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Abstract

We introduce an algorithm that guides the user to tag
faces in the best possible order during a face recognition as-
sisted tagging scenario. In particular, we extend the active
learning paradigm to take advantage of constraints known a
priori. For example, in the context of personal photo collec-
tions, if two faces come from the same source photograph,
we know that they must be of different people. Similarly, in
the context of video, we know that the faces from a single
track must be of the same person. Given a set of unlabeled
images and constraints, we use a probabilistic discrimina-
tive model that models the posterior distributions by prop-
agating label information using a message passing scheme.
The uncertainty estimate provided by the model naturally
allows for active learning paradigms where the user is con-
sulted after each iteration to tag additional faces. Our ex-
periments show that performing active learning while in-
corporating a priori constraints provides a significant boost
in many real-world face recognition tasks.

1. Introduction
Tagging the identity of people in photos is an impor-

tant tool in photo organization. Commercial systems such
as Google Picassa [1] and Apple iPhoto [2] have recently
added face recognition and clustering to help partially auto-
mate this process. Similarly, tagging people can be used to
help organize and search personal video collections.

In classical face recognition [8, 17, 21], the goal is usu-
ally to optimize some form of recognition or verification
rate on a probe set of test images, given a fixed gallery of
training images (and possibly some generic training data of
miscellaneous faces outside the probe and gallery sets) [12].
This goal is a good match to the requirements of most tradi-
tional applications of face recognition such as surveillance.

On the other hand, the primary goal in face tagging is
to tag the faces as quickly and accurately as possible. The
training set is no longer fixed and outside the control of the
algorithm. As faces are tagged, the training set can be ex-
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Figure 1. Our algorithm guides a user to tag faces in the best pos-
sible order. In particular, our approach takes advantage of con-
straints known a priori. Red lines show that two faces come from
the same photograph and therefore must be of different people.
Green lines show that the faces come from a single face track in
a video and must be of the same person. The numbers are an il-
lustration of the order in which our algorithm would ask the user
to tag the faces. The algorithm exhibits a preference to tag faces
that occur in photos with one or more other faces because tagging
that face provides information about the other faces in that photo.
Also, there is a preference to tag long tracks with pose variation.

tended. One key question1 is then which faces should be
tagged first to maximize performance on the rest of the data.
This question has received little attention in the face recog-
nition literature, with the notable exception of [15].

The field of active learning provides a nice framework
for choosing which faces to tag and has been a topic of con-
siderable interest [6, 16, 4, 10, 11]. For example, Freund et
al. [6] propose disagreement among a committee of clas-

1Another part of the problem is the design of the user interface. See
[5] for example. User interface design is outside the scope of this paper.
Instead we focus on the choice of which face images to tag.



sifiers as a criterion for active learning, and have shown
an application to image classification [3]. Several authors
have explored active learning in an Support Vector Machine
(SVM) framework. Tong and Koller [16] select unlabeled
cases to query based on minimizing the version space within
the SVM. Chang et al. [4] have used active learning with
SVMs for the task of image retrieval using color and tex-
ture features extracted from an image. Similarly, within the
Gaussian process framework [9, 13], the method of choice
has been to look at the expected informativeness of an unla-
beled data point [10, 11]. In computer vision active learning
has been employed for object categorization [9, 7], video
annotation [20], and face tagging [15].

In this paper we extend the classical active learning
paradigm and present a framework that allows the incor-
poration of additional sources of prior information. These
additional constraints are what distinguishes our work from
previous face tagging papers [15] and the more general ac-
tive learning literature [6, 16, 4, 10, 11]. For example, if two
faces appeared in the same unedited photo, the two faces
cannot have the same identity. We call such constraints non-
match constraints. Another example is in video. If faces are
tracked and two images are from the same track, they must
have the same identity. We call such constraints match con-
straints. Note that Tian et al.[15] perform partial clustering
and assume that each cluster contains a single identity. In
our framework, this can be regarded as a form of match
constraint. However, this clustering-based match constraint
is liable to errors in the clustering and the active learning
approach relies on a number of heuristics. Our framework
is more generally applicable to both match and non-match
constraints, and more principled.

