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1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1. Initial algebra spec$cation of data types 

Algebraic specifications of data types are often interpreted in terms of initial algebra 

semantics [21]. The data type specified is taken to be the initial algebra of the 

specification. The latter is characterized by the following two properties: 

(i) each of its elements corresponds to at least one closed term (term without 

variables) over the visible signature of the specification (“no junk”), 

(ii) two of its elements are never equal unless the corresponding closed terms can be 

proved equal by means of equational reasoning from the equations given in the 

specification (“no confusion”). 

Every algebraic specification whose hidden functions do not generate any “new” 

elements of visible sorts has an initial algebra satisfying (i) and (ii). It is determined 

uniquely up to isomorphism. 

In view of property (ii) we can write 

ClEqTh(S)=ClEqTh(I(S)), 

where S is the specification, Z(S) its initial algebra, ClEqTh(S) the set of closed 

equations (equations without variables) over the visible signature of S that are 

provable from S by means of equational reasoning, and C&qTh(I(S)) the set of closed 

equations valid in I(S). Since we consider only finite specifications, ClEqTh(S) is 

a recursively enumerable set. Hence, ClEqTh(I(S)) is recursively enumerable as well, 

and this is equivalent to saying that I(S) is a semicomputable algebra. So initial 

algebra specifications give rise to semicomputable data types. Conversely, if hidden 

sorts and functions are allowed in the specification, every semicomputable data type 

has an initial algebra specification. This result, which was proved for the single- 

sorted case in [l], will play a crucial role in the proof of our main theorem in 

Section 4. 

1.2. Equational logic, the equational theory of the initial algebra, and w-completeness 

The identity 

CLEqTh(S)= ClEqTh(l(S)) 

expresses the fact that equational reasoning is complete with respect to the set of 

closed equations valid in the initial algebra. If the restriction to closed equations is 

dropped, however, and open equations (i.e., equations containing variables) are taken 

into account as well, completeness is lost. Let EqTh(S) be the set of open as well as 

closed equations over the visible signature of S that are equationally provable from S, 

and let EqTh(Z(S)) be the set of open as well as closed equations valid in the initial 

algebra I(S). Due to the “no junk” property of the initial algebra, an open equation is 

valid in Z(S) if all closed equations that can be obtained from it by substituting closed 

terms over the visible signature of S for its variables, are valid in I(S). Clearly, such an 
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equation need not be valid in models of S containing “junk”. As a consequence, 

equational reasoning need not be complete with respect to EqTh(Z(S)) and 

EqTh(S) G EqTh(Z(S)) 

is the only thing that can be stated with certainty in the general case. It may 

occasionally happen, however, that 

EqTh(S)= EqTh(l(S)) 

and in that case S is called inductively complete [25, 131 or u-complete [ll]. All 

equations valid in the initial algebra of an o-complete specification S can be proved 

by purely equational means from the equations given in S. 

Consider, for example, the following simple initial algebra specification of the 

natural numbers with addition and multiplication: 

module N 

begin 

sort Num 

functions 0 : Num 

S: Num-+Num 

+ , .: Num x Num+Num 

variables x, y : Num 

equations x + 0 = x 

x+S(y)=S(x+y) 

x.0=0 

x.S(y)=x+(x.y) 

end N. 

N is not o-complete. The commutative, associative and distributive laws for addition 

and multiplication, for instance, are not equationally derivable from N, but by adding 

them an o-complete specification # is obtained [12]: 

module N 

begin 

import N 

variables x, y, z : Num 

equations x + y = y + x 

x+(y+z)=(x+y)+z 

x.y=y.x 

x.(y.z)=(x.y).z 

x.(y+z)=(x.y)+(x.z) 

end N. 

The o-completeness of IV follows from the fact that, using the equations of N, 

every (0, S, +,.)-term can be brought in canonical polynomial form. Two such 
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canonical forms represent the same function on the natural numbers only if they 

are syntactically equal modulo associativity and commutativity of addition and 

multiplication. 

1.3. Which data types have w-complete initial algebra speciJications? 

First of all, it should be noted that if a specification S is o-complete, the correspond- 

ing theory EqTh(Z(S)) is recursively enumerable since it is equal to EqTh(S) and the 

latter is recursively enumerable (whether S is w-complete or not). As we explained in 

Section 1.1, the set of closed equations ClEqTh(Z(S)) is always recursively enumerable, 

but this is not true for the full set of equations EqTh(I(S)). Even in seemingly very 

simple cases the latter is not recursively enumerable. Consider, for instance, the 

following initial algebra specification of the natural numbers with addition, multipli- 

cation and cut-off subtraction: 

module N’ 

begin 

import N 

function L : Num x Num+Num 

variables x, y : Num 

equations x L 0 = x 

o-x=0 

S(x)‘S(y)=xLy 

end N’. 

