi, for 1 6 i 6 13, are 4, 6, 8, 10, 12, 20, 24 or 30, |G| ∈ {4, 6, 8, 10, 12, 20, 24, 30}. Hence
we have the following cases:
Case1: Let |G| = 4. Then Γ(S : G) = K4 = G1.
Case2: Let |G| = 6. Then G = C6 or D6.
If C6 = 〈a〉, S1 = {a, a3, a5} and S2 = {a2, a3, a4}, then by using the program written
in Lemma 2.13, Γ(S1 : C6) and Γ(S2 : C6) are integral with spectra of [−3, 04, 3] and
[−22, 02, 1, 3] respectively. So Γ(S1 : C6) = G2 and Γ(S2 : C6) = G5.
If G = D6 = 〈a, b | a3 = b2 = (ab)2 = 1〉, S1 = {b, ab, a2b} and S2 = {a, a2, b},
then by using the program written in Lemma 2.13, Γ(S1 : D6) and Γ(S2 : D6) are inte-
gral with spectra of [−3, 04, 3] and [−22, 02, 1, 3] respectively. So Γ(S1 : D6) = G2 and
Γ(S2 : D6) = G5.
Case3: Let |G| = 8. Then G = C8, C3

2 , C4 × C2, D8 or Q8 = 〈a, b | a4 = 1, a2 =
b2, b−1ab = a−1〉. We show that the graph G4 is only and only cayley graph of C3

2 , C4×C2

and D8.
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Let G = C3
2 or C4 × C2, by the proof of Lemma 2.11, Γ(S : G) = G4.