We begin by first proposing a probabilistic discrimina-
tive model that aims to induce a probability distribution
over class labels by both considering the face images as
well as known constraints. In particular our model consists
of a Gaussian process (GP) prior [9, 13], which enforces a
smoothness constraint on the labels, and a Markov random
field (MRF) that enforces both the match and non-match
constraints. We also propose an efficient variational mes-
sage passing to infer the unobserved labels given the face
regions and a set of known labels. Because of the proba-
bilistic nature of our model, it provides all the information
we need to develop an active learning criterion. In partic-
ular, our active learning selection criterion utilizes uncer-
tainty estimates to determine the next face to tag.

Rather than evaluating our algorithm on standard face
recognition benchmarks [14, 12], we evaluate it on a num-
ber of personal photo and video collection (one from a per-
sonal DV tape and one from a commercial TV sitcom.) We
present results using both a held-out probe set and by treat-
ing the data as a single bag of images that need to be labeled.
In both cases we show that the addition of constraints yields
a significant boost in performance.

2. Active Learning with Constraints
Assume we are given a set of face images X = {xi}. We

partition this set into a set of labeled ones XL with labels
tL = {ti|i ∈ L} and a set of unlabeled ones XU . At the
beginning of the tagging task, we have XL = ∅ and XU =
X. Our goal is to request as few labels as possible from
a human oracle to maximize the classification rate over the
entire set of images X. (In our experimental results, we also
include classification rates on a held-out testing subset.)

If we treat each face image independently, a standard ac-
tive learning criterion such as uncertainty [6] or information
gain [11] can be used to determine the next face to tag at
each step. For example, we can use off-the-shelf prediction
algorithms such as SVMs [16] or Gaussian Process (GP)
models [9] to infer the posterior distribution p(tU |X, tL)
over unobserved labels tU = {ti|i ∈ U}. This distribution
can then be used in the active learning criterion. However,
we would like to model the dependencies between images
and below we describe a discriminative model that utilizes
contextual constraints in order to classify unlabeled images
and determine what face to tag next.

We present a probabilistic model that utilizes such con-
straints correctly to propagate information pertinent to con-
tent as well as other known constraints in order to infer the
unobserved labels. Our framework considers pairwise con-
straints between images that specify whether two faces are
the same or different. Non-Match constraints between two
face images mean that the images must have different la-
bels. Match constraints mean that the two face images must
have the same label. We assume that a set of the match and
non-match constraints have been provided:

NMC = {(ti, tj) | ti 6= tj}
MC = {(ti, tj) | ti = tj}

The remainder of this section is organized as follows. We
begin in Section 2.1 by presenting a discriminative model
which incorporates the constraints. We proceed in Sec-
tion 2.2 to describe how inference can be performed in this
model to compute the posterior distribution over the unob-
served labels:

p (tU |X, tL) (1)

given the input face images X, the labels added so far tL,
and the constraints, both non-match NMC and match MC.
Finally, in Section 2.3 we show how p(tU |X, tL) can be
used in an active learning criterion.

2.1. A Discriminative Model with Constraints
We propose a model that consists of a network of predic-

tions that interact with one another such that the decision of
each predictor is influenced by the decision of its neighbors.
Specifically, given match and non-match constraints we in-
duce a graph where every vertex corresponds to a label ti,
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Figure 2. Factor graph depicting the proposed discriminative
model. The shaded nodes correspond to the observed labels (train-
ing data) and the thick green and dashed red line correspond to
match and non-match constraints respectively.

i ∈ L ∪ U , and is connected to its neighbors according to
the given constraint. We will denote the set of edges cor-
responding to match and non-match edges as E+ and E−
respectively.

