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Abstract: We classify effective field theory (EFT) deformations of the Standard Model

(SM) according to the analyticity property of the Lagrangian as a function of the Higgs dou-

blet H. Our distinction in analytic and non-analytic corresponds to the more familiar one

between linearly and non-linearly realized electroweak symmetry, but offers deeper physi-

cal insight. From the UV perspective, non-analyticity occurs when the new states acquire

mass from electroweak symmetry breaking, and thus cannot be decoupled to arbitrarily

high scales. This is reflected in the IR by the anomalous growth of the interaction strength

for processes involving many Higgs bosons and longitudinally polarized massive vectors,

with a breakdown of the EFT description below a scale O(4πv). Conversely, analyticity

occurs when new physics can be pushed parametrically above the electroweak scale.

We illustrate the physical distinction between these two EFT families by discussing

Higgs boson self-interactions. In the analytic case, at the price of some un-naturalness in

the Higgs potential, there exists space for O(1) deviations of the cubic coupling, compatible

with single Higgs and electroweak precision measurements, and with new particles out of

the direct LHC reach. Larger deviations are possible, but subject to less robust assumptions

about higher-dimensional operators in the Higgs potential. On the other hand, when the

cubic coupling is produced by a non-analytic deformation of the SM, we show by an explicit

calculation that the theory reaches strong coupling at O(4πv), quite independently of the

magnitude of the cubic enhancement.
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1 Introduction

According to the modern Wilsonian viewpoint, any Quantum Field Theory (QFT) should

be viewed as an effective description valid below some physical energy cut-off scale. From

this perspective, renormalizable QFT is but a useful idealization where the UV cut-off

scale is either exponentially large, at least at weak coupling, or even infinite, in the case of

asymptotically free theories. The Standard Model (SM), when limited to its renormalizable

interactions, can indeed be extrapolated to energy scales of the order of the Planck scale,

raising the conceptual possibility that the next layer in particle physics be at such ultrashort

distances. Whether that is the case or not, it is quite certain that the effective description

of physics at lower energies will not be limited to the few renormalizable couplings of the

SM. We expect a much richer structure deforming the leading renormalizable SM through

an infinite set of non-renormalizable interactions. The lack of direct evidence of new physics

at the LHC has indeed boosted the relevance of indirect searches for such deformations.

Along these lines, many authors have pursued a variety of effective field theory (EFT)

extensions of the SM. Those relevant for the Higgs sector are particularly motivated in

view of the well known conceptual problems associated with the existence of an elementary

scalar particle. This paper makes a simple observation, which provides a sharp structural

classification of these EFTs.

In the construction of effective theories, symmetries play a central role. For instance,

in the very case of EFTs for the Higgs sector, flavor symmetries are obviously crucial

to tame flavor changing neutral currents. The role of gauge symmetries is perhaps more

subtle, as they mostly control the strength of the interaction and the range of validity of

the EFT. Our main point, which concerns precisely these aspects, can be summarized as

follows. The most general EFT deformation of the SM Higgs sector is given by a general

lagrangian invariant under the color and electromagnetic SU(3)C × U(1)Q symmetry that

couples the Higgs boson h to other SM fields. To carry out this construction there is no

need whatsoever for manifest SU(2)W × U(1)Y electroweak (EW) gauge invariance, as in

the broken theory one can always pick the unitary gauge. But unitary gauge, while making

the particle content explicit, makes the structure of interactions less transparent. Indeed
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our sharp structural classification of EFTs is most succinctly formulated when the triplet

of Goldstone bosons πi eaten by W and Z is kept manifest so as to form, together with h,

a doublet H transforming linearly under SU(2)W ×U(1)Y :

H ≡ 1√
2
eiπiσ

i

(
0

v + h

)
. (1.1)

We stress that, whatever the origin of h, we can always form such a linear multiplet. Two

possibilities are then given for the lagrangian as a function of H: it is either analytic or

non-analytic at H = 0. More precisely: either the lagrangian is analytic, possibly after a

field redefinition, or there is no field redefinition that renders it analytic. The distinction

between these two possibilities is not aesthetic but purely dynamical. In the analytic case

the lagrangian is polynomial in all fields, H included. This is the more familiar case, where

small deviations from the renormalizable SM are compatible with a large cut-off scale. More

technically, the ultimate cut-off grows like an inverse power of the size of the deviation.

The situation is sharply different in the non-analytic case. There, as we shall illustrate in

detail, the cut-off basically reduces to O(4πv) ∼ 3 TeV, where v ≈ 246 GeV denotes the

vacuum expectation value (VEV) of H in eq. (1.1). Even when deviations in the single

or double Higgs production happen to be small, the low cut-off will become manifest in

processes involving many Higgs bosons and longitudinally polarized massive vector bosons.

In hindsight this result has a simple interpretation from a top-down perspective. The

singularity at H = 0, signaling the breakdown of the EFT, must be associated to some

heavy degree of freedom becoming massless at H = 0. In other words, non-analytic EFTs

simply correspond to the presence of new massive states whose mass is fully controlled by

the Higgs VEV. The familiar relation between coupling and mass m∗ ∼ g∗v, together with

the naive dimensional analysis (NDA) expectation g∗ . 4π immediately imply the upper

bound 4πv for the mass defining the UV cut-off. Our distinction between analytic and non-

analytic lagrangians coincides with the distinction, in use in the Higgs EFT community,

between linear (so-called SMEFT) and non-linear (so-called HEFT) effective theory, or

equivalently between h being or not being part of a SU(2)W doublet. We however believe

our classification is more adequate and enlightening from a physical point of view.