The corresponding set of equations Eqi%(Z(N’)) is not recursively enumerable [3, 

Section 81. Hence, N’ cannot be extended to an o-complete specification, not even if 

hidden sorts and functions are allowed [25,11]. The same example was used in [24] to 

show that equational logic plus structural induction is not necessarily complete with 

respect to EqTh(l(S)). Cf. also [17]. 

The extension of N to I? did not require the introduction of hidden signature 

elements. Obviously, o-complete initial algebra specifications without hidden signa- 

ture elements give rise to algebras whose equational theory is finitely axiomatizable in 

terms of equations over the original signature. Such algebras are calledjfinitely bused. 

The o-completeness of N shows that the set of natural numbers with addition and 

multiplication is finitely based. Conversely, the w-complete specification of nonfinitely 

based algebras, if possible, requires hidden signature elements. 

I.3.I. Fitzite data types 

One of the simplest nonfinitely based algebras is a three-element groupoid con- 

structed by Murskii [23]. We give an o-complete specification for it using addition 

and multiplication modulo three as hidden functions. (In [l l] the same was done for 
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a somewhat larger nonfinitely based groupoid due to Lyndon.) A straightforward 

initial algebra specification of Murskii’s groupoid is 

module M 

begin 

sort Num 

functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2 : Num 

p : Num x Num + Num 

variable x : Num 

equations ~(O,x)=~_c(x,O)=~(l, l)=O 

n(1,2)= 1 

P(2, I) = P(2,2) = 2 

end M. 

It is shown in [23] that for each n33 the equation 

11(XI,~(X2,...~(Xn-~,~(X,,X1))...)) 

is valid in I(M) but not provable from equations with less than n different variables. 

Hence, Z(M) is not finitely based. 

It so happens that the finite field Z3 of integers modulo three with addition and 

multiplication is functionally complete, i.e., every k-ary total function on Z j can be 

represented by a closed or open zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1,2, + ,.)-term. Furthermore, Z3 has an w- 

complete specification, which can be obtained in an economical way by taking N and 

adding a few equations to it (cf. [25]): 

module Z, 

begin 

import N 

functions 1,2 : Num 

variable x : Num 

equations 1 = S(0) 

2=S(l) 

S(s(S(x)))=x.(x.x)=x 

end Z,. 

