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3 1. Introduction 

WHICH: IMPRO'VES WELFARE MORE: 

NOMINAL OR INDEXED BOND ? 

1. Introduction 

Despite economists' long standing arguments in favor of systematic indexation of loan con- 

tracts to remove the risks associated with fluctuations in the purchasing power of money (Jevons 

(1875), Marshall (1887, 1923), F~lsher (1922), Friedman (1991)), surprisingly few loan contracts 

are indexed in most Western Eclonomies. fin the United States even thirty year corporate and 

government bonds are not indexed. The situation is however different in many Latin A.merican 

countries where indexing is widely used as a way of coping with high and variable inflation 

rates. What seems difiicult to eicplain is that it takes lvgh variability in inflation rates before 

private sector agents shift from lmindexed to indexed contracts. 

In practice, indexing a loan contract m.eans linking its payoff to the value of an officially 

computed price index such as the Consumer Price Index (CPI). Such an index is always an 

imperfect measure of the purchasing power of money: in particular, it fluctuates not only mth  

variations in the general level of prices but also varies with changes in the relative prices of 

goods. This paper formalizes the idea that the imperfections of indexing may serve tal explain 

why agents prefer nominal bonds in economies with a low variability in purchasing power of 

money and only resort to indexing when the variability becomes sufficiently high. 

The model is a variant of the two-period general equilibrium model with incomplete markets 

(GEI) in which the purchasing power of money depends on a (broadly defined) measure of the 

amount of money available in the economy and on an index of real output. The objective of 

the analysis is to compare two second-best situations, in which in addition to a given security 

structure, there is either a nominal bond which has the risks induced by fluctuations in the 

purchasing power of money or a n  indexed bond which has the risks induced by relative price 

fluctuations. 

Adding a bond to an existing market structure has two effects: the first is the direct effect 

of increasing the span of the fmancial markets i.e. increasing the opportunity sets of agents 

for transferring income; the second is the indirect effect of changing spot and security prices, 

which can either increase or decrease agents' welfare. This paper only compares direct effects, 

all indirect effects being absent by virtue of the specification of agents' preferences. The direct 

effects are always present, even with more general preferences, but some of the results that we 
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obtain mav no longer apply if the indirect effects are sufficiently strong (see Cass-Citanna (1994) 

and Ellul (1995) for a complete 1.ocal analysis of the combined effects). The characteristics of 

the economy (described in section 2) are such that: 

(i) the multigood model can be mapped into a purchasing power economy in which there 

are well-defined (utility-based) in.dices of the purchasing power of money and aggregate output; 

(ii) an efficient equilibrium is obtained if agents can trade a bond whose purchashg power 

payoff is constant; 

(iii) if there is no such (real) riskless bond, but only a risky bond, then the loss in welfare 

depends on the distance (in the appropriate probability metric) of the market subspace from 

the riskless income stream. 

Thus the welfare gain from adding a bond to a given security structure is measured by how 

much closer the market subspace is moved to the riskless income stream. The welfare gain is 

summarized by a function which we call the statistical gains function, since it depends on the 

vector statistical propertie2 of the bond, its standard deviation per unit of expectation and it.; 

of correlation coefficients with the existing securities. 

A complete analysis of the prloperties of this gains function (Propositions 3 and 4) is the 

main mathematical contribution of the paper: this is a necessary preliminary for determining 

which type of bond (nominal or indexed) leads to higher welfare. It follows from the properties 

of the gains function that either a low variability of the bond's (real) income stream or a 

strong (positive or negative) corrlelation of its payoff with the payoffs of the other securities 

(or a combination of the two) pe-mits a high proportion of the potential welfare gains to be 

captured: a low variability directly creates a security without much risk, while a high correlation 

permits a hedge portfolio of the bond and the underlying securities to reduce risk. 

Ln the reduced form purchasing power economy, three groups of factors iduence the real 

payoffs of the indexed and nominal1 bonds. The first are sectoral shocks which affect the relative 

output of the different sectors (goods) and hence the relative prices of the goods: these shocks 

determine the variability of the payoff of the indexed bond. The second are econornywide 

shocks which affect aggregate output and the third are monetary shocks which influence the 

"amount" of purchasing power: the ratio of these two magnitudes determines the purchasing 

power of money, which is the payoff of the nominal bond. In Proposition 5 it is shown that 

in an economy in which idation rmd output are positively correlated and sectoral shocks lead 

to relative price fluctuations, there is a critical level of fluctuations in the purchasing power of 

money below (above) which the nominal (indexed) bond is preferred. Thus in the framework of 
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this model, it is the existence of sectoral shocks, in con,junction with a relativelv strong positive 

correlation between inflation anti output wlhich serve to explain the lack of indexation. 

