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Abstract—With many potential industrial applications, con-

tent-based image retrieval (CBIR) has recently gained more

attention for image management and web searching. As an im-

portant tool to capture users’ preferences and thus to improve the

performance of CBIR systems, a variety of relevance feedback

(RF) schemes have been developed in recent years. One key issue

in RF is: which features (or feature dimensions) can benefit this

human-computer iteration procedure? In this paper, we make

theoretical and practical comparisons between principal and com-

plement components of image features in CBIR RF. Most of the

previous RF approaches treat the positive and negative feedbacks

equivalently although this assumption is not appropriate since the

two groups of training feedbacks have very different properties.

That is, all positive feedbacks share a homogeneous concept while

negative feedbacks do not. We explore solutions to this important

problem by proposing an orthogonal complement component

analysis. Experimental results are reported on a real-world image

collection to demonstrate that the proposed complement compo-

nents method consistently outperforms the conventional principal

components method in both linear and kernel spaces when users

want to retrieve images with a homogeneous concept.

Index Terms—Content-based image retrieval (CBIR), kernel
machine, orthogonal complement component analysis (OCCA),
relevance feedback (RF), support vector machine (SVM).

I. INTRODUCTION

W
ITH the explosive growth in image records and the rapid

increase of computer power, retrieving images from a

large-scale image database has become one of the most active

research fields [17]. To give all images text annotations manu-

ally is tedious and impractical and to automatically annotate an

image is generally beyond current techniques. Moreover, a pic-

ture says more than a thousand words.

Content-based image retrieval (CBIR) [24] is a technique

to retrieve images, which are semantically relevant to a query
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image provided by a user, from an image database. It is based

on representing images with visual features, which can be

automatically extracted from images, such as color, texture, and

shape. However, the gap between the low-level visual features

and the high-level semantic meanings usually leads to poor

performance.

Relevance feedback (RF) [16] is an effective method to

bridge this gap and to scale up the performance in CBIR

systems. RF focuses on the interactions between the user and

the search engine by requiring the user to label semantically

positive or negative feedbacks. MARS [15] introduced both the

query movement and the re-weighting techniques. MindReader

[8] formulated a minimization problem on the parameter

estimation process. PicHunter [2] proposed a stochastic com-

parison search. With the observation that all positive examples

are alike and each negative example is negative in its own

way, biased discriminant analysis (BDA) [26] and its enhanced

version [21] were developed.

Given the user feedback information, the key for a RF

scheme is how to construct a suitable classifier. However, RF

is much different from the traditional classification problem

because users would not like to provide a large number of

feedbacks. Among various RF schemes, small sample learning

methods, where the number of the training samples is much

smaller than the dimension of the descriptive features, are of

the most promising.

Support vector machine (SVM) [23] is a popular small

sample learning method used in recent years. It obtains

top-level performance in different applications [1], [5], [7],

[20], [25] because of its good generalization ability. SVM has

a very good performance for pattern classification problems

by minimizing the Vapnik-Chervonenkis (VC) dimension

and achieving a minimal structural risk. Within different RF

schemes, SVM-based RF is popular because it outperforms

many other classifiers when the size of the training set is small.

SVM active learning (SVM ) [22] halves the image space

each time: 1) retrieved images are selected from the samples,

which are farthest from the classifier boundary on the positive

side and 2) samples close to the boundary are deemed as the

most informative ones for the user to label. Recently, SVM

has been combined with the multimodal concept-dependent

process for CBIR [4]. Although SVM -based RF can

work better than the conventional SVM-based RF, it requires

users to label a lot of training images (about twenty images)

in the first round feedback procedure. Guo et al. [5] developed

a constrained similarity measure (CSM) for image retrieval,

in which SVM and AdaBoost are employed as classifier. The

CSM also learns a boundary that halves the images in the

1051-8215/$25.00 © 2008 IEEE



4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 1, JANUARY 2008

database into two groups, and images inside the boundary

are ranked by their Euclidean distance to the query. There

are also some other kinds of SVM-based RFs [27]. However,

most of SVM-based RFs treat positive and negative feedbacks

equivalently. This assumption is not appropriate, since the two

groups of training feedbacks have very different properties, that

is, all positive feedbacks share a homogeneous concept while

negative feedbacks do not.