The classification we advertise is generally applicable to EFT extensions of the SM. In

this paper we shall illustrate it in the specific case of the Higgs potential. That will allow

us to make the discussion very concrete and focused. As a bonus, we will derive useful

results relevant for the ongoing explorations of the cubic Higgs self-coupling.

The interest in measuring Higgs self-interactions is fueled by the hope that it may

contain a clue about the more fundamental theory underlying the SM. Indeed, the Higgs

potential is arguably the most ad-hoc element of the SM, and it is reasonable to suspect

that the true dynamics driving the Higgs field to acquire a VEV is described by a more

sophisticated scenario. The current efforts are mostly focused on the cubic self-coupling.

The coefficient λ3 of the h3 term in the SM lagrangian is completely determined by two

precisely measured observables: the Higgs boson mass and the Fermi constant. While many

other SM predictions in the Higgs sector have been successfully tested with O(10%) accu-

racy [1], probing the Higgs self-interactions remains challenging. The ongoing experimental
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effort in this direction consist in measuring the Higgs boson pair production rate [2, 3],

which is sensitive at tree level to λ3. In parallel, the cubic can be constrained through

its one-loop effects [4] in single Higgs production at the LHC [5–8] and in EW precision

measurements [9, 10], or through tree-level effects in single Higgs production in association

with two W/Z bosons [11]. However, all of these methods currently leave room for a large

O(10) deviation of λ3 relative to the SM prediction.

This paper discusses the range of the Higgs cubic coupling that can be generated by a

dynamics beyond the SM (BSM). The analysis depends on whether the Higgs potential at

energy scales below m∗ � mh is an analytic or non-analytic function of H†H. We start with

the former case in section 2. This case is equivalent to the so-called SMEFT [12, 13], where

various terms in the lagrangian are organized according to their canonical dimensions, with

dimension D terms suppressed by mD−4
∗ powers of the BSM scale. We review the power

counting that controls the coefficients of various terms in the potential, stability conditions,

and phenomenological constraints on these coefficients from the LHC measurements of the

Higgs mass and couplings. We are interested in a phenomenologically viable scenario where

1) m∗ is much bigger than mh and outside the LHC reach, and 2) the magnitude ξ of relative

BSM corrections to single Higgs couplings satisfies the LHC bounds ξ . 0.1. In this setting

corrections to the Higgs cubic are generated at the level of dimension-6 operators in the

Lagrangian. We demonstrate that the cubic enhancement ∆3 ≡ λ3
λ3,SM

− 1 can be as large

as O(1) when the coupling strength g∗ in the UV theory at m∗ is moderately strong.

Remarkably, ∆3 can largely exceed the relative corrections to single Higgs couplings. This

can be understood by noting that λ3 is a relevant coupling that becomes strong when

mh → 0, with the cubic coefficient in the potential held fixed. More precisely we find that

the cubic enhancement in the range

0 . ∆3 . 2 (1.2)

is possible for g∗ moderately strong and generic coefficients of higher-dimensional operators

in the Higgs potential. Larger or negative corrections are possible, but are subject to more

stringent assumptions in order to ensure vacuum stability. Overall, we find |∆3| . 4 can be

obtained for a reasonable hypothesis about dimension-8 operators in the Higgs potential.

In section 3 we relax the assumption that the scalar potential is a polynomial or

analytic function of H†H. It is possible to add to the SM lagrangian terms of the form(
H†H

)n/2
with integer n, which in the unitary gauge yield Higgs boson self-interactions

hk with k ≤ n. In particular, we can arrange such non-analytic terms to contribute to ∆3,

with or without affecting other Higgs (self-)interaction terms. An EFT lagrangian that has

the SM local symmetry and degrees of freedom but is non-analytic in H†H is equivalent

to the so-called HEFT framework (which is usually formulated without introducing the

Higgs doublet field H, using the language of a non-linearly realized EW symmetry, see e.g.

section II.2.4 of [14] for a review). This framework naively offers more freedom to arrange

for a large cubic Higgs coupling without violating theoretical and phenomenological bounds.

We will argue however that in the presence of the non-analytic terms it is impossible to

parametrically separate m∗ and v, and instead new degrees of freedom must appear at

m∗ . 4πv. Technically, this happens due to the wrong (inconsistent with perturbative
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unitarity) behavior of the tree-level amplitudes of the form

M(VL . . . VL︸ ︷︷ ︸
m

h . . . h︸ ︷︷ ︸
n

), (1.3)

where m ≥ 2, and n ≥ 3, and VL stands for longitudinally polarized W or Z bosons. That

conclusion depends very weakly (logarithmically) on the magnitude of the non-analytic

deformation; in fact, the amplitudes in eq. (1.3) hit strong coupling at O(4πv) even when

non-analytic terms generate a relatively small correction to the cubic term, |∆3| � 1. We

conclude that the presence of non-analytic terms in the Higgs potential leads to m∗ . 4πv

and typically ξ ∼ 1, contrary to the assumptions of this analysis. The wrong behavior

of the amplitudes in eq. (1.3) can be controlled only when the Higgs potential is well-

approximated by a polynomial in H†H. This however brings us back to the SMEFT case

and to the bound in eq. (1.2).