Let G = D8 = 〈a, b | a4 = b2 = (ab)2 = 1〉 and S = {a, a−1, b} or {b, a2b, ab}. Then
by using the program written in Lemma 2.13, Γ(S : D8) is integral with spectrum of
[−3,−13, 13, 3] and so Γ(S : D8) = G4.
Let G = C8. By Lemma 2.9, Γ(S : C8) is not isomorphic to G4.
Let G = Q8. Since a2 is the unique element of degree two, a2 ∈ S. Since S is generator
and S = S−1, S = {a2, b, a2b} or {a2, ab, a3b}. If S = {a2, b, a2b}, then by Lemma 2.3 and
using characters table of Q8, the eigenvalue of Γ(S : Q8) corresponding to the irreducible
character χ3 is 3. If S = {a2, ab, a3b}, then the eigenvalue of Γ(S : Q8) corresponding to
the irreducible character χ4 is 3. However the multiplicity 3 as an eigenvalue of Γ(S : Q8)
is greater than one. So Γ(S : Q8) is not isomorphic to G4.
Case4: Let |G| = 10. Then by Lemmas 2.9 and 2.11, G is a non-abelian group and so
G = D10. Since Γ(S : D10) is integral, Γ(S : D10) = G3, G7 or G11. If Γ(S : D10) = G3 or
G7, then Γ(S : D10) is not bipartite graph, which by Lemma 2.12 (iii), is a contradiction.
If Γ(S : D10) = G11, then by Lemma 2.12 (ii), it is a contradiction. Therefore, the graphs
of G3, G7 and G11 are not Cayley graphs.
Case5: Let |G| = 12. By Lemmas 2.9 and 2.11, G = C6 × C2, T12, A4 or D12. First we
show G12 is only and only cayley graph of C6 × C2 and D12.
Let G = C6 × C2 and S = {(a, c), (a−1, c), (a3, c)} where C6 = 〈a〉 and C2 = 〈c〉. Then
by using the program written in Lemma 2.13, Γ(S : C6 ×C2) is integral with spectrum of
[−3,−22,−1, 04, 1, 22, 3]. So Γ(S : C6 × C2) = G12.
Let G = D12 = 〈a, b | a6 = b2 = (ab)2 = 1〉 and S = {a, a5, b}. Then by using the program
written in Lemma 2.13, Γ(S : D12) is integral with spectrum of [−3,−22,−1, 04, 1, 22, 3].
So Γ(S : D12) = G12.
Let Γ(S : T12) = G12. It is easy to see that a3 is the unique element of order two, so
a3 ∈ S. Since S generates G, ar /∈ S. By Lemma 2.3 and using characters table of T4n, we
conclude that the eigenvalues of Γ(S : T12) corresponding to linear irreducible characters
of T12 are distinct from −3. Therefore, G12 have not −3 as an eigenvalue, which is not
true. So G12 is not Cayley graph of T12.
Let Γ(S : A4) = G12. By Lemma 2.3 and using characters table of A4, Γ(S : A4) has an
eigenvalue with multiplicity greater than 6 or three eigenvalues with multiplicities greater
than 3. Which is impossible.
Therefor the graph G12 is only and only Cayley graph of C6 × C2 and D12.
We continue by showing that G8 is only and only Cayley graph A4.
Let G = A4 and S = {(1 2)(3 4), (1 2 3), (1 3 2)}. By using the program writ-
ten in Lemma 2.13, Γ(S : A4) is integral with spectrum of [−23,−13, 02, 23, 3], and so
Γ(S : A4) = G8.
Let Γ(S : T12) = G8. Since G8 does not have C4 as a subgraph, by Lemma 2.6,
S = {a3, ar, a−r} for r = 1, 2. This contradicts the fact that S generates G.
Let Γ(S : C6 × C2) = G8 and S1 = {s1 | (s1, c) ∈ S, c ∈ C2} \ {1}. Then by Lemma
2.10 and case 2, |S1| = 2 and so −1 6 λi0, where λi0 is the eigenvalue of Γ(S : C6 × C2)
corresponding to a linear irreducible character of C6 ×C2. This contradicts the fact that
−2 is an eigenvalue of G8.
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Let Γ(S : D6 × C2) = G8 and S1 = {s1 | (s1, c) ∈ S, c ∈ C2} \ {1}. Then by Lemma
2.10 and case 2, |S1| = 2 and so −1 6 λi0, where λi0 is the eigenvalue of Γ(S : D6 × C2)
corresponding to a linear irreducible character of D6 ×C2. This contradicts the fact that
−2 is an eigenvalue of G8.
Therefor the graph G8 is only and only Cayley graph of A4.
Case6: Let |G| = 20. By Lemmas 2.9 and 2.11, G is a non-abelian group and so it is
D20 = D10 × C2, T20 or F5,4 = 〈a, b | a5 = b4 = 1, b−1ab = a2〉. Since Γ(S : G) is integral,
Γ(S : G) = G9 or G10.
Let G = F5,4. Since the graphs G9 and G10, does not have C4 and C5 as a subgraph, by
Lemma 2.6, all of the elements of S are of order 2 or 10. It is clear that F5,4 does not have
any element of order 10, so S ⊆ b (the bar indicates conjugacy class). By Lemma 2.3 and
using characters table of F5,4, we see that the eigenvalues of Γ(S : F5,4) corresponding to
irreducible characters χ1 and χ3 are 3. which is impossible.
Let G = D10 ×C2 and S1 = {s1 | (s1, c) ∈ S, c ∈ C2} \ {1}, then by Lemma 2.10 and Case
4, |S1| = 2 and so −1 6 λi0, where λi0 is the eigenvalue of Γ(S : D10 ×C2) corresponding
to a linear irreducible character of D10 × C2. This contradicts the fact that −3 is an
eigenvalue of G9 and G10.
Let G = T20. Since a5 ∈ T20 is the unique element of order two and G9, G10, does not have
C4 and C5 as a subgraph, S = {a5, ar, a−r}. This contradicts the fact that S generates
G. Hence the graphs G9 and G10 are not Cayley graphs.
Case7: Let |G| = 24. By Lemmas 2.9 and 2.11, G is a non-abelian group and so
G = D12 × C2, T12 × C2, Q8 × C3, SL(2, 3), D24, T24, U24, V24, S4, D8 × C3, D6 × C4 or
A4×C2. We show that G13 is only and only Cayley graph of groups S4, A4×C2, D8×C3,
D6 × C4.
Let G = S4. By Lemma 2.13, Γ(S : S4) = G13.
Let G = A4 × C2 and S = {((1 2)(3 4), c), ((1 2 3), c), ((1 3 2), c)}, where C2 =
〈c〉. Then by using the program written in Lemma 2.13, Γ(S : A4 × C2) is integral with
spectrum of [−3,−26,−13, 04, 13, 26, 3]. So Γ(S : A4 × C2) = G13.
Let G = D8 × C3 and S = {(a, c), (a3, c), (b, 1)}, where D8 = 〈a, b〉 and C2 = 〈c〉. Then
by using the program written in Lemma 2.13, Γ(S : D8 × C3) is integral with spectrum
of [−3,−26,−13, 04, 13, 26, 3] and so Γ(S : D8 × C3) = G13.
Let G = D6 × C4. In the same manner we can see that Γ(S : D6 × C4) = G13, where
D6 = 〈a, b〉, C4 = 〈c〉 and S = {(a, c), (a3, c), (b, 1)}.
It remains to prove that Γ(S : G) is not integral, for others. On the contrary, let
Γ(S : G) = G13, for G = Q8 × C3, T12 × C2, D12 × C2, T24, D24, SL(2, 3) or V24.
Let G = Q8 × C3 or T12 × C2 and S1 = {s1 | (s1, c) ∈ S, c ∈ C3} \ {1} or {s1 | (s1, c) ∈
S, c ∈ C2} \ {1}, then by Lemma 2.10 and Cases 3, 5, we have |S1| = 2 and so −1 6 λi0,
where λi0 is the eigenvalue of Γ(S : G) corresponding to a linear irreducible character of
G. This contradicts the fact that −3 is an eigenvalue of G13.
Let G = D12 ×C2 and S1 = {s1 | (s1, c) ∈ S, c ∈ C2} \ {1}. One can check that (1, c) ∈ S
where C2 = 〈c〉. So |S1| = 2 and −1 6 λi0, where λi0 is the eigenvalue of Γ(S : D12 ×C2)
corresponding to a linear irreducible character of D12 ×C2. This contradicts the fact that
−3 is an eigenvalue of G13.
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Let G = T24. Since a6 ∈ T24 is the unique element of order two and G13 does not have C4