Figure 2 illustrates the factor graph corresponding to the
proposed model. The class labels {ti : i ∈ L ∪ U} are de-
noted by squares and influence each other based on different
match (green lines) and non-match (dashed red lines) con-
straints. In addition to these constraints, our model also im-
poses smoothness constraints using a GP prior [13]. We in-
troduce latent variables Y = {yi}ni=1 that use a GP prior to
enforce the assumption that similar points should have simi-
lar prediction. In particular, the latent variables are assumed
to be jointly Gaussian and the covariance between two out-
puts yi and yj is typically specified using a kernel function
applied to xi and xj . Formally, p(Y|X) ∼ N (0,K) where
K is a kernel matrix2 with Kij = k(xi,xj) and encodes
similarity between pairs of face regions. For the rest of the
discussion in this section we assume that we are given a ker-
nel matrix K. We describe more details on how we compute
this kernel matrix in section 3.1.

Given a pool of images, the model induces a condi-
tional probability distribution p(t,Y|X) using the GP prior
p(Y|X) and potential functions φ, ψ+ and ψ−. Here φ en-
codes the compatibility of a label t and the corresponding
latent variable y. Further, ψ+ and ψ− encode the pairwise
label compatibility according to the match and non-match
constraints respectively. Thus, the conditional distribution

2This kernel matrix is a positive semidefinite matrix and is akin to the
kernel matrix used in classifiers such as SVMs.

induced by the model can be written as:

p(t,Y|X) =
1
Z
p(Y|X)

n∏
i=1

φ(yi, ti)×∏
(i,j)∈E+

ψ+(ti, tj)
∏

(i,j)∈E−
ψ−(ti, tj)

where Z is the partition function (normalization term) and
the potentials φ, ψ+ and ψ− take the following form:

φ(yi, ti) ∝ e−
||yi−t̄i||

2

2σ2

ψ+(ti, tj) = δ(ti, tj)

ψ−(ti, tj) = 1− δ(ti, tj).

Here, δ(·, ·) is the Dirac delta function and evaluates to
1 whenever the arguments are equal, and zero otherwise.
Also, t̄i is the indicator vector corresponding to ti and σ2

is the noise parameter and determines how tight the relation
between the smoothness constraint and the final label is. By
changing the value of σ we can emphasize or de-emphasize
the effect of the GP prior.

Note that in absence of any match and non-match con-
straints the model reduces to a multi-class classification sce-
nario with GP models [9, 13]. Further, the model is akin to a
conditional random field (CRF), although modeling a large
multiclass problem as a CRF with kernels is non-trivial due
to the large number of parameters that would be required to
solve such a problem. The proposed model does not suffer
from these problems as GPs are non-parametric models.

In summary, our model provides a powerful framework
for modeling non-linear dependencies using priors induced
by kernels. Also note that this is a discriminative framework
as we never model P (X), the high dimensional underlying
density of observations. Moreover, as we will see in the
next section this model will allow us to perform message
passing to resolve the smoothness, match and non-match
constraints and infer the unobserved variables in an efficient
manner. Finally, the probabilistic nature of the approach
provides us with valid probabilistic quantities that can be
used to perform active selection of the unlabeled points.

2.2. Inference in the Model
Given some labeled data the key task is to infer

p(tU |X, tL) the posterior distribution over unobserved la-
bels tU = {ti|i ∈ U}. Performing exact inference is
prohibitive in this model primarily due to two reasons.
First, notice that the joint distribution is a product of a
Gaussian (GP prior and unary potentials) and non-Gaussian
terms (pairwise match ψ+ and non-match constraints ψ−).
More importantly, the match and the non-match constraints
might induce loops in the graph making exact inference in-
tractable. We resort to approximate inference techniques



in order to get around this problem. In particular we per-
form an approximate inference by maximizing the varia-
tional lower bound by assuming that the posterior over the
unobserved random variable Y and tU can be factorized:

F =
∫
tU ,Y

q(tU )q(Y) log
p(tU ,Y|X, tL)
q(tU )q(Y)

≤ log
∫
tU ,Y

p(tU ,Y|X, tL),

where q(Y) is assumed to be a Gaussian distribution and
q(tU ) is a discrete joint distribution over the unobserved la-
bels. The approximate inference algorithm aims to compute
good approximations q(Y) and q(tU ) to the real posteri-
ors by iteratively optimizing the above described variational
bound. Specifically, given the approximations qk(Y) ∼
N (Mk,Σk) and qk(tU ) from the kth iteration the update
rules are as follows:

qk+1(Y) ∝ p(Y|X)φ(YL, tL)φ(YU , q
k(tU ))

qk+1(tU ) ∝ Ψ+Ψ−φ(Mk
U , tU )