To explore solutions to the above issue, we propose an orthog-

onal complement component analysis (OCCA), which captures

the invariant subspace of all positive feedbacks or the homo-

geneous concept shared by all positive feedbacks. The labeled

positive feedbacks are mapped to their center. This mapping is

realized in a feature subspace, into which other samples are also

mapped. Experiments show that OCCA performs better than

conventional SVM-based RFs on a real-world image collection.

Motivated by the kernel approach successfully used in pattern

recognition, OCCA is then generalized as the kernel empirical

OCCA (KEOCCA). KEOCCA not only can improve the perfor-

mance of the conventional SVM-based RF but can also outper-

form OCCA.

The layout of this paper is as follows. In Section II, the con-

ventional SVM- and the SVM -based RF are briefly intro-

duced. Section III proposes the orthogonal complement com-

ponent analysis (OCCA). Section IV generalizes the OCCA to

kernel space as the kernel empirical OCCA (KEOCCA). a large

number of experiments are reported in Section V. Conclusions

are drawn in Section VI.

II. SUPPORT VECTOR MACHINE-BASED RELEVANCE FEEDBACK

In this section, the conventional SVM- [25] and

-based RF [22] are briefly introduced.

SVM [23] is a very effective binary classification algorithm.

Consider a linearly separable binary classification problem

and (1)

where and is the label of the class that the vector

belongs to. SVM separates the two classes of samples by a hy-

perplane

(2)

where is an input vector, is an adaptive weight vector, and

is a bias. SVM finds the parameters and for the optimal

hyperplane to maximize the geometric margin , subject

to

(3)

The solution can be found through a Wolfe dual problem with

the Lagrangian multipliers

(4)

subject to and .

In the dual format, samples only appear in the inner product.

To get a potentially better representation of samples, they are

mapped to kernel space and implemented by kernel trick

(5)

where is a kernel function. We then get the kernel version

of the Wolfe dual problem

(6)

Thus for a given kernel function, the SVM classifier is given

by

(7)

where is the decision function

of SVM and is the number of support vectors.

In general [22], [25], the lower the

is for a given sample, the closer this sample is to the deci-

sion boundary, and the lower the corresponding prediction

confidence, and vice versa. RF is used to find an adaptive

dissimilarity measure which approaches to the sentiments

of the user. Consequently, for the conventional SVM-based

RF [25] and the -based RF [22], the dissimilarity

measure is always given by the decision function of SVM, i.e.,

.

-based RF [22] has a different feedback procedure

from the conventional SVM-based RF [25]. -based

RF asks the user to label the marginal retrieved images as feed-

backs and conventional SVM-based RF asks the user to label

images that are farthest from the SVM boundary.

From the statistical learning theory [23], we know that the

following inequality holds with probability of at least for

any

(8)

where denotes the VC dimension [23] of the classifier function

set, is the size of the training set, and describes the

empirical risk. For all and the inequality in (8)

bounds the risk. The inequality gives us a way to estimate the

error on future samples based only on the training error and

the VC dimension of the classifier function set. Although the

bound is loose, it is a suitable way for us to construct an effective

classifier for CBIR RF.

The smaller the risk value is, the better the performance

of the classifier will be. We can see that the risk depends on the

empirical risk and . Based on the representation

of , we know that is a strictly monotoni-

cally increasing function of for given and . The VC-dimen-

sion is determined by the support vectors when the number of

training samples is smaller than the feature dimension. In ad-

dition, the VC dimension is almost an increasing function of

the number of support vectors. Consequently, the performance

of an SVM classifier depends mainly on the empirical risk, the

number of support vectors, and . Since cannot be controlled

manually, we can restrict and the number of support vec-

tors to achieve a good performance.
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III. ORTHOGONAL COMPLEMENT COMPONENTS ANALYSIS

With the conventional SVM-based RF [25], the CBIR perfor-

mance can be improved. However, the conventional SVM-based

RF treats the positive and negative feedbacks equivalently al-

though this assumption is not always appropriate, since the two

groups of training feedbacks have very different properties. That

is, all positive feedbacks share a homogeneous concept while

negative feedbacks do not. To explore solutions to this severe

limitation of the conventional SVM-based RF, we propose in

this Section an OCCA to mainly analyze positive feedbacks.