as a subgraph, S = {a6, ar, a−r} for 1 6 r 6 5. This contradicts the fact that S generates
G.
Let G = U24 = 〈a, b | a8 = b3 = 1, a−1ba = b−1〉. Since a4 is the unique element
of order two, a4 ∈ S and so ar /∈ S for r 6= 4 because of S generates G. It is easy
to see that (a2rb)−1 = a8−2rb2 and (a2r+1b)−1 = a8−2r−1b. So S = {a4, a2rb, a8−2rb2},
{a4, a2r+1b, a8−2r−1b} or {a4, a2r+1b2, a8−2r−1b2} (0 6 r 6 3). If S = {a4, a2rb, a8−2rb2},
then by Lemma 2.3 and using characters table of U6n, the eigenvalue of Γ(S : U24)
corresponding to χ4 is equal to 3, which is not true. If S = {a4, a2r+1b, a8−2r−1b} or
{a4, a2r+1b2, a8−2r−1b2}, then by Lemma 2.3 and using characters table of U6n, the eigen-
value of Γ(S : U24) corresponding to χ1 is −1+2 cos((2r+1)π/4) for 0 6 r 6 3, obviously
is not integer. Which is a contradiction.
Let G = D24. First consider a6 ∈ S. Since S generates G, ar /∈ S. By Lemma 2.3, it is
immediate that Γ(S : D24) = G13 does not have −3 as an eigenvalue, which is impossible.
Thus a6 /∈ S. Now suppose ar ∈ S where 1 6 r 6 5. Since S generates D24, (r, 12) = 1.
So S = {ar, a−r, a2lb} or {ar, a−r, a2l+1b} where r = 1 or 5. By Lemma 2.3 and using
characters table of D2n, the sum of the eigenvalues of Γ(S : D24) corresponding to χ1 is√

3 or −
√

3, which is impossible. Therefore, all of the elements of S are in conjugacy class
of b or ab. Let S = {a2sb, a2r+1b, a2l+1b} (1 6 l, r, s 6 5) and ρ be an irreducible character
of degree two of D24. If λ and µ are the eigenvalues Γ(S : D24) corresponding to ρ, then
by Lemma 2.3 and using characters table of D2n, we have:
λ + µ = 0
λ2 + µ2 = 6 + 2[ρ(a2s−2r−1) + ρ(a2s−2l−1) + ρ(a2r−2l)].