The benefits and costs of indexation have been extensively discussed in the macroeconomic 

literature (see for example Dornbusch and Simonsen (1983)). While the potential costs of 

indexation have been stressed in. the analysis of wage contracts (indexation of wages can lead 

to built-in inflation and to misaillocations arising from inflexible real wages), in the analysis 

of indexed bonds no such costs lave been identified and most of the attention has focused on 

the benefits of isolating agents in the private sector from price level fluctuations. It lhas thus 

appeared as something of a mystery that so few indexed contracts are used in most Western 

economies. 

In a series of papers,1 Fischeir systematically examined possible explanations for this stub- 

born fact. Fischer (1975) provided the first formal analysis of the impact of indexation of 

bonds in an equilibrium framework, using the continuous-time, Brownian motion version of 

the one-good CAPM model in w:hich there are price level fluctuations and in which agents can 

trade a nominal bond, a perfectly indexed bond and an equity contract. As Modigliani (1976) 

pointed out, since the perfectly indexed bond permits the riskless transfer of income a:nd since 

the two-fund separation theorem holds, there is no trade in the nominal bond in equilibrium: 

with perfect indexation and a variable pric'e level, an indexed bond will always drive out the 

nominal bond. This result, while providing a formalization of the classical argument in favor 

of indexation does not provide a model that explains why in practice so few indexed loans are 

traded. A step in this direction w a s  made by Viard (1993), using Fischer's model with constant 

relative risk aversion preferences: he argued that for some values of the parameters the welfare 

gains of introducing an indexed bond are small, once the nominal bond is traded. 

Finally the idea that a multigood GEI model can be reduced to a finance model by using 

homothetic preferences within slcates, was studied by Geanakoplos-Shubik (1990), who were 

interested in the appropriate definition of a riskfree asset in the context of a multigoodl CAPM 

model. 

'Collected in Fischer (1986) 
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2. The Economy 

In this section we present a variant of the general equilibrium model with incomplete markets 

(GEI) which leads to a tractablle study of the issue of indexation of nominal bonds. Consider 

a two-period (t = 0, l )  economy with S 2 2 states of natures (s = 1, . . . , S) at dake 1; for 

convenience we include date 0 as state 0 and write s = O,l, .  . . , S. There are I agents; each 

agent i is characterized by an initial endowment consisting of a vector w' = (w& wi, . . . , ui) of 

L goods in each state and a utility function LP : R;('+') - R reflecting his preferences for the 

goods across the states. Agents can trade on two types of markets. Goods can be bought and 

sold on spot markets, the vector of spot prices ps = (psi, . . . , psL) in state s being expressed 

in units of money. Let p = (pol p l ,  . . . , ps) denote the vector of spot prices. In addition agents 

can trade (at date 0) on a system of financial markets. To provide a convenient framework for 

analyzing the potential benefits of indexing a bond, we consider a family of J + 1 securities. 

Security zero, which is the bond that may or may not be indexed, has a date 0 price (70 and a 

date 1 payoff stream 

A = (Al, .  . . , A s )  

The remaining J securities have prices (ql, . . . , qJ) at date 0 and date 1 payoffs summarized by 

an S x J matrix 

Y = 

r,l . . . Y,J 
the payoff of security j in state s being Y?. Let 

denote the vector of prices of the J + 1 securities and their combined date 1 payoff mat~ix. The 

payoffs of the securities can be either real (dependent on the spot prices) or nominal (indepen- 

dent of the spot prices) and in both cases are denominated in units of money. When security 

zero is indexed (unindexed) its payoff is real (nominal). The payoffs on the remaining securities 

can be either real or nominal, but will be required to satisfy certain spanning conditions (As- 

sumption S) which imply that sane of these securities are real (in essence, that they be equity 

contracts). To simplify notation, we omit the explicit dependence of the securities' pabyof& on 

the spot prices. 

If zi = (z;, zf, . . . , 2;) E denotes the portfolio of the J + 1 securities purch.ased by 

agent i and if zi = (rb, ri, . . . , r i )  E R:'~'') denotes his consumption stream of the L goods, 
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then the agent's budget set is given by 

where [A, Y,] denotes row s of the matrix [A Y]. 