The polynomials P,,, (m, n = 0, 1,2) defined by 

Pm,&,Y)= fi (x+4. fi (y+j) 
i=O j=O 

i+mfO j+n#O 

have the property 

P,, ,(m, n) = I 

P,,,(x,y)=O if xfm or yfn, 
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so p can be defined in terms of addition and multiplication modulo three as follows: 

~~~,Y~=~~,z~~,Y~+~~~,~~~,Y~+2~2,2~x,y~=2x2y2+~x2Y+2xY. 

By adding this definition of ,U to z, and hiding the operators S, + and ., an 

o-complete specification of I(M) is obtained: 

module n? 

begin 

import 2, 

bidden functions S, + , 

function ~1: Num x Num -+ Num 

variables x, y : Num 

equation ~(x, y) = 2x2 y2 + 2x2y + 2xy 

end ti. 

More generally, Zp is functionally complete for every prime p and has an o- 

complete specification 2, similar to 2,. Hence, the above method of obtaining an 

o-complete specification with hidden functions applies to all single-sorted algebras 

with p elements. If n is not prime, the method breaks down due to the presence of zero 

divisors in the ring Z,, but by using the functionally complete Post algebras P,, rather 

than Z, we will show in Section 3 that all finite data types have an w-complete initial 

algebra specification with hidden functions. 

1.3.2. Infinite data types 

The above method does not seem to work for infinite data types with a recursively 

enumerable equational theory. The w-complete specification A?’ of Murskii’s 

groupoid I(M) shown in Fig. 1 is considerably less elegant than the specification 

A? given in the previous section, but it illustrates an approach that, apart from 

equations (6)-(10) which work only in the finite case, does lend itself to generalization. 

It requires both hidden sorts and hidden functions. It should be emphasized that, in 

adding hidden elements, we need not bother about equational derivability of open 

equations containing hidden functions, but only about open equations containing the 

functions present in I(M). 

A?’ is an enrichment of the specification M given in the previous section. The hidden 

machinery of A?’ works as follows. Closed terms of hidden sort SimOpenTerm 

correspond to open terms of sort Num of M. The role of variables is played by 

j(<),j(S(<)), . . , and the counterparts of the constants 0, 1 and 2 of sort Num are i(O), 

i(1) and i(2). These act as values. Equation (5) of Fig. 1 establishes m on SimOpenTerm 

as the counterpart of p on Num. The substitution function B defined by equations 

(6)-(9) allows substitution of “values” for “variables”. It is used in equation (10) to 

define an equality on closed SimOpenTerm-terms corresponding to equality of open 

Num-terms in I(M). This equality is transferred to Num by means of the apply-function 



Which data types hate o-complete initial algebra specijications? 155 

module A’ 

begin 

import M (Section 1.3.1) 

hidden sort Bool 

hidden functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
true,false: Bool 

hidden sort Sim Var 

hidden functions 

<:SimVar 

S: Sim Var -+ Sim Var 

eq : Sim Var x Sim Var *Boo1 

variables u, c : Sim Var 

equations 

(1) eq(u,u)=true 

(2) eq(C. S(u)) =false 

(3) eq(S(u), <)=false 

(4) eq(S(u),S(r))=eq(u, v) 

hidden sort SimOpen Term 

hidden functions 

i: Num +SimOpenTerm 

j: SimVar-+SimOpenTerm 

m:SimOpenTerm x SimOpenTerm+SimOpenTerm (counterpart of p) 

0: Num x Sim Vur x SimOpenTerm -+ SimOpenTerm (substitution) 

variables x, y : Num 
u, r : Sim Var 

t,, t, : SimOpenTerm 

equations 

(5) m(i(x),i(v))=i(~(.u,L’)) 

(6) O,u,i(y))=i(y) 

(7) a(~, G(u)) = i(x) 

(8) eq(u,o)=false - u(x,u,j(tl))=j(~.) 

(9) a(x,u,m(t,,t,))=m(u(x,u,t,),o(x,u,tZ)) 

(10) 6(0,U,t~)=(T(O,U,t2)&(r(l,U,~1)=~(1,U,t*)&cr(2,u,t,)=cr(2,u,t*)~t~=tz 

hidden sort NumList 

hidden functions 

nil: NumList 

list: Num x NumList +NumList 

jirst: Numlist +Num 

tail: NumList +NumList 

variables Y : Num 

I: NumList 

equations 

(11) ,first(nil)=O 

(12) first(list(x,I))=x 

(13) tail(nil)=ni/ 

(14) tail(lisf(x,I))=l 

hidden function 

apply: SimOpenTerm x NumList +Num 

variables x : Num 

u : Sim Var 

I: NumList 

t, , t2 : SimOpen Term 

equations 

(15) apply(i(x),I)=x 

(16) apply(X), I)=first(l) 

(17) apply (j(S(u)), l)=apply(j(u), tail(l)) 

(18) apply(m(t,,t,),l)=~(apply(t,,1),apply(t,,l)) 
end A?’ 

Fig. 1 
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defined in equations (15))(18). For example, the equation 

Lt(X> 2)=x, 

which is valid in I(M) but not an equational consequence of M, now obtains the 

following equational proof: first note that the corresponding closed equation of sort 

SimOpenTerm 

follows from equation (10) with u=t and equation (5). Next, using apply and 

equations (15)-( 18) the left- and right-hand sides can be transformed into the original 

open terms 

aMY(m(j(5), i(2)), list@, nil)) = &x,2) 

apply(j((), list(x, nil)) = x. 

Similarly, the equational proof of 

&> P(Y, x)) = &9 Y) 

is 

Ax, b44 -4) = amb(m(j(O, mW(t)),j(t))), Wx, WY, nil)))‘2 

apply(m(j(r),j(S(5))), Wx, W(Y, nil)))= 0, Y). 