A trivial verification shows that if ω = e
2πi

12 , then ω+ω−1 =
√

3, ω2+ω−2 = 1, ω3+ω−3 = 0,
ω4 + ω−4 = −1 and ω5 + ω−5 = −

√
3. From this and using characters table of D2n we

conclude that λ2 + µ2 6= 0. It follows that Γ(S : D24) does not have 0 as an eigenvalue .
Therefore, G13 does not have 0 as an eigenvalue, which is impossible.
Let G = SL(2, 3). It is easy to see that g2 is the unique element of order two, so g2 ∈ S.
On the other hand, since g6g7 = 1 and the graph G13 does not have C3 and C4 as a
subgraph, S = {g2, x, x−1}, such that x is in conjugacy class of g6 and x−1 in conjugacy
class of g7. By Lemma 2.3 and using characters table of SL(2, 3), it is easily seen that
the eigenvalues of corresponding to irreducible linear characters of SL(2, 3) are equal to
zero. This contradicts the fact that −3 is an eigenvalue of G13

Let G = V24 = 〈a, b | a6 = b4 = (ba)2 = (a−1b)2 = 1〉. Since the graph G13 does not
have C3 and C4 as a subgraph, S ∩ b = φ and S ∩ a2 = φ (the bar indicates conjugacy
class). If S ∩ ab = φ, then by Lemma 2.3 and using characters table of V24, we see that
the eigenvalues of corresponding to linear irreducible characters of χ1 and χ2 are equal to
3. Which is impossible. So S∩ab 6= φ. Also if b2 ∈ S or a2b2 ∈ S, then by Lemma 2.3, we
check at once that Γ(S : V24) does not have −3 as an eigenvalue, which is not true. Hence
S = {a, a−1, arbs}, {ab2, a−1b2, arbs} or {a3, a3b2, arbs}, where r ∈ {1, 3, 5} and s ∈ {1, 3}.
Let λ and µ be the eigenvalues of Γ(S : V24) corresponding to irreducible character χ5.
If S = {a3, a3b2, arbs}, then by Lemma 2.3 and using characters table of V24, λ+µ = 0 and
λ2 + µ2 = χ5(a

6) + χ5(a
3b2)2 + χ5(a

rbs)2 + 2[χ5(a
3a3b2) + χ5(a

r+3bs) + χ5(a
r+3bs+2)] = 10.
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If S = {a, a−1, arbs} or {ab2, a−1b2, arbs}, then by Lemma 2.3, λ + µ = 0 and λ2 + µ2 =
χ5(a

2) + χ5(a
−2) + χ5(a

rbs)2 + 2[χ5(aa−1) + χ5(a
r+1bs) + χ5(a

r−1bs)] or λ + µ = 0 and
λ2 + µ2 = χ5(ab2)2 + χ5(a

−1b2)2 + χ5(a
rbs)2 + 2[χ5(1) + χ5(a

r+1bs+2) + χ5(a
r−1bs+2)], re-

spectively.
By using character table of V24, we have χ5(a

r+1bs) = χ5(a
r−1bs) = χ5(a

r+1bs+2) =
χ5(a

r−1bs+2) = χ5(a
r+3bs) = χ5(a

r+3bs+2) = 0. So λ2 + µ2 = 10.
This gives λ and µ are not integers, which is false.
Case8: Let |G| = 30 and Γ(S : G) = G6. By Lemmas 2.9 and 2.11, G is a non-abelian
group and so G = D10 × C3, D30 or U30 = 〈a, b | a10 = b3 = 1, a−1ba = b−1〉.
Let G = D10 × C3 and S1 = {s1 | (s1, c) ∈ S, c ∈ C3} \ {1}. By Lemma 2.10 and Case 4,
|S1| = 2 and so −1 6 λi0, where λi0 is the eigenvalue of Γ(S : D10 × C3) corresponding
to a linear irreducible character of D10 × C3. This contradicts the fact that −3 is an
eigenvalue of G6.
Let Γ(S : D30) = G6. By Lemma 2.12 (ii), we have 4 | 10, which is impossible.
Let Γ(S : U30) = G6. It is obvious that U30 has exactly three elements of order two and
they are a5, a5b and a5b2. So S ∩ {a5, a5b, a5b2} 6= φ. If S = {a5, a5b, a5b2}, then by
Lemma 2.3 and using characters table of U6n, the eigenvalues of Γ(S : U30) corresponding
to irreducible characters χ1 and χ5 are −3. This contradicts the fact that the multiplicity
−3 as an eigenvalue of G6 is one. If a2r ∈ S or a2rb ∈ S (0 6 r 6 4), then by Lemma
2.3 and using characters table of U6n, the eigenvalue of Γ(S : U30) corresponding to irre-
ducible character χ5 is 1, this show that 1 is an eigenvalue of G6, which is not true. Thus
S = {a5bk, a2r+1bs, (a2r+1bs)−1}, where k, s ∈ {0, 1, 2} and r ∈ {0, 1, 3, 4}. By Lemma 2.3
and using characters table of U6n, the eigenvalue of Γ(S : U30) corresponding to irreducible
character χ1 is −1 + 2 cos((2r + 1)π/5) for r ∈ {0, 1, 3, 4}. This is not integer. which is a
contradiction. Therefor G6 is not Cayley graph.
Hence there are exactly seven connected, cubic integral Cayley graphs. This proves the
theorem. �

Theorem 3.1 (See [14]) Let Cn = 〈a〉. If S = {aj | j ∈ B(1, n)}, then Γ(S : Cn) is
integral.

Proof. By Lemma 2.2, Γ(S : Cn) is connected graph. By Lemmas 2.3 and 2.4, n

eigenvalues of Γ(S : Cn) are λr =
∑

j∈B(1,n)

ωjr, (1 6 r < n). By equation (2.1), λr = C(r, n),

(1 6 r < n). Hence Γ(S : Cn) is integral. �

Corollary 3.2 For any natural number n, there is at least an connected, ϕ(n)-regular
integral graph with n vertices.

Theorem 3.3 Let Cn = 〈a〉, d | n (1 < d < n) and Ad = {adj | j ∈ B(1, n
d
)}. If

S = A1 ∪ Ad, then Γ(S : Cn) is integral.

Proof. By Lemma 2.2, Γ(S : Cn) is connected graph. Let λr (0 6 r 6 n − 1) be the
eigenvalues of Γ(S : Cn). By Lemmas 2.3 and 2.4, we have:
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λr =
∑

g∈A1

ρr(g) +
∑

g∈Ad

ρr(g) =
∑

j∈B(1,n)

ρr(a
j) +

∑

j∈B(1, n

d
)

ρr(a
dj) =

∑

j∈B(1,n)

ωjr +
∑

j∈B(1, n

d
)

ωdjr.

By equation (2.1),
∑

j∈B(1,n)

ωjr and
∑

j∈B(1, n

d
)

ωdjr are integer. Hence Γ(S : Cn) is integral. �

Corollary 3.4 For any natural number n, there is at least a connected, (ϕ(n) + ϕ(n
d
))-

regular integral graph with n vertices, where d | n (1 < d < n).

Lemma 3.5 Let G = Cm × Cn, Cm = 〈a〉 and Cn = 〈b〉 so that (m, n) 6= 1. If S =
{(aj, bj′) | j ∈ B(1, m), j′ ∈ B(1, n)} ∪ {(aj, 1) | j ∈ B(1, m)} ∪ {(1, bj′) | j′ ∈ B(1, n)},
then Γ(S : G) is integral.

Proof. It is clear that Γ(S : G) is connected graph. By Lemma 2.3, mn eigenvalues of

Γ(S : G) are λkr =
∑

g∈S

ρkr(g), (0 6 k 6 m − 1) and (0 6 r 6 n − 1). By Lemma 2.5,

λkr =
∑

j∈B(1,m)

(
∑

j′∈B(1,n)

ωkj
1 ωrj′

2 ) +
∑

j∈B(1,m)

ωkj
1 +

∑

j′∈B(1,n)

ωrj′

2 .

An easy computation shows:

λkr =
∑

j∈B(1,m)

ωkj
1

∑

j′∈B(1,n)

ωrj′

2 +
∑

j∈B(1,m)

ωkj
1 +

∑

j′∈B(1,n)

ωrj′

2 . By equation (2.1),
∑

j∈B(1,m)

ωkj
1

and
∑

j′∈B(1,n)

ωrj′

2 are integer. Hence Γ(S : G) is integral. �

Theorem 3.6 Let G = Cn1 × . . . × Cnl
and Cni

= 〈ai〉, so that for any i, j ∈ {1, . . . , l},
(ni, nj) 6= 1. If S = {(aj1

1 , aj2
2 , . . . , ajl

l ) | ji ∈ B(1, ni), i = 1, . . . , l} ∪ {(aj1
1 , 1, . . . , 1) | j1 ∈

B(1, n1)} ∪ . . . ∪ {(1, 1, . . . , ajl

l ) | jl ∈ B(1, nl)}, then Γ(S : G) is integral.