One of the interesting properties of the GEI model with nominal securities is that price 

levels affect the real equilibrium allocation. This result can either be interpreted as exhibiting 

the indeterminacy of equilibrium allocations when there are no forces determining prilce levels 

(Balask*Cass (l989), Geanakoplos-Mas-ColeU (1989)) or as exhibiting the fact that fluc:tuations 

in the purchasing power of money (ppm)  induced by monetary policy have real effects (Magill- 

Quinzii (1992)). In this paper w.e adopt the latter interpretation. The general idea is to draw 

on the logic of the quantity theory: agents use money for transactions and a combination of 

a private sector banking system and a monetary authority determines the quantity of money 

that is available for making transactions. If'p, ~ f = ~  xt is the demand for money in stake s and 

Ms is the quantity of money made available, then the price level in state s is determined by 

the monetary equation 
I 

For the sake of interpretation we suppose there is a monetary authority with some (in certain 

cases very little) control over M' = (Mo, Mr
l, . . . , Ms) and we call M the monetary policy. If 

U = (U1,. . . , u') and w = (wl,. . , wr), then &(U, w, A, Y, M) denotes the economy with agents' 

characteristics (U, w), financial structure (A,, Y) and monetary policy M. The exogenously given 

random variables (w, M)  which describe the underlying real and monetary sides of the economy, 

can have a very general stochastic dependence. This permits a wide class of econormes to be 

considered which can differ not only in the way in which monetary policy or shocks intervene, 

but also in the way money and output are correlated. 

2.1 Deftnit ion: An equilibrium of the economy & (U, w, A, Y, M )  is a pair of actions and prices 

((Z, Z), (p ,  ij)) = ((Z1, . . . , Zr, El,. . . , E'), @, ij)) such that 

(i) 5' E arg max {U'(xi) 1 3:' E B(p, ij, w')) and 2 finances Zi, i = 1,. . . , 1  
I I 

(ii) C (5' - wi) = 0 (iii) C 2 = 0 
i=l i=:L 

I 

(iv) p, C 25 = Ms, s = 0,1,. . . , S. 
i= 1 

The abstract model presented above is (capable of covering many different types of financial 
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securities, in particular, two important classes of securities whch are used to finance many 

activities in an economy - bonds and equitiy contracts. Equity contracts are readily included 

by adapting the abstract exchang;e economy to represent a production economy in which firms 

have fixed production plans. The initial ownership of the K firms in the economy is distributed 

among the I agents, 6; of firm k being owned by agent i. Agent i then has initial resources in 

the abstract economy consisting cd two components 

where wi E R$('" is a pmxy for the agent's labor income and $ is the production plan of firm 

k. If the financial markets include a stock market on which the equity contract of each firm is 

traded, then there is a security with payoff in state s (s = 1,. . . , S) given by 

If 8; is the amount of equity k purchased by agent i (at date 0), then z i  = 8 i  - 6: is the agent's 

net trade in the kth equity contract. As a class of contracts, bonds are typically designed to 

be less risky than equity contracts: modulo tihe problem of default, a bond promises a stable 

nominal payoff across the states of nature, while equity contracts have payoffi which fluctuate 

directly with the contingencies that affect the performance of individual firms. However, the 

stable nominal payoff of a bond only translates into a stable real payoff if there are no 13uctu- 

ations in the purchasing power of money. The fact that variations in pprn introduce risks into 

securities designed to be essentially riskfree has long been viewed by economists as introduc- 

ing an inefficiency that should be iivoided. Hence the idea that monetary policy should. seek, 

as far as possible, to achieve a stable ppm or,, if imperfections in the control of the monetary 

transmission mechanism or political. factors make this unfeasible, that bonds should be indexed. 

Our objective is to find a way of formalizing these ideas. We will not try to address the 

general problem of indexing a family of nominal securities. Rather, we shall focus on the 

benefits and costs of indexing the least risky nominal bond - namely the default-free bond. To 

do this, we need to give more specifi'c structure to the characteristics of the economy - basically 

assumptions on agents' endowments and preferences and on the security structure which ensure 

that agents would really benefit from the presence of a bond with a riskless real purchasing 

power. We want to show that, in a multigood setting, indexing is not the universal panacea 

:for neutralizing fluctuations in ppm that is often suggested: indexing inevitably intr~duc~es the 

~Sisks of relative price fluctuations and in some cases these risks may exceed the risks arising 
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from fluctuations in ppm. The first assumpt~ion places a restriction on agents' preferences which 

implies that spot prices are independent of the income distribution and are thus independent of 

agents' choices on the financial markets. This eliminates a feedback between the spot markets 

and the financial markets, and greatly simplifies the analysis of the model. 

Assumption H: Agents have s'eparable-homothetic utility functions of the form 

where 71,. . . ,rs are strictly positive probabilities of the states, A& > 0, h : R$ - R, f' : 

R - R, both h and fi are increasing, concave and differentiable and h is homoge~neous of 

degree 1. 