For reasons of readability we put equations (8) and (10) in positive conditional form, 

but this is not strictly necessary. The value 0 assigned tofirst(ni1) by equation (11) is 

arbitrary; 1 and 2 would have done equally well. 

An u-complete specification similar to I@’ can be given for all data types with 

a recursively enumerable equational theory. The introduction of hidden signature 

elements such that the corresponding closed terms mimic the open terms over the 

original signature as well as the use of apply to transform closed identities into open 

identities are generally applicable. For infinite data types equations (6)-(10) have to be 

replaced by other ones, however, so as to obtain a proper definition of the equational 

theory of the data type in question (possibly by means of additional hidden sorts and 

functions). We will prove the corresponding general theorem, which is our main result, 

in Section 4. 

1.4. Related work 

Plotkin has shown that the LK&calculus is w-incomplete [26]. Paul [25] intro- 

duced the notion of inductive completeness while analyzing possible failure modes of 

the inductive completion (also called inductionless induction or proof by consistency) 

algorithm [13]. The equivalent notion of w-completeness was used in [l I] in an 

attempt to understand what “making maximal use of incomplete information” might 
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mean in the context of partial evaluation or mixed computation [S]. The problem of the 

o-completability of initial algebra specifications addressed in the current paper arose 

in that context [l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, Open Question 2.61. 

After we finished this paper, we learned that Gagliardi and Tulipani had indepen- 

dently solved the o-completability problem for initial algebra specifications of 

finite data types [7]. We discuss their proof, which is rather different from ours, 

in Section 3. In the same paper they have given a sufficient condition for an infinite 

data type to have a nonrecursively enumerable equational theory. Recall that such 

a data type cannot have a finite o-complete initial algebra specification. Their 

condition, which involves the definability of a discriminator function of the 

data type in terms of its fundamental operations, applies, for instance, to the 

natural numbers with addition, multiplication, and cut-off subtraction discussed in 

Section 1.3. 

The standard reference on initial algebra semantics is the survey by Meseguer and 

Goguen [21]. A systematic treatment of the power of initial algebra specification can 

be found in [l]. One of its main results, which plays a crucial role in the proof of our 

main theorem in Section 4, says that every semicomputable data type has an initial 

algebra specification with hidden sorts and functions. For relevant work on 

(non)finitely based algebras the surveys by Taylor [30] and McNulty [20] may be 

consulted. A survey of results on functional completeness and related matters has been 

given by Rosenberg [29]. 

Moller has studied some of the axiom systems for process algebra from the 

viewpoint of o-completeness [22]. Strategies for proving w-completeness of initial 

algebra specifications are discussed by Lazrek et al. [ 151 and Groote [8]. 

2. Preliminaries 

We consider onlyjinite specifications. Provable always means equationally provable. 

We do not allow algebras with empty carriers or partial functions as models of 

a specification, so the usual rules of equational logic apply without reservation (see 

[2 1, Section 4.31 for a discussion of the effects of allowing models with empty carriers 

on the rules of equational logic). In the context of a signaturefunction always means 

n-adicfinction (n&O). Zero-adic functions are sometimes called constants. Signatures 

never have void (empty) sorts. 

As specifications may contain hidden sorts and functions, it is necessary to define 

the meaning of hiding at the semantic level of equational theories and initial algebras. 

Let S be a specification with visible signature C and total signature ZT. Z, - C consists 

of the hidden sorts and functions of S. Since hidden functions may be defined on 

visible sorts, CT-C need not be (and virtually never is) a self-contained signature. Let 

ST be the specification obtained from S by making the entire signature ,Yr visible. In 

keeping with [l] and the informal discussion in the previous sections we adopt the 

following conventions: 
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(1) The set of equations provable from S consists of the C-equations provable from 

ST, i.e., 

where Eq(C) is the set of all C-equations. Similarly, the set of closed equations 

(equations without variables) provable from S consists of the closed C-equations 

provable from S,, i.e., 

CIEqTh(S) = Eq(C) n ClEqTh(&). 

(2) The initial algebra of S is the C-reduct of the initial algebra of ST-, i.e., 