Comparison experimental results are given in Section V.

In CBIR RF, it is not difficult to achieve zero empirical risk

by having enough support vectors. However, a large

number of support vectors will enlarge the VC dimension of

an SVM classifier . Therefore, we need to restrict both and

. In order to solve the problem, we project all positive

feedbacks onto a subspace, in which all positive feedbacks have

the same coordinates, and then project all negative feedbacks

onto the same subspace. In this subspace, we can decrease the

number of support vectors without increasing . Finally,

the remaining images in the database are projected onto the

same subspace and some similarity or dissimilarity measure is

applied to sort images in the database.

For CBIR, the method is reasonable because all positive feed-

backs share a homogeneous concept with the query image while

negative feedbacks do not. Meanwhile, in the projection step,

the optimal hyperplane of an SVM classifier can be transformed

by any increasing positive feedbacks and it will not be sensitive

to any negative feedbacks. Therefore, more emphasis is put on

positive feedbacks and the search engine can find the homoge-

neous concept shared by all positive feedbacks as the number

of positive feedbacks increases. In addition, the resulting SVM

classification hyperplane will be simpler around the projection

center. Based on this observation, we propose the OCCA to im-

prove SVM.

OCCA can be implemented mainly in three steps: 1) to

project all positive feedbacks onto their center and generate

a subspace; 2) to project the remaining images including the

negative feedbacks onto this subspace; and 3) to construct an

SVM classifier in this subspace and resort all images based on

new similarities.

For a set of positive feedbacks , where

and is the number of the positive feedbacks. The

Karhunen-Leove transformation (KLT) [3] can be used to ex-

tract the principal subspace and its orthogonal complement. The

principal components describe the variance of the distribution

of positive feedbacks while the orthogonal complement com-

ponents describe the invariance. That is, the orthogonal com-

ponents correspond to the directions with minimal variances.

The basis functions for the KLT are obtained by solving the

eigenvalue problem

(9)

where is the covariance matrix of positive feedbacks, is

the principal subspace of , is the orthogonal complement

TABLE I
ALGORITHM OF OCCA SVM

subspace of in , is the corresponding diagonal matrix of

eigenvalues of , and the eigenvalues of are 0. The unitary

matrix defines a coordinate transform, which de-correlates

the data, makes explicit the invariant subspace of the matrix op-

erator , and ensures that all positive feedbacks are mapped to

their center. By KLT, we can obtain the orthogonal comple-

ment feature vector , where

is the center of positive feedbacks, is the

th positive feedback, and is the th projected positive feed-

back. We call the transformation as OCCA, which preserves the

invariant direction of the data distribution.

After projecting all positive feedbacks onto their center, we

can project all negative feedbacks onto the subspace according

to , where is the th negative feed-

back and is the th projected negative feedback.

Then each image in the database is projected onto the sub-

space through , where is the projected

datum vector of the original datum vector .

The standard SVM classification algorithm is executed on

, where and is the

number of negative feedbacks. This is because in the projected

subspace, all positive samples are merged together. Finally,

we can measure the dissimilarity through the output of SVM

, where is the number of support

vectors. The outline of the proposed algorithm is shown in

Table I.