Let w, = ~ f , ~  w: denote the aggregate output in state s (s = 0,1,.  . . , S). Assumption H 

implies that the equilibrium vector of spot prices p, in state s is proportional to  the ,gradient 

of h at  the aggregate endowment. Using the Euler identity Vh(ws)ws = h(ws) and writing the 

monetary equations as p3ws = hrs, s = O , l , .  . . , S leads to the equilibrium spot prices 

In an equilibrium the maximum problem of each agent can be decomposed into two steps: 

the first is a choice of a portfolio (z')  on t.he financial markets, the second is the choice of a 

vector of consumption ( x i )  on th'e spot markets. The choice of a portfolio by agent i generates 

an income stream across the states 

The agent then selects a vector of consumption which is affordable given this income stream 

In view of Assumption H ,  the vector of consumption chosen by agent i can be deduced once 
. . 

his expenditure stream m' = (mb, mi, . . . , mfs) is known 



$2. The Economy 

Substituting (7) into the utilitv function Ui(z') in Assumption H and exploiting the homo- 

geneity of degree 1 of h,, gives the utilitv of agent i as a function of his expenditun, stream 

mi 

where 

is a utility index of the purchasin:g power of money. The numerator in (9) is an ideal (utility 

based) index of aggmgate output in state s.  The aggregate output wsr of good e in state s is 

weighted by its social (representative agent) marginal utility in state s, e, and the index 

measures the representative agent's utility h(w,) a t  the total output w,'. 

Purchasing Power Economy. Since agents' preferences over expenditure streams are ex- 

pressed by (8), the analysis of the equilibrium problem for the economy E(U, w ,  A, Y, M) can be 

reduced to the analysis of the equilibrium of a finance economy in which all quantities (income 

and expenditure streams, security payoffs) are converted to real (i.e. purchasing power) values. 

To this end, define each agent's red income and expenditure stream (i = 1,. . . , I )  

and let 
S 

s= 1 

denote the utility to agent i of the real expenditure stream $ E R:". If we define the real 

prices and payoff streams of the se~curities (j  = 0,1,. . . , J )  

then the financial problem of agent i reduces to choosing a portfolio zi E RJ+' which maximizes 

u' in the budget set 

t A L;) eeo - q'zi, E RJ+' 

I.L5=ef+[asVs] z', s = 1 ,  . . . ,  S 

'Lf h is the CobbDouglas utility function then the index of output in state s is the geometric mean of the L 
components of aggregate output (wSl , .  . . , w , ~ ) ,  the weight assigned to good e being its coefficient in the Cobb 

Douglas function. The purchasing power 43f money vs is then obtained by dividing the index of aggregate. output 

by the money supply M,. 
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where V = iv' . . . vJ] is the mat,rix of real pavoffs of securities j = 1,. . . , J and V,  is. the row 

corresponding to state s. Let e' = (ek, ef., . . . , ek), e = (el , .  . . , e l )  denote the real values of 

agents' endowments, v = (u l , .  . . , ul)  their utility functions for real income and a = ( a l , .  . . , as)  

the real pavoff stream on the default-free bond, then we call E(u, e,  a, V )  the purchasing power 

economy induced by the monetary economy &(U, w, A, Y, M ) .  

The next assumption permits explicit calculations to be made of the welfare consequences 

of alternative real payoff streams a for the bond, depending on whether the nomind payoff 

A is indexed or unindexed furthermore the welfare comparisons have a natural econc~mic and 

geometric interpretation. The assumption requires that agents have mean-variance preferences 

- a convenient (if crude) first approximation for describing the wav agents evaluate risks. 

Assumption Q: For each agent the function : R - R in Assumption H is quadratic 

Finally we include a spannin,g assumption on the security structure Y which ensures that 

in the purchasing power (pp)  economy the riskless real income stream 1 = (1,. . . ,1) becomes a 

reference income stream for measuring the llosses due to fluctuations in ppm and the potential 

gains from indexation. For when the security structure Y is well-adapted to the agents'' endow- 

ment risks @sw5):=i,l, then in the pp economy the most important missing security is the riskless 

real bond P and welfare losses or gains can be expressed in terms of the distance of the market 

subspace ([a V]) from 1. We use the following notation: for any vector x = (xo, x i ,  . . . , x, ) , 

X I  = ( x l ,  . . . , xs) denotes the vector of date! 1 components. 