Z(S) = c 0 I(&). 

The reduct CoZ(&) can be interpreted in two ways (cf. Cl, Section 2]), nameiy 

(a) as the algebra Z(S,)lz consisting of the carriers and functions of I(&) named in 

C (the usual interpretation), or 

(b) as the subalgebra of Z(S,)l, generated by the functions named jn C (the 

subalgebra interpretation). 

To avoid any possibility of confusion between the two interpretations, we consider 

only specifications for which they coincide. This is the case if I(&) II is C-minimal (“no 

junk”), i.e., if every closed ,X,-term of a sort in C is equal to a closed C-term. The 

hidden functions of such specifications do not generate any “new” elements of visible 

sorts. 

(3) The set EqTh(Z(S)) consists of the C-equations valid in Z(S). According to (2) we 

assume Z(S) to be C-minimal, so an open equation is valid in Z(S) if and only if all 

closed equations that can be obtained from it by substituting closed C-terms for its 

variables, are valid in Z(S). A closed equation is valid in I(S) if and only if it is provable 

from S in the sense of (l), i.e., ClEqi” h(Z(S))=ClEqTh(S) (“no confusion”). 

Keeping these conventions in mind, we can now give a precise definition of 

o-completeness: 

Definition 2.1. An algebraic specification S with hidden sorts and functions is o- 

complete if EqTh(S)= EqTh(Z(S)). 

The w-completeness of a specification S does not imply the o-completeness of the 

specification ST obtained from S by making the entire signature of S visible. Open 

equations that are valid in I(&) need not be equationally derivable if they contain 

functions that were hidden in S. 

3. Finite data types 

Theorem 3.1. Everyfinite minimal algebra A has an w-complete initial algebra specijica- 

tion with hidden functions. Zf A is single-sorted, the number of hidden functions required 
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module pU 

begin 

sort E 

functions ei: E (O<i<n- 1) 

Ci:E+E (O<i<n-1) 

V:ExE+E 

A:ExE+E 

variables x, y, z : E 

equations 

(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi(ei)=en-l 

(2) Ci(ej)=e, (j#i) 

(3) ei V ej=ek (k=max(i,j)) 

(4) ei A ej=eL (k=min(i,j)) 

(5) xvy=yvx 

(6) xAy=yAx 

(7) xv(yvz)=(xvy)vz 

(8) xA(yAz)=(xAy)Az 

(9) xvx=x 

(10) x Ax=x 

(11) xA(xVy)=x 

(12) xV(xAy)=x 

(13) xV(yAz)=(xVy)A(xVz) 

(14) e,Vx=x 

(15) x Ae,_,=x 

(16) ,C_ilx) A Cj(x)=eo (i#j) 

(17) v Ci(x)=%-1 
i-0 

(i> 1) 

(20) x= v (ei A Ci(x)) 

end p,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=l 

Fig. 2. 

is < 1. Otherwise, it is <2N,,,,, +Nfunctions, where IV,,,,, is the number of sorts and 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunctions is the number offunctions in the signature of A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof. (a) Let A be a minimal algebra with rt elements, signature C, and single sort E. 

If n = 1 an o-complete specification Sof A is obtained by adding the equation x = y to 

S with x, y variables of sort E. If n 2 2 consider the specification j, given in Fig. 2. 

Apart from a few insignificant differences, p, is the equational axiomatization of 

n-valued Post algebras given by Epstein [S]. Post algebras bear the same relationship 

to many-valued propositional calculi as do Boolean algebras to ordinary proposi- 

tional calculus. In fact, two-valued Post algebras are Boolean algebras. In that case Co 

is negation, Ci is the identity function, and V and A are ordinary disjunction and 

conjunction. We only consider the initial algebra of p,,, which is the n-valued 
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Post algebra with II elements P,,. It is already fully determined by equations (l)-(4). 

The other equations are valid in P,, as is easily verified by substituting constants 

eO, . . , en_ 1 for the variables occurring in them. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P, is a distributive lattice by equations (5)-(13). p,, has the following two properties: 

(i) Its initial alyebra P,, is functionally complete. Indeed, every k-ary function f on P,, 

can be represented by a term in disjunctive normal form: 

f(x1, . . . ,xk)= osiyn_l Cf(eil~...~eik) A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi,(Xl) A “’ A Cik(Xk)]. 

l<j<k 

This is easily verified by noting that Ci,(ei,) A ... A Cik(eik)=e,_, and 

Ci,(xl) A ... A Cir(Xk)=eo otherwise, and by applying (15), (14) and the equation 

.xAeO=eO, which is valid in P,,. 

(ii) p, is o-complete. By virtue of [4, Theorem 131, equations (l)-(20) are sufficient 

to bring any term t[x,,..., xk] (k3 1) in disjunctive normal form 

Next, all nonessential variables, i.e., all variables whose value does not affect the value 

of t if viewed as a function on P,,, can be removed by means of equation (17). This 

yields the reduced normal form 

V Ceil...,il A Ci,(Yl) A ... A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi,(Yt)l, (1616k), 
O<i,Sn- 1 

l<jQi 

where {yl, . . . . y,) is the subset of {x1, . . . , &} consisting Only of the essential variables 