Recently, the locality preserving projections (LPP) [6] has

been proposed to discover the nonlinear structure of data, which

lie on a low dimensional manifold embedded in a high dimen-

sional space. The difference between LPP and OCCA is the

weight matrix. In LPP, the weight matrix is a normalized locality

preservation matrix. In OCCA, the weight matrix is the same as

the weight matrix in PCA. Both in LPP and OCCA, the eigen-

vectors associated with smallest eigenvalues are selected for fea-

ture representation. However, PCA applies the eigenvectors cor-

responding to the largest eigenvalues for feature representation.
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IV. KERNEL EMPIRICAL ORTHOGONAL COMPLEMENT

COMPONENT ANALYSIS

Herein, we aim to improve the performance of CBIR RF and

generalize OCCA in the kernel space [13] and we name the ap-

proach as KEOCCA, which can be regarded as an enhanced

OCCA. According to the kernel approach, the original input

space is first nonlinearly mapped to an arbitrarily high dimen-

sional feature space, in which the distribution of samples is lin-

earized. Then, OCCA is used to obtain a classifier in the kernel

feature space.

The direct kernelization of OCCA is to use only positive feed-

backs to construct the bases, that is .

In this paper, we use not only positive feedbacks but

also negative feedbacks to construct the bases, that is

. In fact, the most

suitable way to construct the bases is to incorporate all images

in the database, because many more kernel features can be

generated by this approach. However, the method is practically

intractable for CBIR RF. Therefore, we only use all feedbacks

to construct the bases and we call the new kernelization of

OCCA as KEOCCA, but not the kernel OCCA.

Similar to SVM and other kernel machines, we first map a

sample to in a higher dimensional space, and then the

kernel trick is utilized to obtain the

solution. We first calculate the covariance matrix of the positive

feedbacks in the Hilbert space according to

(10)

where is the center of posi-

tive feedbacks in the higher dimensional space. According

to the previous analysis of the orthogonal complement com-

ponents in the higher dimensional space, we know that

(this is because we only

use all feedbacks to construct the bases for forming the ker-

nelization). Therefore, the basis function for KEOCCA can be

solved by an eigenvalue problem

(11)

where .

Through the kernel trick, the eigenvalue problem can be

solved by using the kernel Gram matrix , according to

(12)

where the kernel Gram matrix is defined by (13), shown at the

bottom of the page.

Therefore, we can obtain the kernel empirical orthogonal

complement component (KEOCC) according to , which

makes .

Similar to OCCA combined with the conventional

SVM-based RF, we project positive feedbacks, negative feed-

backs, and images in the database onto the KEOCC spanned

space by . In KEOCCA, positive

feedbacks, negative feedbacks, and images in the database are

represented by , , and , respectively.

Then, using , we train the

standard SVM classifier. Finally, we can measure the

dissimilarity through the output of SVM according to

, where is the number of the

support vectors. The outline of the proposed algorithm is shown

in Table II.

V. EXPERIMENTS

With CBIR [27], the search engine is required to feedback

the most semantically relevant images after each previous RF

(13)
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TABLE II
ALGORITHM OF KEOCCA SVM

iteration. The user will not label many images for each iteration

and will usually only do a few iterations. Thus, the following

CBIR framework is used, into which any RF algorithm can be

embedded.

When a query image is inputted, its low-level visual features

are extracted. Then, all images in the database are sorted based

on a similarity metric, e.g., Euclidean distance. If the user is sat-

isfied with the result, the retrieval process is ended. If, however,

the user is not satisfied, s/he can label some top query relevant

images as positive feedbacks and/or some query irrelevant im-

ages as negative feedbacks. Using these feedbacks, the system

is trained based on a learning machine (an embedded RF al-

gorithm). Then, all the images are re-sorted based on the new

similarity metric. If the user is still not content with the result,

s/he repeats the process.

In this Section, we report the results of a large number of ex-

periments. The experiments have two parts: statistical experi-

ments (part B) and real-world experiments (part C). Prior to de-

scribing experiments, we introduce the database and visual fea-

tures in part A.