2 Analytic Higgs potential (SMEFT)

Let us first define our notation and introduce the relevant physical quantities. In complete

generality, the potential for the Higgs boson field h takes the form

V (h) =
m2
h

2
h2 +

mh

3!
λ3h

3 +
1

4!
λ4h

4 +

∞∑
n=5

λn

n!mn−4
h

hn. (2.1)

In the SM this arises by expanding around the vacuum the potential

VR(H†H) = −
m2
h

2
H†H +

λh
4

(H†H)2 λh ≡ 2m2
h/v

2 . (2.2)

The SM cubic and quartic couplings take values λ3 = λ3,SM ≡ 3mh
v = 3

√
λh
2 , λ4 =

λ4,SM ≡
3m2

h
v2 = 3λh

2 , while λn>4 vanish. Our goal is to set a theoretical bound on the

relative deformation ∆3 ≡ λ3/λ3,SM − 1 of the cubic coupling. In the SM the observed

values of mh and v imply λh ' 1/2, which is well within the perturbative regime. Indeed

standard estimates of the perturbative upper bound of λh range roughly between 3π2 and

10π2 in accordance with NDA.1 Choosing for definiteness a reference strong coupling value

λ̄h ≡ 4π2 we have λh/λ̄h ∼ 0.01. The SM quartic is thus about two orders of magnitude

below its perturbative upper bound, while the cubic is accordingly about one order of

magnitude below its perturbative upper bound. A fair question is what portion of this

range can be covered by plausible extensions of the SM.

In this section we tackle this question in the framework of the SMEFT with higher-

dimensional operators.2 Consider the SMEFT arising as a low-energy approximation of a

1More precisely the RG evolution estimate used in [15] suggests the lower of the values, while the

scattering phase method of [16] yields the upper value.
2See also ref. [17]. Our analysis offers a different perspective, emphasizing the dependence on the

microscopic properties of the UV theory and fine-tunings required by phenomenology. Moreover we include

in our discussion the impact of D ≤ 8 operators on the stability of the Higgs potential.
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microscopic theory with fundamental scale m∗ and maximal coupling size g∗, focussing in

particular on the Higgs potential. It is also convenient to define f ≡
√

2m∗/g∗. We will

assume m∗ � mh, in which case one can organize the SMEFT operators in a meaningful

expansion in 1/m∗, and estimate the size of various Wilson coefficients using the usual

power counting rules [18–20]. Assuming the existence of a minimum at 〈H†H〉 ≡ v2/2, the

potential has the general form

V (H) =
m4
∗

4g2
∗

∞∑
n≥2

anX
n ≡ m4

∗
4g2
∗
X2P (X), X ≡ 2H†H − v2

f2
, (2.3)

with an ≤ O(1). The upper bound on the an coefficients corresponds to the absence of

couplings stronger than g∗ at the scale m∗. Some couplings could consistently, naturally

or unnaturally, be tuned to be small. For instance in the simplest instance of composite

pseudo-Nambu-Goldstone Higgs we have an ∼ y2
t /16π2 for any n, where yt is the top

Yukawa coupling. On the other hand for an ordinary scalar in a generic theory characterized

by g∗ and m∗ we would expect an = O(1) and v ∼ f . But such a generic theory is at odds

with phenomenology and some tuning is always necessary. Consider first the relation v ∼ f .

Indeed, defining ξ ≡ v2/f2, several independent dimension-6 SMEFT operators, such as e.g.

(∂µ|H|2)2 or |H|2t̄RHQ3, would produce deformations of single Higgs couplings of relative

size O(ξ). In view of the agreement of the LHC Higgs data with the SM predictions we

will thus assume ξ . 0.1 in the discussion below. In concrete models the relation ξ � 1 is

typically achieved by fine tuning. This single tuning of ξ appears more plausible than the

tuning of multiple coefficients required to match Higgs data in a theory with ξ = O(1).

Another independent tuning may be needed to ensure that the Higgs boson mass mh

matches the observed value. Eq. (2.3) implies m2
h = a2m

2
∗ξ

2 = a2
2 g

2
∗v

2, so that according

to the definition of λh in eq. (2.2) we can write

λ2
h = a2g

2
∗ . (2.4)

This shows that, when the UV coupling g∗ is strong, a tuning of order λh/g
2
∗ for a2 is

needed. The strongest tuning, a2 ∼ 0.01, corresponds to the case g∗ ∼
√
λ̄h = 2π in which

a generic a2 = 1 would produce a maximally strong λh. In view of these properties this

scenario was referred to as an accidentally light Higgs in ref. [19].

Before proceeding we would like to make a little digression concerning the naive ex-

pectation an ∼ O(1) in a generic theory. Indeed one should be more careful especially

when considering n � 1, corresponding to operators with many legs. It would be nice to

have the analogue of NDA including an estimate for the scaling with n. We cannot offer a

general self-consistent analysis along these lines, but we can discuss a few simple models,

where eq. (2.3) is generated by either tree or one-loop graphs. One finds the rough scaling

an ∼ knn−α, with k and α depending on the model. Now, the factor kn simply corresponds

to the ambiguity in the definition of g∗. Indeed a redefinition g∗ → g∗k implies precisely

the redefinition an → ank
n−2, which up to a constant coefficient produces the same scaling.