oft, or the reduced normal form ei if all variables of t are nonessential (I= 0). Two such 

reduced normal forms are equal in P,, if and only if they are syntactically identical 

modulo associativity and commutativity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and A (equations (7), (8) and (5), (6)). 

Hence, p,, is o-complete. 

An w-complete specification of A can now be obtained by taking ?,,, hiding all its 

functions, adding C, and adding for each function f of C its representation as an 

(eO,...,en-l, Co ,. . , C ,_ 1, V , A )-term tf. (We assume that the functions of p, are not 

in C. Otherwise, they have to be renamed first.) This yields the following specification 

S: 

module L? 

begin 

import F, 

bidden functions eo, . . , e, _ 1, Co , . . , C , _ 1, V , A 

import C 



Which duta types have w-complete initial algebra specijcations? 161 

variables x1 , . . . , x, : E (m = maxarity(C)) 

equations 

f(x 1,...,xk)=tSCeo,...,e,~1,Co,...,C,-,, v, A,x1,..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,41 
(fEZ,k=arity(f)>O) 

end 3. 

To obtain an o-complete specification with only a single hidden function, we replace 

all functions of ?‘, except e0 with the generalized Sheffer function [32] 

xly= “(X v Y), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n-2 

is a single step rotation, using the identities 

ci(x)= -(-(- n-1-iXVe,_2)Ve,_2) 

xAy=--(-XV--y) 

n-2 

-_x= v -(-(- nml-jxV en_2) V en_2_j) (-ei=e,_1_i) 
j=O 

ei= -‘go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i#O) 

xv y= -“_‘(xJy) 

Apart from its smaller signature, the resulting specification & has the same properties 

as p,. Since A is minimal, each of its elements corresponds to a closed Z-term, so 

C contains at least one constant. Without loss of generality we may assume this 

constant to be eo. Using PA, the desired specification of A becomes: 

module s’ 

begin 

import PA 

hidden function 1 

import 1 

variables x1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , x, : E (W I = maxarity(Z)) 

equationsf(x,,...,x,)=tJ[eo,~,xI,...,xk] (fEZ,f#e,,k=arity(j)>,O) 

end 3’. 

This proves the theorem for the single-sorted case. 

(b) Let A be a finite many-sorted minimal algebra with signature C such that 

N ,,,,,>2. Let S be an initial algebra specification of A without hidden sorts or 
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functions. Such a specification can be obtained simply by giving an appropriate table 

of values for each fundamental operation of A. Since A is minimal, each of its elements 

corresponds to a closed C-term, so this does not require the introduction of hidden 

items. Let E be a sort in C such that the number of elements n of the corresponding 

carrier of A is at least as large as the number of elements of any of the other carriers 

and consider the specification given in Fig. 3. 

module S’ 

begin 

import S 

functions i,: s + E (SEC) 

j,: E-s (~2) 

TV: E x ‘.. x E+E (&C, arity(r,)=arity(f)>O) 
variables x,:s (SEC) 

x,,...,x,:E (m=maxarity(C)) 
equations . (equations defining injections i, for all sorts s # E) 

(equations defining surjections j, for all sorts s # E) 

(1) Mxd=xE 

(2) j,W ,))=x, 

fid ST~(x~,...,-~~)=j~~(f(.is~(x~),...,j.,(x,))) (Ov(f)=s, x ..’ xsk-+~) 

Fig. 3. 

S’ takes the original specification S of A as its point of departure and adds a pair of 

functions i, : s - -f E and j, : E-s for each sort SEC in such a way that equations (1) and 

(2) (of Fig. 3) hold and A is equal to Zor(S’), the Z-reduct of I(S’) (cf. Section 2). 

Furthermore, for each SEC S’ adds a function or of the same arity asfbut operating 

entirely within the confines of E and defined by equation (3). Let Z, consist of E and 

the functions zr. To each C-term u corresponds a X,-term t, which is obtained by 

replacing each function symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in u by rs and each variable x of sort s by a variable 

z, of sort E. Repeated application of equations (3) and (2) immediately yields 

Tu[XI , ...,xkl=~so(~Cj,,(x~)7 .~.&,Wl) (3’) 

for suitable sorts so, . . . , sk. A C-equation u=v and its associated Z,-equation zU=~” 

hold simultaneously. Indeed, if u = v holds, then is,(u) = is,(v) and by substituting js(z,) 

for each s-sorted variable x throughout u and u and applying (3’) z,= r’, follows. 

Conversely, if r, = z, holds for some equation u = U, then u = v itself holds as well by (3’) 

(2) and substitution of i,(x) for rX throughout u and u. As a consequence, an cu- 

complete specification of Z(S’) can be obtained from an o-complete specification of 

CE q 1(S’). The latter is a single-sorted minimal algebra so part (a) of the proof applies. 

With A =C q l(S’) this yields the following o-complete specification of A given in 

Fig. 4. 
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module s 

begin 

import S’ 

hidden functions i,, j,, zf 
import Pi (with n the cardinality of carrier E of A) 