A. Groundtruth and Feature

Groundtruth: For the experiments we used part of the Corel

Photo Gallery [24], comprising 10 800 images. In the original

Corel Photo Gallery, each folder has a name and includes 100

images. However, in the original database, names of most

folders are not suitable as conceptual classes, because many

images with similar concepts are not in the same folder and

some images whose semantic contents are quite different are in

the same folder. The existing folders in the Corel Photo Gallery

were therefore ignored and all 10 800 images were manually

divided into 80 concept groups, such as castle, aviation, bonsai,

ship, steam-engine, train, dog, stalactite, autumn, cloud, ice-

berg, waterfall, elephant, primates, tiger, etc. These concept

groups were only used in the evaluation of the results of our

experiments. This large-scale groundtruth is used in both part

B and part C.

Feature: Generally in a CBIR RF system images are rep-

resented by three main features: color [9], [14], [18], texture

[10], [11], [19], and shape [9], [12]. Color information [18] is

the most informative feature because of its robustness with re-

spect to scaling, rotation, perspective, and occlusion. Texture

information [11] can be another important feature and previous

studies have shown that texture structure and orientation fit well

the model of human perception, similarly with shape informa-

tion [9].

For color [18], we selected hue, saturation, and value his-

togram. Hue and saturation were both quantized into 8 bins and

value into 4 bins. A 128 dimensional Color coherence vector

(CCV) [14] in Lab color space and a 9 dimensional color mo-

ment feature [10] in Luv color space were both employed.

For texture, a pyramidal wavelet transform (PWT) was ex-

tracted from the Y component in the YCrCb space. PWT results

in a feature vector of 24 values. We also extracted the tree-struc-

tured wavelet transform (TWT) in the form of a 104 dimensional

feature.

For shape, the edge direction histogram [12] was calculated

from the Y component in YCrCb space. Edges were grouped

into five classes, namely horizontal, 45 diagonal, vertical, 135

diagonal, and edges curving back on themselves.

Each of these features has its own power to characterize a

type of image content. We combined color, texture, and shape

features into a feature vector.

B. Statistical Experimental Results

Precision is widely used to evaluate retrieval performance. It

is the ratio of the number of relevant images retrieved in the top

retrieved images. The error-bar is also given in the paper to

evaluate the robustness of an evaluated algorithm. In our ex-

periments, comparisons are made of the performances of the

, PCA [3] with SVM, kernel PCA (KPCA) [13] with

SVM, OCCA with SVM, and KEOCCA with SVM. We do not

give out the comparison experimental results between the SVM

and the proposed algorithms, because they have already been

given in [20].

In our experiments, we use the Gaussian kernel

(14)

in SVM, , KPCA, and KEOCCA. We chose the

kernel parameters from a series of values according to the

retrieval performance. For SVM and , . For

KPCA and KEOCCA, . The retrieval performance is

sensitive to the kernel parameters. We need to tune the kernel

parameter and kernel type for different databases. Furthermore,

we can also achieve much better performance by tuning the

kernel parameter for different queries according to current

kernel machine techniques.

The problem of mislabeling feedbacks is an open issue in

small sample learning. The number of labeled samples is small

so, when the number of the mislabeled samples is much less

than the correct labeled samples, the learning machine can still

obtain a correct model for the retrieval process by ignoring the
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Fig. 1. Statistical retrieval results.
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Fig. 2. Real-world retrieval results (top 12–20 results).

minor mistake. However, if a user mislabels too many images

during the relevance feedback, the learning will be misled to an

incorrect retrieval model. Thereafter, the retrieval system cannot

give a satisfactory performance.

To avoid this kind of mistake, in our experiments, the com-

puter does the relevance feedback iterations automatically using

the conceptual classes described in Part A.

We conducted statistical experiments separately according to

18 concepts, which are art_pic, antiques, cyber, mural, castle,

lighthouse, aviation, balloon, car, mineral, ship, iceberg, water-

fall, ski, wildcat, elephant, tiger, and wolf. Each of these con-

cepts is homogeneous. For each concept, 30 percent of images

were selected as queries for statistical experiments. In an exper-

iment there were none iterations. For each iteration the top 20

images resulting from the resort were examined serially from

the top and each image was marked as correct or incorrect. The

first five correct images and the first five incorrect images were

then used as feedbacks unless fewer such images were found

among the top 20 in which case the fewer number found was

used as feedback.