For clarity, we have collected the product of unary potential
terms in φ and all the labeled instantiation of local poten-
tials, match and non-match constraints in Ψ+ and Ψ− re-
spectively. The first update equation considers the current
beliefs about the unlabeled data and incorporates it in up-
dating q(Y). Notice that the first update equation is just a
product of Gaussian terms and can be computed easily:

qk+1(Y) ∼ N (Mk+1,Σk+1) Where:

Mk+1 = K(K + σ2I)−1

[
t̄L

qk+1(tU )

]
Σk+1 = K−K(K + σ2I)−1K.

Again t̄L denotes the indicator matrix where everything is
zero except the (i, j) entry is set to 1 if xi is labeled as
class j. This update operation is the same as inferring Y by
considering distributions over unlabeled data in addition to
the labeled images.

The second update equation similarly considers the local
potentials φ(Mk

U , tU ) induced by the posterior qk(Y) over
the latent variables and needs to resolve the pairwise con-
straints in order to compute the updated distribution over
tU . Notice that the second update equation for qk+1(tU )
has the same form as a Markov Random Field. In partic-
ular Ψ+ and Ψ− are the edge potentials while φ(Mk, tU )
are the local potentials. Consequently we can use loopy Be-
lief Propagation to first compute the marginal probabilities
qBP (ti) for all i ∈ U and set qk+1(tU ) =

∏
i∈U q

BP (ti).
Note that in presence of cycles in the graph doing loopy
belief propagation till convergence will provide approxima-
tions for the marginal distributions. The pseudocode for the
message passing scheme is provided in Algorithm 1.

Algorithm 1 Inferring the Unknown Labels

function probOut = Infer(K, t̄L, E+, E−)

Compute A = K(K + σ2I)−1

Initialize:
q0(tU ) = 0 and q0(Y) = N (M0,Σ0)
where M0 = A[t̄L; q0(tU )]and Σ0 = K−AK

for k = 0 to Maximum Iterations or Convergence do

Update q(tU ):
Do LoopyBP over MRF induced by E+, E− and φ
qk+1(tU ) =

∏
i∈U q

BP (ti)

Update q(Y):
Mk+1 = A[t̄L; qk+1(tU )]

end for

Return probOut = q(tU )

Alternating between the above described updates can
be considered as message passing between a classifier and
a constraint resolution scheme. By doing the update on
q(tU ), the constraints are imposed on classification results
and are resolved by performing belief propagation. Simi-
larly, by updating q(Y) any new information learnt about
the unlabeled points is propagated to the classifier in order
to update its class beliefs. By iterating between these two
updates the model consolidates information from both com-
ponents, and thus provides a good approximation of the true
posterior.

The computational complexity of the first update step is
O(N3) due to the inversion of the N × N matrix, where
N is the total number of data points. However, note that
the particular term K(K + σ2I)−1 needs to be computed
only once and can be reused in every iteration. Inference
using loopy belief propagation is the dominating factor in
the computational complexity for the second update equa-
tion. However, these constraint graphs are often sparse and
consequently inference can be run fairly efficiently for most
of the real-world photo collections.

2.3. Use in an Active Learning Criterion

The task in active learning is to seek the label for one of
the unlabeled examples and then update the classification
model by incorporating it into the existing training set. The
goal is to select the sample that would maximize the benefit
in terms of the discriminatory capability of the system.

A popular heuristic with non-probabilistic classification
schemes is to first establish the confidence of the estimates
using the distance from the classification boundary (margin)
and select the closest to the margin. However, our Bayesian
model provides a full posterior distribution over the class
labels for the unlabeled points which can be used for active
learning.