The power-law dependence on n is more structural. In our experience α can range from 0

to 5/2. In particular, a simple UV model with potential V = m3
∗/g∗φ + (m2

∗ + g2
∗H
†H)φ2
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produces, upon integrating out φ, a series with α = 0. This result simply follows from the

geometrical series generated by the φ propagator. On the other hand, other UV variants

like V = g∗m∗H
†Hφ + m2

∗φ
2 + g∗m∗φ

3 + g2
∗φ

4, produce a series with α = 5/2. In both

cases the scaling of an is consistent with the breakdown of the low-energy expansion for

g2
∗|H|2 ∼ m2

∗, which is physically expected.

Expanding V (H) around its minimum at 〈H†H〉 ≡ v2/2 (i.e. X = 0), we readily obtain

the low-energy Higgs self-couplings. In particular for the cubic and quartic we find

λ3 =
3√
2
g∗

(√
a2 +

2a3√
a2

ξ

)
=λ3,SM

(
1+2

a3

a2
ξ

)
, λ3,SM =

3
√
a2√
2
g∗,

λ4 =
3

2
g2
∗
(
a2 +12a3ξ+16a4ξ

2
)

=λ4,SM

(
1+12

a3

a2
ξ+16

a4

a2
ξ2

)
, λ4,SM =

3a2

2
g2
∗, (2.5)

where we factored out the SM result obtained in the limit an>2 = 0. These expressions

show that for a2 � 1 (thus for g∗ moderately strong) one can obtain sizable deviations

from the SM even for relatively small ξ. More specifically, by considering the couplings

written in terms of g∗, one sees that, within the range a2, ξ � 1, a3, a4 . O(1), one can

choose a3ξ/
√
a2 = O(1) so as to enhance λ3 up to O(g∗). This happens because the cubic

coupling is relevant and becomes strong when mh → 0, with the cubic coefficient in the

potential held fixed. Numerically, the correction to the cubic Higgs coupling relative to the

SM one is given by

∆3 ≈ 20a3

(
0.01

a2

)(
ξ

0.1

)
, (2.6)

and naively it can be larger than O(10) for a sufficiently strong coupling in the UV theory.3

The above conclusion, however, does not take into account the requirement of absolute

stability of the EW vacuum. Indeed it is obvious4 that, keeping all other terms fixed, the

coefficient of h3 cannot be made arbitrarily large without generating a second minimum

deeper than the one at h = 0. In the following we quantify the stability constraints.

Our potential has the form V ∝ X2P (X) with P (X) = a2 + a3X + a4X
2 + . . . for

X ∈ [−ξ,+∞), with X = −ξ corresponding to the EW preserving vacuum 〈H†H〉 = 0.

For a2 > 0 we have a realistic local minimum at X = 0, where V vanishes. Unless this

minimum is also global, it will be destabilized by vacuum tunneling. The condition for

metastability thus basically coincides with the condition for absolute stability: P (X) ≥ 0

for X ∈ [−ξ,+∞). In order to make the discussion more transparent it is convenient

to work with the rescaled variable X̃ = X/ξ, which is defined in the domain [−1,+∞).

Writing P (X) = a2P̃ (X̃) we have

P̃ (X̃) = 1 + c3X̃ + c4X̃
2 + . . . with cn ≡

an
a2
ξn−2. (2.7)

The coefficient c3 of the linear term is directly related to the correction to the cubic coupling

in eq. (2.5): ∆3 = 2c3, while cn>3 encode effects of dimension-8 and higher SMEFT

3Note that for ξ � 1 the relative corrections to λ3 and to λ4 are both of order a3ξ/a2, which implies

that in principle the two approach the strong coupling differently. However, phenomenological constraints

and numerical factors disturb this NDA, and as a result the respective strongly coupled values, λ3 ≈
√

8π2

and λ4 ≈ 8π2, are reached more or less simultaneously as a3ξ/a2 is increased.
4Nevertheless this was overlooked in ref. [19].
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Figure 1. Parameter space for the cubic Higgs self-coupling deformation ∆3 relative to the SM

value. The allowed region depends on the value c4 = ξa4/a2, which encodes effects of dimension-8

SMEFT operators in the Higgs potential. The gray area is excluded by stability considerations,

as the potential contains a deeper minimum that the EW vacuum at 〈H†H〉 = v2/2. Left: the

purple areas are excluded for a4 = 1 and a2 = 0.01 under different hypotheses about the parameter

ξ = v2/f2, which characterizes the size of the corrections to the single Higgs boson couplings to

matter. Right: the blue areas are excluded for a4 = 1 and ξ = 0.1 under different hypotheses about

the coupling strength g∗ of the BSM theory underlying the SM.

operators in the Higgs potential. Now, under the assumption an . O(1), the experimental

constraints ξ . 0.1 and a2 & 0.01 imply

|c3| =
|a3|
a2

ξ = 10

(
0.01

a2

)(
ξ

0.1

)
. O(10),

|c4| =
|a4|
a2

ξ2 =

(
0.01

a2

)(
ξ

0.1

)2

. O(1),

|cn>4| =
|an|
a2

ξn−2 =

(
0.01

a2

)(
ξ

0.1

)2

ξn−4 � O(1). (2.8)

We conclude that for ξ � 1 the parameters |cn>3| are suppressed with respect to |c3|. It is

now clear why, for large |∆3|, stability is an issue. The behavior of the potential at small

X̃ is dominated by the first two terms in eq. (2.7). It follows that for |c3| � 1 the function

P̃ will cross zero near the origin at X̃ ' X̃c ≡ −1/c3, i.e. within the physical domain

[−1,+∞), leading to a deeper minimum of V (H) than the one at 〈H†H〉 = v2/2. Thus,

the correction to the Higgs cubic coupling larger than O(1) may lead to an instability.