As can be seen from Fig. 1, the proposed KEOCCA and

OCCA combined with SVM-based RF algorithms consistently
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outperform the KPCA and PCA combined with SVM-based RF

algorithms. Furthermore, the new algorithms can also perform

better than -based RF. Finally, the kernel based al-

gorithms (KEOCCA and KPCA) combined with SVM-based

RFs can consistently outperform their linear versions (OCCA

and PCA) combined with SVM-based RFs, respectively. Each

subfigure in Fig. 1 shows the precision with error-bar in the top

20 retrieval results for the 30% selected images as queries in

each concept. Furthermore, in our experiments, we found that

the numbers of support vectors of KEOCCA and OCCA com-

bined with the SVM-based RFs were much less than those of the

KPCA and PCA combined with the SVM-based RFs and that of

-based RF. Previously, we found that the numbers of

support vectors of the KEOCCA and OCCA combined with the

SVM-based RFs were much less than that of the conventional

SVM-based RF. Finally, the training errors in all RFs were zero

in the feedback procedure.

In the proposed CBIR system and its RF algorithms, to fairly

compare the experimental results, no indexing technique was

used to improve either the speed or the precision. There are two

major indexing styles and either of them has its intrinsic advan-

tage. 1) Classification based indexing focuses on the improve-

ment of retrieval precision. In this method, each image is as-

signed one or more distinct labels which are supported by the

majority of people. Then, based on these labels, the indexing

can be constructed through semantic classifications. Thereafter,

the search results will cater to most of the users. 2) Low-level

visual feature based indexing is employed to speed up the re-

trieval. There are many feature-based indexing approaches such

as a variety of tree-based indexing structures for high-dimen-

sional databases and VQ and VA methods etc. The promising

way should be the combination of both feature and classifica-

tion information for indexing structure, so that both speed and

precision are enhanced.

C. Real-World Experimental Results

Based on the same groundtruth, we performed some real-

world experiments. We randomly selected some images as the

queries. For each query, we did RF iteration five times. For each

RF iteration, we randomly selected some query concept relevant

and irrelevant images as positive and negative feedbacks from

the first screen shot, respectively. The number of the positive

(negative) feedbacks is about 5. Meanwhile, they may not be

the top retrieved images. We chose them according to whether

the images share the same concept with the query or not. Fig. 2

shows the experimental results. The first image of each row in

each subfigure is the query. Because the top 1 to top 11 re-

trieved results are usually query relevant, we only show the top

12 to top 20 results. The rows of each subfigure are the retrieval

results given by KEOCCA SVM, OCCA SVM, KPCA SVM,

PCA SVM, and , respectively. From this experiment,

we can see that the proposed KEOCCA algorithm can work well

practically.

VI. CONCLUSION

Recently, SVM has been widely applied in RF, which plays

an essential role in improving the performance of CBIR. The

main advantage of SVM is that it can generalize better than

many other classifiers. To improve the conventional SVM based

RF we propose the OCCA. OCCA can be implemented mainly

in three steps: 1) to project all positive feedbacks onto their

center and generate a subspace to represent the homogeneous

concept shared by all positive feedbacks and the query image;

2) to project all the remaining images including the negative

feedbacks onto this subspace; and 3) to construct an SVM clas-

sifier in this subspace and resort all the images based on new

similarities. We then generalize the OCCA to the Hilbert space.

The direct kernelization of OCCA is to use only positive feed-

backs to construct the bases and in order to achieve additional

kernel representation all images in the database could be used

to construct the kernel bases. Due to the inefficient reason, we

use the positive and negative feedbacks to construct the kernel

bases. Using these bases, we define the kernel empirical OCCA

(KEOCCA). Through experiments on a subset of Corel Photo

Gallery with 10 800 images, we show that our new method can

improve the conventional SVM-based RF consistently.
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