Proof. Suppose α =
∑

j1∈B(1,n1) · · ·
∑

jl∈B(1,nl)
ωr1j1

1 · · ·ωrljl

l , where ωt = e
2πi

nt , for t =

1, . . . , l. One can check that α =
(

∑

j1∈B(1,n1)

ωr1j1
1

)

· · ·
(

∑

jl∈B(1,nl)

ωrljl

l

)

. By Lemma 2.3,

n1n2 . . . nl eigenvalues of Γ(S : G) are λr1...rl
=

∑

g∈S

ρ
r1r2...rl

(g), where 0 6 ri 6 ni − 1 and

1 6 i 6 l. By Lemma 2.5, λr1...rl
= α +

∑

j1∈B(1,n1)

ωr1j1
1 + . . . +

∑

jl∈B(1,nl)

ωrljl

l .

By equation (2.1),
∑

ji∈B(1,ni)

ωriji

i , (1 6 i 6 l) is integer. Hence Γ(S : G) is integral. �

Corollary 3.7 Let n = n1 · · ·nl such that (ni, nj) 6= 1, where 1 6 i, j 6 l. Then there is

at least a connected (

l
∑

i=1

ϕ(ni))(

l
∏

i=1

ϕ(ni))-regular integral graph with n vertices.

Theorem 3.8 Let D2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m + 1 (n 6= 1) and
S = {ak | k ∈ B(1, n)} ∪ {bak | k ∈ B(1, n)}. Then Γ(S : D2n) is integral.
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Proof.Since S generates D2n, Γ(S : D2n) is connected graph. We know that {1},
{ar, a−r}, 1 6 r 6 (n − 1)/2 and {asb | 0 6 s 6 n − 1} are the conjugacy classes of

D2n. Let Aj =
∑

k∈B(1,n)

ωjk, S1 = {ak | k ∈ B(1, n)} and S2 = {bak | k ∈ B(1, n)}. If λj1 ,

λj2 (Each one 2 times)for 1 6 j 6 m , λm+1 and λm+2 are 2n eigenvalues of Γ(S : D2n),
then by Proposition 4.1 from [2], λj1 + λj2 = 2Aj and λ2

j1 + λ2
j2 = 4A2

j . So λj1 = 0 ,
λj2 = 2Aj or λj1 = 2Aj , λj2 = 0. Also λm+1 = 0 and λm+2 = |S1| + |S2| = 2ϕ(n). By
equation (2.1), Aj is integer. So all of the eigenvalues of Γ(S : D2n) are integers. Hence
Γ(S : D2n) is integral. �

Corollary 3.9 For any odd natural number n (n 6= 1), there is at least a connected,
(2ϕ(n))-regular integral graph with 2n vertices.

Proof of Theorem 1.2. It is clear that Γ(S : D2n) is connected graph. Let C1 =
{k | k ∈ B(1, n)} = {k1, . . . , kϕ(n)} and C2 = {dk | k ∈ B(1, n

d
)} = {k′

1, . . . , k
′

ϕ(n

d
)}.

Then C1 ∩ C2 = φ. Suppose C1 ∪ C2 = {ki | 1 6 k1 < · · · < kt 6 n − 1} and

Aj =
t

∑

u=1

ωjku for j = 1, . . . , m. Then Aj =
∑

k∈C1

ωjk +
∑

k′∈C2

ωjk′

and by equation (2.1),

Aj is integer. If λj1 , λj2 for 1 6 j 6 m (Each one 2 times), λm+1 and λm+2 are 2n
eigenvalues of Γ(S : D2n), then by Proposition 4.1 from [2], we have λj1 + λj2 = 2Aj and
λ2

j1 + λ2
j2 = 4A2

j . So λj1 = 0, λj2 = 2Aj or λj1 = 2Aj , λj2 = 0. Also λm+1 = 0 and
λm+2 = 2|C1| + 2|C2| = 2ϕ(n) + 2ϕ(n

d
). Since Aj is integer, 2n eigenvalues of Γ(S : D2n)

are integers. Hence Γ(S : D2n) is integral. �

Corollary 3.10 For any odd natural number n, there is at least a connected, (2ϕ(n) +
2ϕ(n

d
))-regular integral graph with 2n vertices, where d | n (1 < d < n).