As in standard active learning methods [11, 16], mea-
sures such as uncertainty or information gain can be used.
Formally, we can write these two selection criteria as:

UN : x∗ = arg max
i∈U

H(ti)

INFO : x∗ = arg max
i∈U

H(tU \ i)− Eti [H(tU \ i|ti)]

Here, H(·) = −
∑

c∈classes pc log(pc), where pc =
qBP (ti = c), and in our model denotes Shannon entropy
and is a measure of uncertainty. The uncertainty crite-
rion seeks to select the face image with most uncertainty,
whereas the information gain criterion seeks to select a data
point that has the highest expected reduction in uncertainty
over all the other unlabeled points. Either of these crite-
ria can be computed given the inferred posteriors; however
we note that the information gain criterion is far more ex-
pensive to compute as it requires us to do repeated infer-
ence by considering all possible labels for every unlabeled
data point. The uncertainty criterion on the other hand is
very simple and often guides active learning with reason-
able amount of gains [9, 16]. In this work we will con-
sider uncertainty as the primary active learning criterion,
although please note that extension to other information the-
oretic schemes is possible.

3. Experiments
We consider two application scenarios that naturally pro-

vide constraints. First, we consider the task of tagging faces
in a personal photo collection. Associating identities of
faces in a photo collection can greatly enhance the photo
browsing experience. The scenario naturally induces non-
match constraints between faces that appear in the same
photo. The other application scenario we consider is tag-
ging faces in videos. Tagging the faces in a home video
allows the video to be searched more easily. For example,
it would be possible to find all the shots of a particular fam-
ily member. Besides inducing non-match constraints this
scenario also leads to match constraints. By using a track-
ing algorithm we can induce match-constraints for faces be-
longing to the same track. Below we describe the procedure
we used to detect and extract faces and determine the con-
straints.

3.1. Face Processing Pipeline
Our face recognition pipeline uses the Viola-Jones face

detector [18] to detect face regioins. In the case of videos,
the pipeline first breaks the video into shots using a color-
histogram based shot detector. A matching algorithm is then
used to assemble the face regions into tracks. Missed de-
tections are filled in by interpolating between previous and
subsequent frames.

Constraint Generation: The non-match constraints are
generated by considering each photo in the collection or
each frame in the video. A non-match constraints is added
for any pair of faces that appear in the same photograph or
the same video frame, and for which the face regions do not
overlap. Similarly, a match constraint is added for each pair
of faces that appear in the same track. In our implementa-
tion tracking is very conservative and we can be sure that
each track just contains a single person. A result of this
conservative algorithm is that tracks may be broken into
multiple shorter ones that definitely contain the same per-
son. This may result in slightly less information, but avoids
erroneous constraints.
Feature Extraction: We applied two different facial fea-
ture extraction algorithms to the face regions. The first was
a simple eigenface algorithm [17]. The face regions were
re-sampled and normalized to 64 × 64 grayscale patches
with zero mean and unit variance. Principle components
analysis was then performed and enough eigenvectors are
selected to retain 95% of the empirical variance. The face
patches were then projected into the principle components.
The distance metric used is a simple L1 distance.

The second algorithm utilized the face recognition
pipeline proposed by Wright and Hua [19]. Each detected
face is first geometrically rectified and then photometrically
normalized. The rectified face region is then partitioned into
overlapping small patches. A local image descriptor is ex-
tracted from each patch. The location of each patch is ap-
pended to the corresponding image descriptor to come up
with a joint spatial-appearance descriptor. Each augmented
descriptor is then quantized by a set of pre-trained random-
ized projection trees (RPTrees). The final face representa-
tion is a bag of quantized indices of these spatial-appearance
descriptors, i.e., a sparse histogram. We refer to this rep-
resentation as RPTrees. Following Wright and Hua [19],
the distance metric is the inverse document frequency (IDF)
weighted L1 distance between two sparse histograms.

Given the matrix Dsq of the squared distances using ei-
ther of these representations, we induce a Gaussian Process
kernel K = [Kij ] such that Kij = exp(− Dsq

ij

mean(Dsq) ). Note,
that this kernel is positive semi-definite and can be used
in any kernel based classification algorithm including SVM
and GP classification.

3.2. Description of Data

We performed experiments on 4 datasets. Two of these
datasets came from personal photo collections. The other
two were extracted from video footage. We describe the
data in detail below.