To make the bound more precise, it is quantitatively adequate to focus on the case

P̃ = 1 +
1

2
∆3X̃ + c4X̃

2, (2.9)

given that the |cn>4| are anyway expected to be suppressed. The resulting constraints are

shown in figure 1. Outside the region 0 < ∆3 < 4 the bound coincides with the condition

– 7 –
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for absolute positivity of P̃ : ∆2
3 < 16c4. Using the definition of c4 in eq. (2.7) we obtain

|∆3| . 4
√
a4

√
0.01

a2

(
ξ

0.1

)
. (2.10)

On the other hand, for 0 < ∆3 < 4, the bound is weaker corresponding to cases where

P̃ becomes negative in the unphysical region X̃ < −1. In particular, for 0 ≤ ∆3 ≤ 2,

c4 is even allowed to vanish. All in all, we conclude that a correction to the Higgs cubic

coupling in the range 0 ≤ ∆3 ≤ 2 can be obtained under the very conservative assumption

a4 > 0. Larger or smaller values of ∆3 are possible, subject to assumptions about the

coefficient a4 such that eq. (2.10) is satisfied. In particular |∆3| > 4 can only be achieved

for a4 & O(1) which seems less plausible. The maximal value is reached for a maximally

strongly coupled BSM theory completing the SMEFT at the scale m∗. For more moderate

(and perhaps more realistic) couplings, the bound is correspondingly stronger; for example

under the condition |a4| < 1 one has −1.7 . ∆3 . 2.4 for g∗ = π. Furthermore, as

illustrated in figure 1, the bound can be tightened if the single Higgs couplings to matter

are better constrained by experiment, leading to a stronger bound on the parameter ξ.

Notice however that the region 0 ≤ ∆3 ≤ 2 can still be covered even for relatively weak

couplings. For instance for a3 = 1, a2 = 0.1 and ξ = 0.1 one can reach up to ∆3 = 2.

One way to read our results is that there exists space for a strongly coupled accidentally

light Higgs with sizable O(1) deviations in its self-couplings but compatible with all single

Higgs and EW precision measurements (ξ . 0.1) and with a fundamental scale m∗ ∼
g∗v/
√
ξ . 5 TeV out of reach of present LHC direct searches.

3 Non-analytic Higgs potential (HEFT)

In the previous section we have demonstrated that, in the SMEFT framework with the

parametric separation between BSM and EW scales, theoretical arguments and experi-

mental constraints lead to an upper bound on the magnitude of the cubic self-coupling of

the Higgs boson: |∆3| . few. In particular we showed that, at the price of a tuning of

m2
h and v2, an O(1) deviation ∆3 can be obtained consistently with present data and for

a new physics scale m∗ above the present LHC reach. Essential in the derivation was the

analytic dependence of the lagrangian on the Higgs doublet field H, which follows from the

assumption that the heavy states are massive regardless of EW symmetry breaking. In this

section we discuss the cubic self-coupling in a setting where the analyticity assumption is

removed. We shall see that, going beyond the SMEFT, there is an obstruction to achieving

the separation between the BSM and EW scales. This other scenario is therefore subject

to much more severe constraints coming from direct and indirect searches for new physics.

Consider, for concreteness, a simple scenario of an EFT where the Higgs boson self-

interactions are described by the potential

V (h) =
m2
h

2v
(1 + ∆3)h3 +

m2
h

8v2
h4. (3.1)

where the only deviation from the SM resides in the cubic coupling. In particular all hn

terms with n ≥ 5 are absent. Note that such a pattern cannot be obtained from any
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SU(2)W ×U(1)Y invariant potential that is an analytic function of H†H. In particular, it

cannot be obtained in the SMEFT, unless the entire infinite tower of higher-dimensional

operators contributes to the potential. That situation however corresponds to f ∼ v,

which is phenomenologically very implausible. On the other hand, eq. (3.1) belongs to

the parameter space of the so-called HEFT, which is an effective theory where only the

U(1)Q part of the EW symmetry is linearly realized. In the HEFT, the Goldstone bosons

eaten by W and Z transform non-linearly under the full EW symmetry, while the Higgs

boson h is a perfect singlet. As a consequence, the general potential V = v4
∑∞

n=2 cn(h/v)n

with arbitrary coefficients cn is allowed by the symmetries, and eq. (3.1) represents one

particular direction within the HEFT parameter space.