Proof of Theorem 1.3. We know that {1}, {ar, a−r}, (1 6 r 6 n − 1), {a2kb | 0 6 k 6

n−1} and {a2k+1b | 0 6 k 6 n−1} are all of the conjugacy classes of T4n. It is clear that
T4n = 〈S〉, S = S−1 and 1 /∈ S. Let λj1 , λj2 for 1 6 j 6 n− 1 (Each one 2 times) and µl

for 1 6 l 6 4 be 4n eigenvalues of Γ(S : T4n). Then by Lemma 2.3 and using characters
table of T4n, we have:

µ1 =
∑

g∈S

χ1(g) = 2n, µ2 =
∑

g∈S

χ2(g) = 0, µ3 =
∑

g∈S

χ3(g) = 2n−4 and µ4 =
∑

g∈S

χ4(g) = 0.

λj1 + λj2 =
∑

g∈S

ρj(g) = 2
n−1
∑

k=1

ρj(a
k) = 2

n−1
∑

k=1

ωjk + ω−jk

λ2
j1 + λ2

j2 =
∑

s1,s2∈S

ρj(s1s2) = (4n − 8)

n−1
∑

k=1

ρj(a
k) + 2n[ρj(a

n) + ρj(1)]=

(4n − 8)

n−1
∑

k=1

(ωjk + ω−jk) + 2n[2(−1)j + 2].

By Lemma 2.1, if j is odd, then λj1 + λj2 = 0 and λ2
j1 + λ2

j2 = 0 and so λj1 = λj2 = 0
(Each one two times).
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If j is even, then λj1 + λj2 = −4 and λ2
j1 + λ2

j2 = 16 and so λj1 = 0 and λj2 = −4 (Each
one two times). Therefore, the spectrum of Γ(S : T4n) is: [−4n−1, 03n−1, 2n − 4, 2n]. �

Corollary 3.11 For any odd natural number n, (n 6= 1), there is at least a connected,
2n-regular integral graph with 4n vertices.

Proof of Theorem 1.4. Consider A = {a2kb | 1 6 k 6 n − 1} ∪ {a2kb2 | 1 6

k 6 n − 1} and B = {a2k+1b | 0 6 k 6 n − 1}. We know that {a2r}, {a2rb, a2rb2}
and {a2r+1, a2r+1b, a2r+1b2}, (0 6 r 6 n − 1) are the conjugacy classes of U6n. An
easy computation shows that ba2 = a2b, (a2rb)−1 = a−2rb2, (a2r+1b2)−1 = a−2r−1b2 and
(a2r+1b)−1 = a−2r−1b. So U6n = 〈S〉, S = S−1 and 1 /∈ S. Let λj1 , λj2 for 0 6 j 6 n − 1
(Each one 2 times) and µl for 0 6 l 6 2n− 1 be 6n eigenvalues of Γ(S : U6n) correspond-
ing to the characters of ρj and χl of U6n, respectively. Then by Lemma 2.3 and using
characters table of U6n, we have:

µ0 =
∑

s∈S

χ0(s) = 3n − 2, µn =
∑

s∈S

χn(s) = n − 2,

µl =
∑

s∈S

χl(s) = −2, for 1 6 l 6 2n − 1 and l 6= n.

Also for 0 6 j 6 n − 1, we have:

λ2
j1 + λ2

j2 =
∑

s1,s2∈A

ρj(s1s2) +
∑

s1,s2∈B

ρj(s1s2) +
∑

s1∈A,s2∈B

(

ρj(s1s2) + ρj(s2s1)
)

.

One can check that :
∑

s1,s2∈A

ρj(s1s2) = (2n − 4)[

n−1
∑

k=1

−ω2kj +

n−1
∑

k=1

2ω2kj] + (2n − 2)[2 +

n−1
∑

k=1

−ω2kj].

∑

s1,s2∈B

ρj(s1s2) = n

n−1
∑

k=1

2ω2kj.

∑

s1∈A,s2∈B

(

ρj(s1s2) + ρj(s2s1)
)

= 0.