hidden functions e, , ( 
variables x1, , x, : E (m = maxarity(1)) 

equations 

(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~f(X*,...,Xk)=~~,C~,,I,xl,...,x,l 
end 3. 

Fig. 4. 

The number of hidden functions of 3 is 2Nsorts + Nfunctions + 2, but the identity functions 

iE and j, were introduced only for reasons of convenience and can be omitted. This 

proves the theorem for the many-sorted case. 0 

Remarks. (i) The functional completeness of P, (with fundamental operations 

-n= - n-1 and V,= V) was first pointed out by Post [27, Section 111. 

(ii) A somewhat different equational axiomatization of Post algebras was given by 

Traczyk [31]. It is based on the fundamental operations C and Di (1~ i<n- 1) with 

C=CO and 

n-l 

D,(X)= V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj(X). 
j=i 

The latter are used as auxiliary functions in [4]. They obey the simple laws zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Di(X A _V)=.Di(X) A Di(y), 

(iii) In the terminology of [l] Theorem 3.1 says that every finite data type has an 

o-complete (FIN, EQ, HE) specification. Owing to the existence of finite algebras that 

are not finitely based the hidden functions cannot in general be dispensed with 

(Section 1.3.1), so (FIN, EQ, HE) cannot be improved to (FIN, EQ). 

(iv) Gagliardi and Tulipani [7] prove Theorem 3.1 in the single-sorted case by 

adding the ternary discriminator as a hidden function. This yields a short proof using 

well-known properties of the discriminator. They also show that a single equation is 

sufficient. Our proof is somewhat more concrete and requires only a single binary 

function, namely, the generalized Sheffer stroke. We have not attempted to minimize 

the number of equations. 

4. The main theorem 

Theorem 4.1. Every minimal algebra A whose equational theory is recursively enum- 

erable has an w-complete initial algebra speci$cation with hidden sorts and functions. 
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Proof. (a) Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA be a minimal algebra with signature C and single sort E such that 

EqTh(A) is recursively enumerable. We first define an algebra A’ such that 

ClEqTh(A’) is similar to EqTh(A). Consider the following specification without 

equations: 

module SO 

begin 

sort Sim Var 

functions [ : Sim Var 

S : Sim Var +Sim Var 

sort SimOpenTerm 

functions j : Sim Var + SimOpen Term 

g5f : SimOpen Term x . . x SimOpenTerm -+SimOpenTerm 

(counterpart off;ffzC, arity($s)=arity(f)kO) 

end SO. 

Let the variables of sort E be x1,x2, . . . and let the signature of So be Co. With every 

C-term t we associate a closed ,X,-term 4, of sort SimOpenTerm which is obtained by 

replacing each function symbolfin t by 4f and each variable xk byj(Sk-’ (5)). Using 

4, we define a congruence = on the free term algebra I(&): 

(i) (u, zi closed terms of sort SimOpenTerm) u = u if and only if there is an equation 

s=tEEqTh(A) such that 4s=u and $t=v; 

(ii) (u, L’ closed terms of sort Sim Var) u = u if and only if u and u are syntactically 

identical. 

Let A’ = I(&)/_ Obviously, 

s=tgEqTh(A) if and only if 4s=&EClEqTh(A’). 

Since EqTh(A) is recursively enumerable, ClEqTh(A’) is recursively enumerable as 

well, so A’ is a semicomputable minimal algebra. Hence, according to Theorem 5.3 of 

[l] there is a specification S’ with hidden sorts’ and functions such that 

I(S’)=A’  

and I(S’) is Z,-minimal if I is interpreted in the usual way (cf. point (2) of Section 2). 

Hence, with ClEqTh(A’)=ClEqTh(Z(S’))=ClEqTh(S’), we have 

s=tgEqTh(A) if and only if 4,=&EClEqTh(S’). 

To obtain an o-complete specification S of A we use S’ as hidden component and add 

some further hidden machinery linking SimOpenTerm to E (see Fig. 5). 

‘If A has a recursive equational theory, A’ is computable. In that case, S’ can do without hidden sorts 

according to Theorem 5.1 of [l]. 
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module ,? 

begin 

import Z 

import S’ 

hidden sorts Sim Var, SimOpen Term 

hidden functions 5, S, j, c$/ 

hidden sort EList 

hidden functions 

nil: EList 

list: E x EList + EL&t 

,jirst : EList +E 

tail : EList 4 EList 

variables x : E 

1: EList 

equations 

(1) jirst(nil)=eO (e,, is an arbitrary constant of sort E) 

(2) jirst(list(x, l))=x 

(3) tail(&) = nil 

(4) tail(/ist(x, I))=/ 

hidden function 

apply : SimOpen Term x EList -+ E 

variables u : Sim Vur 

1: EList 

t,,...,t,:E (m=maxarity(Z)) 
equations 

(5) wply(j(5), O=firstU) 

(6) appMAS(4), O=wpMA4, tail(l)) 

(7) apply(~/(t,,...,t,),I)=f(apply(tl,l),...,apply(t,,I)) (.W,k=arity(f)>O) 
end 3. 

Fig. 5. 

Without loss of generality we assume that the hidden names of S do not occur in C. 

S has the following two properties: 

(i) Its initial algebra I(S) is C-minimal if I is interpreted in the usual way. Indeed, 

1(S’) is CO-minimal if I is interpreted in the usual way, so we need not bother 