HomeDV: is a set of faces extracted from a 51 minute
home video. The video footage contains 5 people, 4 mem-
bers of a family (mom and 3 young children) and a house
guest. The dataset contains 420 tracks. Each track is then
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Figure 3. Histograms of faces per image ((a) HomeDV, (b) Sitcom, (c) London Trip, (d) Birthday Party) and faces per person ((e) HomeDV,
(f) Sitcom, (g) London Trip, (h) Birthday party).

sampled every 5 frames yielding 5742 faces. We conduct
our experiments on a sample of 500 faces randomly selected
from this data.

Sitcom: is extracted from the concatenation of 4
episodes of the TV show “Friends,” resulting in approxi-
mately 80 minutes of video. We just extract the faces of the
6 main characters, Rachel, Joey, Ross, Chandler, Monica,
and Pheobe. The dataset contains 1282 tracks. Again, each
track is then sampled every 5 frames yielding 16720 faces
and we conduct our experiments on a random selection of
500 faces.

Note that although HomeDV and Sitcom have similar
numbers of subjects, in HomeDV most of the faces are from
3 people, the 3 children, whereas in Sitcom the distribution
of the number of face regions per person is much more uni-
form. Figure 3 includes histograms of the number of faces
per image ((a) and (e)) in the video and another histogram
of the number of face regions ((b) and (f)) for each subject
in these videos.

London Trip: contains photos from a group trip to Lon-
don. There are 23 people in the collection with a total of
119 faces. The distribution for faces per image is shown in
Figure 3(c). The distribution of the faces per person, shown
in Figure 3(g), is more spread out than Birthday (described
next). In this set there are 10 persons that only appear once.

Birthday party: this dataset comes from a personal
photo collection and contains 74 people with a total of 349
faces. The distribution of faces per image and faces per per-
son is included in Figure 3(d) and (h) respectively. Notice
that there are 42 persons that only appear once. One person,
the owner of the photos, appears almost 170 times.

3.3. Results

We present results in terms of recognition rate, both esti-
mated on a held-out “validation” set and estimated over the
complete pool of data that our algorithm is being applied to.
The accuracy on the validation set is interesting when we
care about building good classifiers that would be able to
work beyond the available pool of examples, whereas accu-
racy on the other pool of images closely reflects the realistic
task of just tagging a particular photo/image collection. To
generate the test set, we randomly held out 50% of the data.
The remaining 50% was used for active learning. The ac-
tive learning scheme selected a single face image in every
round. In an application, multiple images might be selected
greedily. But selecting one per round is more natural for
evaluation purposes.

We compare 4 different methods. The first is our full al-
gorithm, with the constraints. The second is active learning
on our model without the constraints. The third is an SVM
based active learning algorithm [16] that is commonly used
for comparison purposes. The fourth is a random sampling
baseline. All the experiments were performed 50 times by
randomly splitting the datasets into the validation set and
the pool of unlabeled images available for active learning.
The results include average results over these 50 trials and
the standard error. We fix σ = 10−5 for the proposed model
(with and without constraints) and correspondingly for the
SVM set the parameter C = 105. We also tried other set-
tings of these parameters and found that the results did not
differ significantly. Also note that we use the same distance
matrices and the induced kernels for all different schemes.
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Figure 4. Recognition performance on the held-out test set (top row) and the pool of data where active learning algorithm is operating
(bottom row) for (a) and (e) HomeDV, (b) and (f) Sitcom, (c) and (g) London Trip and (d) and (h) Birthday Party datasets. The above
graphs show mean performance over 50 different runs and the dotted lines signify standard error. These plots highlight that modeling
the constraints is advantageous for the purpose of active learning. These results used RPTrees representations. For results on Eigenspace
representation please see the supplementary material.

The results using the RPTrees representation3 on the held
out set are included in Figure 4 (top row). The blue hori-
zontal line is the average recognition rate obtained using a
Gaussian-Process classifier trained on all the active learning
data. As such, it upper-bounds the recognition rate we ex-
pect from all the algorithms (without constraints) when all
examples have been selected. This property can be seen in
the figures with the algorithms except the one which uses
the constraints reaching this point. The two main points
to note, however, are: (1) the algorithm which uses the con-
straints reaches an even higher level of performance through
the incorporation of this additional information, and (2) the
recognition rate of the algorithm which uses the constraints
increases the fastest as examples are added.