It is illuminating to rewrite eq. (3.1) in a manifestly SU(2)W×U(1)Y invariant language:

V (H) =
m2
h

8v2

(
2H†H − v2

)2
+ ∆3

m2
h

2v

(√
2H†H − v

)3
, (3.2)

where H is the Higgs field in eq. (1.1). In the unitary gauge, πi = 0, this potential reduces

eq. (3.1). We should mention that we are not aware of a concrete UV-complete model

that would lead to exactly eq. (3.2) in the low-energy effective theory. However, there do

exist familiar examples where integrating out heavy degrees of freedoms yields non-analytic

effective interactions. One is the SM plus a chiral 4th generation which, when integrated

out at one loop, generates V ⊃ (H†H)2 log(H†H). Another is a model with the second

Higgs doublet Φ and the potential VUV = κ|Φ|4+µ(Φ†H+h.c.), where integrating Φ at tree

level yields V ⊃ (H†H)2/3. Yet another example is the model of ref. [21], which in a certain

parametric limits leads to an h tadpole in the effective potential, thus V ⊃ (H†H)1/2. It

will be clear from the following discussion that the precise form of eq. (3.2) is not important

for our argument, as long as the potential is described by a non-analytic function of H†H.

For this discussion it is more convenient to work with the linear parametrization of the

Higgs doublet: H = 1√
2

(
iG1 +G2

v + h+ iG3

)
.5 Then, outside the unitary gauge, the lagrangian

in eq. (3.2) contains interactions between the Higgs and the Goldstones:

V ⊃ ∆3
m2
h

2v

(√
(h+ v)2 +G2 − v

)3
, (3.3)

where G2 ≡ GiGi, and we do not display the Goldstone-Higgs interactions originating from

the analytic SM part of the potential. By the equivalence theorem [22], these correspond to

interactions of longitudinal components of the W and Z bosons at high energies. This way,

the non-analytic terms effectively introduce hard contact interactions between WL/ZL and

an arbitrary number of Higgs bosons. In particular, expanding eq. (3.2) in G2, the terms

with two Goldstone boson fields are

V ⊃ ∆3
3m2

h

4v

G2h2

h+ v
= ∆3

3m2
h

4
G2

∞∑
n=2

(
−h
v

)n
. (3.4)

5This is because we assumed no modifications to other Higgs couplings. Then, in the linear parametriza-

tion, the Goldstone bosons do not have derivative couplings, which simplifies the analysis.

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
5

We can see that, for any non-zero ∆3, eq. (3.4) contains higher-order interactions of the

Higgs and Goldstone boson suppressed only by the EW scale v. It is thus clear that an

EFT with the scalar potential in eq. (3.1) must have a low cut-off scale, m∗ . 4πv.

The need for a UV-completion below a certain scale manifests itself as a breakdown

of perturbation theory around that scale. This always happens because of the presence of

interaction terms of dimension > 4 in the lagrangian, carrying coefficients with negative

mass dimension. The critical operator dimension 4 can be overcome by either powers of

derivatives or powers of fields. In the more familiar case, like for instance 2-to-2 scattering

of longitudinal vectors in the Higgsless SM [23], the loss of perturbativity is driven by

derivative interactions which make amplitudes grow with energy. In the case at hand, like

for massive fermions in the Higgsless SM [24, 25], it is instead the presence of operators

with an arbitrarily large number of legs that causes the breakdown of perturbation theory.

Indeed, from eq. (3.4), the tree-level 2-two-2 amplitude GG→ hh is perfectly well-behaved

and perturbative as long as |∆3| . O(10). In order to quantify the validity regime of an

EFT with the interactions in eq. (3.4), we have to investigate 2→ n amplitudes with n ≥ 3.

Before proceeding we would like to briefly review the logic of the standard estimates of

the validity of the EFT. These are normally done by invoking the notion of breakdown of

perturbative unitarity. This is conceptually fine as long as one does not interpret the issue

of unitarity too strictly. Of course there is never an issue with unitarity, as the adjective

perturbative implies. The point is simply and purely the breakdown of perturbation theory

associated to the onset of a strong coupling regime. Focussing on the S-matrix, we know

of course that unitarity is guaranteed, that is S = ei∆ with ∆ a Hermitian operator. The

only issue concerns the ability to compute ∆ in perturbation theory. ∆ is a scattering

phase operator, whose eigenvalues are defined modulo 2π: the scattering phase shift is

maximized when an eigenvalue equals π. The regime of weak coupling can thus be defined

by the request δi . π for the eigenvalues of ∆. Now, the computation of the S matrix

in perturbation theory can be phrased as a computation of ∆. In so doing unitarity is

manifestly satisfied order by order in perturbation theory. Writing S = 1 + iT we have

∆ = −i ln(1 + iT ) = T − iT 2 + . . . , so that in the Born approximation ∆ and T coincide:

∆0 = T0. A rough but reasonable way to require perturbativity is thus to ask for

〈Ψ|T †0T0|Ψ〉 . π2 (3.5)

for any incoming state |Ψ〉. Considering elastic 2-to-2 scattering one can easily check that

this prescription produces the usual NDA bounds on couplings [26–28]. In what follows we

shall simply apply this to the processed GG→ hn.

Consider a family of scattering amplitudes of the isospin-0 two-Goldstone state

|[GG]I=0〉 ≡
∑
i |GiGi〉√

3
. From eq. (3.4), the leading high-energy contribution to the inelastic

amplitude for scattering this state into n Higgs bosons is given by

M([GG]I=0 → h . . . h︸ ︷︷ ︸
n

) ≈ (−1)n+1∆3
3
√

3n!m2
h

2vn
, (3.6)

and the corresponding s-wave amplitude is M([GG]l=0
I=0 → hn) = 1

4
√
π
M([GG]I=0 → hn).