about the hidden functions of S’, but may concentrate on the hidden functions 

introduced in S Let t be a closed term of sort E not containing any of the hidden 

functions of S’. If t does not containfirst or apply it is syntactically a C-term. If t is of 

the form first (1) with 1 not containing first or apply it is equal to a closed C-term by 

(l))(4). (Without equation (1) this would not be true. The presence of a constant e, in 

C is guaranteed by the minimality of A.) Finally, if t is of the form apply(t’ , 1) with 1 not 

containing apply, then it is equal to a closed C-term by (5)-(7) and (l))(4). 

(ii) EqTh(S)=EqTh(A). 

For any C-term t we have by virtue of the definition of 4 and equations (l)-(7) 
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with M the largest index of any variable xk occurring in t (0 if t is a closed term) and 

arbitrary 1. Now, if s = tt~EqTh(A), then 4s= &eClEqTh(S’) and therefore 

s=apply(~,,list(xl,list(x,, .” list(XM,l) . ..)))‘Z’ 

with M the largest index of any variable occurring in s or t. Hence, s= tEEqTh(S) and 

EqTh(S) 1 EqTh(A). 

Conversely, to show that E~T~(,Y?)E EqTh(A) it is sufficient to show that 

CIEqTh($) C_ EqTh(A). Ifs= teClEqTh($), then M=O and 

with 1 a variable of sort EList. But this implies $I~= #,EClEqTh(S’) as application of 

equations (4) or (7) is useless and the other ones do not apply. Hence, s= tEEqTh(A). 

We conclude from (i) and (ii) that $ is an w-complete initial algebra specification 

with hidden sorts and functions of A. This proves the single-sorted case. 

(b) We omit the proof of the many-sorted case. It is a straightforward generaliz- 

ation of (a). Cl 

Remarks. (i) The proof of Theorem 4.1 is a generalization of the construction of&f’ in 

Section 1.3.2. 

(ii) In the terminology of [l] Theorem 4.1 says that every data type with a 

recursively enumerable equational theory has an w-complete (FIN, EQ, HES) speci- 

fication. 

(iii) Gurevii: has recently shown that the algebra N of positive natural 

numbers with signature { 1, +, . , 7 > (where ntm = n”‘) is not finitely based [9]. This 

surprising result provides the definitive answer to Tarski’s High School Algebra 

Problem. As a consequence, N does not have an w-complete initial algebra specifica- 

tion without hidden signature elements (cf. Section 1.3). On the other hand, N has 

a recursive equational theory [28,16], so Theorem 4.1 applies and we may conclude 

that it does have an o-complete initial algebra specification with hidden sorts and 

functions. 

(iv) Kleene has shown that each recursively enumerable deductively closed first- 

order theory without identity is finitely axiomatizable using additional (i.e., hidden) 

predicates [14,2]. A somewhat similar result for equational theories is an immediate 

consequence of Theorem 4.1. Every recursively enumerable equational theory which is 

the theory of some minimal algebra has a finite equational axiomatization with 

hidden sorts and functions. Not every recursively enumerable deductively closed 

equational theory is the theory of a minimal algebra, however, so this is a limited 

equational analogue of Kleene’s result. 
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5. Open problems 

(1) Whereas hidden functions are in general indispensable, we do not know 

whether hidden sorts are ever really necessary. The results obtained by Marongiu and 

Tulipani [l&19] for ordinary (not necessarily w-complete) initial algebra specifica- 

tion of semicomputable data types may have consequences for the o-complete case as 

well, but these remain to be investigated. 

(2) Let ST be the specification obtained from S by making all its hidden sorts and 

functions visible (cf. Section 2). Does every minimal algebra A with a recursively 

enumerable equational theory have an w-complete specification 3 such that 2, 

is w-complete as well? For this to be true, each A whose equational theory is 

recursively enumerable should at least have an o-complete specification 3 such that 

Eq7’h(Z($T)) is recursively enumerable as well.This is a question we have not yet 

addressed. 

(3) As was pointed out in Section 4 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l 11, perhaps the main problem is automatic 

w-enrichment of algebraic specifications, i.e., the mechanical addition of identities that 

are valid in the initial model. Even rudimentary automatic m-enrichment will have 

applications in inductive completion (see Section 1.4), unification in equational 

theories, and the automatic derivation of partial evaluators from standard evaluators 

(cf. [lo]). Our proof of the existence of an o-complete enrichment for initial algebra 

specifications of data types with a recursively enumerable equational theory does not 

contribute much to a solution of the automatic w-enrichment problem except in the 

finite case, in which the proof is constructive and yields an o-enrichment in terms of 

Post algebras. 
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