The results on the pool of data used for active learning
are shown in Figure 4 (bottom row) and Table 1. We trun-
cate these plots after 40% of the examples have been labeled
to make it easier to see the difference. When extended, all
algorithms achieve 100% accuracy and the proposed algo-
rithm always stays on top of the other curves. As with the
held-out validation data, the main point to note is that the
recognition rate of our algorithm with the constraints in-
creases the fastest as examples are added. The results show
that the method with constraints is choosing better exam-
ples.

3In this section we only report results on the RPTrees due to space con-
straints. For results using Eigenspace representation please see the supple-
mentary material.
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Figure 5. The distribution of the first five labels sampled according
to the different active learning schemes (averaged over 50 runs).
The different colors correspond to different classes and the length
of each color segment is in proportion to the number of sampled
examples belonging to a particular class.

In Table 1 we include numerical results which consist of
the number of examples that need to be added to achieve
75% accuracy. Again, averages are reported over 50 trial
runs, along with the standard error. As above, these re-
sults confirm that the recognition rate of our algorithm with
the constraints increases the fastest as examples are added,
reaching the 75% rate with significantly fewer examples.

Next, we analyze the behavior of different active learn-
ing selection strategies. Figure 5 shows an average dis-
tribution over the class of the first five selected examples



Table 1. Number of labels required to achieve 75% accuracy on
the complete active learning pool. The results are averaged over
50 runs and the standard error is shown in the parenthesis.

Our Model Our Model SVM Random
(Constraints) (No Constraints) (Margin)

HomeDV 29.3±1.2 33.2±1.1 40.4±1.9 55.5±2.1
Sitcom 71.4±1.5 76.8±1.8 87.5±2.2 94.8±1.8
London Trip 24.8±0.4 27.5±0.5 30.7±0.6 36.0±0.6
B’day Party 30.9±0.5 34.6±0.7 48.2±1.5 73.9±1.5

for the different active learning schemes and compares it to
the true distribution of the labels in the data. The figure is
generated by averaging distribution over the 50 runs. Each
color corresponds to a particular class and the length of a
color segment in one bar corresponds to the proportion of
examples in a particular class that were picked by the ac-
tive learning strategy. We see that the distribution over la-
bels for the random selection strategy closely matches the
true underlying distribution. On the other hand, the active
learning scheme using the proposed model deviates fairly
significantly. There is also a significant difference in dis-
tributions between the constrained and the unconstrained
model. Note that the amount of ‘yellow’ labels sampled
by the constrained model is fairly different when compared
to the true distribution of the labels. The results in Figures 4
and 5 suggest that active learning with the proposed method
to model constraints can guide the selection to achieve sig-
nificant gains.

Inferring labels for 250 unlabeled images using 250
training images takes around 0.45 seconds on a dual 3.0
GHz 64-bit Intel-Xeon machine. Our implementation is in
MATLAB except the loopy belief propagation, which is im-
plemented in C.

4. Conclusion
We have extended the active learning paradigm to in-

clude constraints. We used our framework to develop an
algorithm that chooses which faces a user should tag first in
face recognition assisted face tagging scenarios. We consid-
ered two types of constraints. Non-match constraints mean
that two examples must have different labels. An example
of such a constraint occurs when two people appear in the
same photograph. Match constraints mean that two exam-
ples must have the same label. An example of such a con-
straint occurs when faces are tracked in video. We demon-
strated that the addition of such constraints can improve the
performance of active learning.

We considered the scenario where one face is presented
to the user at a time. A variety of other user interfaces are
possible, [1, 2, 5]. Instead of myopic “one face at a time
labeling” we also seek to investigate non-myopic selective
sampling where an optimal subset of unlabeled faces are
selected. Other future directions include considering other
contextual cues to induce more constraints and applying the
framework to other novel scenarios.
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