A 2 → n amplitude with n > 2 that is not suppressed at large energies leads to onset of
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strong coupling at some finite value Λ∗ of the center-of-mass energy
√
s. Indeed taking |Ψ〉

to coincide with the s-wave GG state |[GG]`=0
I=0〉 the bound in eq. (3.5) is easily seen to read

∞∑
n=2

1

n!

∫
dΠn|M([GG]l=0

I=0 → hn)|2
∣∣∣∣∣√
s=Λ∗

=

∞∑
n=2

1

n!
Vn(Λ∗)|M([GG]l=0

I=0 → hn)|2 ∼ π2,

(3.7)

where Vn(x) =
∫
dΠn = x2n−4

2(n−1)!(n−2)!(4π)2n−3 is the volume [29] of the n-body phase space

in the limit the mh → 0.6 Inserting the explicit form of the amplitude and performing the

sum over n, the above condition reduces to

∆2
3

27m4
h

512π2v4

(
2 +

Λ2
∗

(4πv)2

)
exp

(
Λ2
∗

(4πv)2

)
∼ π2, (3.8)

By definition m∗ ≤ Λ∗, from which we obtain the unitarity bound on the BSM scale:

m∗
4πv

. 2 log1/2

(
4πv

mh|∆3|1/2

)
∼ O(1). (3.9)

For |∆3| ∼ 1 the maximum scale of the UV completion is parametrically of order 4πv ∼
3 TeV, as expected.7 In fact, that scale is only logarithmically sensitive to the magnitude

of |∆3|, and thus remains of order 4πv even for |∆3| � 1. In this bound we have only

considered the hn final states. In reality, final states involving any number of GG pairs are

equally important. Our computation thus represents a lower bound of 〈Ψ|T †0T0|Ψ〉, while

the true upper bound on the cut-off is lower. Further optimization of the bound is possible

by exploiting n → n scattering of special multi-particle Higgs and Goldstone states [31].

These improvements do not change the parametric dependence of the limit in eq. (3.9),

and are not essential for our argument.

It is clear from our argument that the bound on m∗ will depend little on the precise

form of eq. (3.1). A similar bound can be derived whenever the potential (or any other

part of the lagrangian) contains terms non-analytic in H†H that cannot be removed by

field redefinitions or equations of motion. In such a case, higher-dimensional interaction

terms between Higgs and Goldstone bosons are suppressed only by powers of the EW scale

v, leading to an onset of strong coupling in 2 → n amplitudes at the scale of order 4πv.

Such a set-up is equivalent to the SMEFT with the expansion parameter m∗ . 4πv, where

gauge invariant operators with large canonical dimensions may dominate contributions to

scattering amplitudes. Only when the EFT lagrangian is analytic in H†H, and its terms

organized as an expansion in 1/m∗ with m∗ � mh, can the validity regime of the EFT be

parametrically extended above the EW scale. Such an EFT is a low-energy approximation

of BSM models with the scale separation m∗ � mh, which were discussed in section 2.

6This approximation clearly breaks down for large enough n. However, one can show that the unitarity

bounds are dominated by nmax ∼ Λ2
∗

(4πv)2
∼ 4 log

(
4πv

mh|∆3|1/2

)
. For |∆3| & 1 we have nmax ∼ few, in which

case the effect of the Higgs mass on the phase space integral at high energies can be safely neglected.
7We stress that the effect we discuss is unrelated to the one in [30], which claims the onset of strong

coupling within the SM in multi-Higgs amplitudes near the production threshold. Our effect arises from

a still perturbative contact interaction way above threshold and is free from the subtleties existing in [30]

and arising from the interplay between (large) non-perturbative amplitude and (small) phase space.
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4 Conclusions

In this paper we derived bounds on the Higgs boson self-interactions, which are valid when

the mass scale m∗ of BSM particles is hierarchically larger than the EW scale. Under

this assumption the low-energy EFT describing Higgs interactions at the EW scale is the

SMEFT, organized as an expansion in 1/m∗. Corrections to the cubic couplings arise at

O(m−2
∗ ), that is from dimension-6 operators in the SMEFT lagrangian. Power counting

suggests that the relative correction ∆3 to the cubic Higgs coupling can be enhanced when

the BSM theory at m∗ is strongly coupled, such that ∆3 & O(10) even if corrections to

other Higgs couplings are O(10%). However, this simple estimate ignores the issue of

vacuum stability. Taking that carefully into account, we found the allowed and excluded

parameter regions displayed in figure 1, which is the central result of this paper.

Enhancement of the cubic in the range 0 ≤ ∆3 ≤ 2 is possible under very broad

assumptions. In particular, corrections in this range are robustly compatible with ξ ∼ 0.1

and with m∗ ranging from ∼ 1 TeV for weak coupling to ∼ 5 TeV for strong coupling. A

significant portion of this region is therefore outside the present reach of LHC data. On

the other hand, outside the range 0 ≤ ∆3 ≤ 2, vacuum stability depends on the pattern of

SMEFT operators with dimensions higher than six, which in turn depends on the details

of the BSM theory at the scale m∗. In view of that, it is impossible to derive sharp bounds,

however, given the present experimental constraints on ξ, values |∆3| & 4 appear rather

implausible, even allowing for a maximally strongly coupled BSM theory. Stronger limits

on ∆3 hold for moderate g∗ or for smaller ξ, as visible in figure 1. The bottom line is that,

in the case |∆3| � 1 is measured by experiment, we immediately learn important facts

about the microscopic theory underlying the SM. First of all, it has to be rather strongly

coupled. Furthermore, the parameter ξ should be at least a few percent, which implies

that BSM deviations in single Higgs boson couplings may also be within the LHC reach.