By Lemma 2.1, λ2
01 + λ2

02 = 4n2 − 4n + 2 and λ2
j1 + λ2

j2 = 2 for 1 6 j 6 n − 1. On the

other hand, it is clear that λ01 + λ02 =
∑

s∈S

ρ0(s) = −2n + 2 and λj1 + λj2 =
∑

s∈S

ρj(s) = 2

for 1 6 j 6 n − 1. So λ01 = 1 and λ02 = 1 − 2n (Each one two times).
Also λj1 = 1 = λj2 for 1 6 j 6 n − 1 (Each one two times). Therefore, the spectrum of
Γ(S : U6n)) is: [(1 − 2n)2,−22n−2, 14n−2, n − 2, 3n − 2]. �

Corollary 3.12 For any odd natural number n (n 6= 1), there is at least a connected
(3n − 2)-regular integral graph with 6n vertices.

Character Table of Q8

1 a2 a b ab
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

the electronic journal of combinatorics 16 (2009), #R122 14



Character Table of A4

(1) (1 2)(3 4) (1 2 3) (1 3 2)
χ1 1 1 1 1

χ2 1 1 e
2πi

3 e
4πi

3

χ3 1 1 e
4πi

3 e
2πi

3

χ4 3 −1 0 0

Character Table of F5,4

1 a b b2 b3

χ1 1 1 1 1 1
χ2 1 1 i −1 −i
χ3 1 1 −1 1 −1
χ4 1 1 −i −1 i
χ5 4 −1 0 0 0

Character Table of SL(2, 3)
g1 = 1 g2 g3 g4 g5 g6 g7

χ1 1 1 1 1 1 1 1

χ2 1 1 1 e
2πi

3 e
4πi

3 e
4πi

3 e
2πi

3

χ3 1 1 1 e
4πi

3 e
2πi

3 e
2πi

3 e
4πi

3

χ4 3 3 −1 0 0 0 0
χ5 2 −2 0 −1 −1 1 1

χ6 2 −2 0 −e
2πi

3 −e
4πi

3 e
4πi

3 e
2πi

3

χ7 2 −2 0 −e
4πi

3 −e
2πi

3 e
2πi

3 e
4πi

3

g2 =

(

−1 0
0 −1

)

, g3 =

(

0 1
−1 0

)

,

g−1
5 = g4 =

(

1 1
0 1

)

, g−1
7 = g6 =

(

−1 1
0 −1

)

Character Table of V24

1 b2 a a3 a5 a2 a2b2 b ab
χ1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 −1 −1
χ3 1 1 −1 −1 −1 1 1 1 −1
χ4 1 1 −1 −1 −1 1 1 −1 1
χ5 2 −2 0 0 0 2 −2 0 0

χ6 2 −2 i
√

3 0 −i
√

3 −1 1 0 0

χ7 2 −2 −i
√

3 0 i
√

3 −1 1 0 0
χ8 2 2 1 −2 1 −1 −1 0 0
χ9 2 2 −1 2 −1 −1 −1 0 0
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Character Table of D2n, n = 2m + 1 odd
1 ar b

χj 2 ωjr + ω−jr 0
χm+1 1 1 −1
χm+2 1 1 1

ω = e
2πi

n , 1 6 j 6 m and 1 6 r 6 m

Character Table of D2n, n = 2m even
1 am ar b ab

χj 2 2(−1)j ωjr + ω−jr 0 0
χm+1 1 1 1 −1 −1
χm+2 1 (−1)m (−1)r 1 −1
χm+3 1 (−1)m (−1)r −1 1
χm+4 1 1 1 1 1

ω = e
2πi

n , 1 6 j 6 m and 1 6 r 6 m − 1

Character Table of T4n, n = 2m + 1 odd
Characters an ar a2rb a2r+1b
χ1 1 1 1 1
χ2 −1 (−1)r i −i
χ3 1 1 −1 −1
χ4 −1 (−1)r −i i
ρj 2(−1)j ωjr + ω−jr 0 0

ω = e
2πi

2n , 1 6 j 6 n − 1 and 0 6 r 6 n − 1

Character Table of T4n, n = 2m even
an ar a2rb a2r+1b

χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 (−1)r 1 −1
χ4 1 (−1)r −1 1
ρj 2(−1)j ωjr + ω−jr 0 0

ω = e
2πi

2n , 1 6 j 6 n − 1 and 0 6 r 6 n − 1

Character Table of U6n

a2r a2rb a2r+1

χl ω2lr ω2lr ω2lr+l

ρj 2ω2jr −ω2jr 0

ω = e
2πi

2n , 0 6 l 6 2n − 1, 0 6 j 6 n − 1 and 0 6 r 6 n − 1
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