The flip side of that last statement is that improved limits on the single Higgs couplings

will translate into a stronger bound on ∆3.

It is important to stress that the upper values of ∆3, indeed ∆3 = O(1), can never be

obtained in the more natural models of EW symmetry breaking, like composite Higgs or

supersymmetric models. In those models, even when the Higgs is strongly coupled, there

is a symmetry controlling the size of all terms in the Higgs potential. Indeed in the case

of generic composite Higgs models one has ∆3 ∼ ξ like for all other Higgs couplings. Our

scenario for maximizing ∆3 while keeping m∗ above the weak scale crucially relies on mh

and v being suppressed with respect to their natural values, m∗ and f . That is completely

consistent, but necessarily accidental or fine tuned.

Obviously, our bounds are not set in stone. There is always the possibility of a theory

with either m∗ . 1 TeV or ξ ∼ 1 escaping, via multiple tunings, all phenomenological

constraints from Higgs and EW precision measurements and from direct searches. Still,

given the outcome of direct BSM searches at the LHC, as well as a wide range of precision

measurements that returned results consistent with the SM predictions, we believe that to

be a less likely option to enhance ∆3 than our accidentally light Higgs. For this reason we

believe that the bounds presented in this paper are robust.
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We also investigated a more general EFT where the Higgs potential at the EW scale

cannot be written as a power series in H†H. We studied corrections to the cubic Higgs

self-coupling that, in a SU(2)W ×U(1)Y invariant language, are described by a non-analytic

function of H†H. At first sight, this scenario may offer more freedom to arrange for a large

∆3 without violating stability or experimental constraints. We have shown however that

in such a setting there is an obstruction to decoupling m∗ from the EW scale, leading to

ξ ∼ 1. Namely, 2→ n amplitudes for scattering of longitudinally polarized W and Z bosons

into n ≥ 3 Higgs bosons become strong and violate perturbative unitarity around the scale

4πv ≈ 3 TeV. Therefore, in this scenario it is impossible to have a sizable ∆3 while robustly

satisfying all the constraints from single Higgs processes, EW precision measurements and

direct searches. Again, it is not completely excluded that multiple tunings and/or clever

model building [21, 32] may allow one to circumvent these phenomenological constraints.

Our analysis exemplifies the physical difference between Higgs EFTs with analytic and

non-analytic potential. In the standard nomenclature, these EFTs go under the names of

the SMEFT and the HEFT, respectively. Previously, the distinction between the two theo-

ries was described in a less intuitive language of linearly or non-linearly realized symmetries.

Both of these EFTs have the same particle spectrum (that of the SM), however the HEFT

is usually introduced as a more general theory where the SU(2)W ×U(1)Y symmetry acts

in a non-linear way on the Goldstone bosons, while the Higgs boson h is an EW singlet.

This results in more freedom in writing the Higgs potential at the leading order in the EFT

expansion. In this paper we provided a clear and intuitive dynamical distinction between

the SMEFT and the HEFT. We argued that the HEFT can be equivalently formulated

with a linearly realized SU(2)W ×U(1)Y symmetry, provided one allows in the lagrangian

terms that are non-analytic in H around H = 0. In our classification analyticity versus non

analyticity in H, modulo field redefinitions, is what distinguishes SMEFT from HEFT. In

this paper we discussed only the Higgs potential, but the same classification can be used

to distinguish SMEFT vs HEFT at the level of Higgs interactions with other fields. Our

classification is not just a matter of aesthetics and directly concerns the dynamics. Indeed

the non-analyticity in H makes manifest, via the equivalence theorem, the existence of the

strong 2 → n amplitudes mentioned in the previous paragraph, which prohibit extending

the validity of that HEFT above the scale 4πv.8 Therefore, the HEFT is an appropriate

low-energy description for non-decoupling BSM models with the mass scale close to a TeV.

Conversely, BSM models with the mass scale m∗ parametrically larger than the EW scale

are described at low energies by the SMEFT.

8Ref. [33] proposed another criterion to distinguish SMEFT and HEFT. That criterion states that

SMEFT corresponds to the special subclass of HEFT for which there exists a point in field space where

electroweak symmetry is restored, or, equivalently, where mW,Z = 0. The resulting SMEFT class contains

the SMEFT class defined by our criterion. However it seems to us it is strictly larger, as it also includes effec-

tive lagrangians that are non-analytic at H = 0 and thus unavoidably associated to a low cut-off scale. For

instance, it seems to us that e.g. L = [1 + ε(H†H)3/2]|DH|2 would be classified as SMEFT according to the

criterion of ref. [33] and as HEFT according to ours. Indeed the n-point amplitudes in this model, similarly

to the case studied in this paper, imply a low cut-off scale, which makes our criterion appear more physical.
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