Assumption S: For each agent i = 1,. . . , .1 

@wl, . . . , ~ s w ; )  E (Y) e h  (V)  

If the agents endowments have the form given in (2), then the spanning assumption ;mounts 

to requiring that Y contains the equity contracts of the corporate 6rms and enough additional 

securities to permit agents to share their personal income risks @,rtli):='=l - or equivalently, 

that their private sources of income (for example their wage income or their inco~me from 

individually owned firms) are subject to the same shocks as  the corporate sector. However we 

assume that the security structure is incomplete in that the subspace (V) of the pp (economy 

does not contain IL and has dimension less than S - 1 (there are no securities which, provide 
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direct insurance against monetary shocks and it would take more than one additional bond to 

complete the markets). For convenience we add two purely technical conditions: real pavoff 

streams are non-redundant and have positive expected values. 

Assumption I: (i) 1 4 (V) (ii) rank V = J (iii) J I S - 2 (iv) E ( d )  > 0, j = 1,. . . , J 

Assumption H reduces the analysis of the multigood economy &(U, w, A, Y, Ad) to the anal- 

ysis of the purchasing power economy &(u, e, a, V). Under Assumptions Q, S and I, this pp 

economy satisfies the assumptions of the Capital Asset Pricing Model (CAPM), in which how- 

ever, if a is risky (or more precisely if l @ (a, V) ), the riskless transfer of income is not p~ossible. 

Jl a = 1 or P E (a, V) then by a standard result the equdibria of &(u, e, a, V) are Pareto o p  

timal: thus when a is risky there: is a loss :relative to the ideal situation a = B .  If A is the 

default-free nominal bond then its nominal payoff is An = 1 and its real payoff is just the 

purchasing power of money aN =: v = (vl , .. . . , us): the greater the fluctuations in ppm, the 

greater the risks of aN. On the other hand if A is indexed on the value of a reference bundle of 

goods b = (bl, . . . , bL) f R~ then its nominal, payoff stream is AR = (Plb,. . . , Ssb) and in view 

of (4) and (9), its real payoff stream is aR = (Vh(wl)b,. . . , Vh(ws)b). While aR is isolated 

from fluctuations in ppm, it does :however vary with fluctuations in Vh(ws) i.e. those induced 

by underlying real shocks which atfect the relative aggregate supplies of the goods. In order to 

explain the conditions under which the agents are better off using the nominal or the indexed 

bond, we need to understand how the welfare of the agents in an equilibrium depends on the 

characteristics of the income stream a - its variability and the way it covaries with th~e other 

securities in the economy summarimed by V. 

3. Welfare and the Statistical Characteristics of the Bond 

A geometric approach to the welfare analysis of equilibria of an economy in which agents 

have mean-variance preferences can be obtainled using projections under the probability i:nduced 

and its associated norm 
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Two vectors x, y E are said t:o be y-orthogonal if [[.c? y ] ]  = 0. For a subspace W c FtS, let 

wV denote the 7-orthogonal complement, namely the subspace of vectors y-orthogo:onal to all 

vectors in W. Since itS can be dsecomposed as a direct sum R' = W @ w V ,  any vector x E R' 

can be written uniquely 

x = = x * + x f,  x l E W ,  x
f 

E wJ- 

x* (resp. .I!) is called the 7-orthlogonal projection of x onto W (resp. onto w ~ )  and we write 

x* = projwx, d = proj x. The ?-projection x* onto W is the vector in the sub:jpace W 
wU. 

which lies closest to x in the 7-norm i.e. it solves the problem 

If W is the subspace of R' spanned by the k linearly independent columns of an S x I- matrix 

W (i.e. W = (W) and rank W = k) then the matrix which represents the 7-projection (in the 

standard basis) is 

1 T 
B, = W [ W ~ [ Y I W I -  W 171 (4) 

where 

is the diagonal matrix of probabilities. The matrix B, in (4) can be readily derived by solving 

the problem (3) and showing that x* = Bw z. Note that if x E W then B, x = x. 

If W is the payoff matrix of k securities; in a one-good two-period economy E(v, e, W) in 

which agents' utility functions are linear-quadratic 

then the welfare of the agents at an equdibrium can be expressed as a function of the subspace 

W = (W). The expression is simplified when the date 1 initial endowments of the agents lie in 

the market subspace i.e. when ei  E W,i  = 1,. . . , I .  

Proposition 1 (Equilibrium Welfare of Agents): Let I ( u ,  e, W) be a one-good, twtrperiod 

economy in which agents have h e a r  quadratic utility functions (5) and in which ei  E W, i = 

1,. . . , I. Then the welfare of the agents at t.he equilibrium is given by 

2 

p r o  k i = 1 ,  ..., I 
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I where a = a',. Xo = ~ f = ~  A; and (ki),!=l are constants depending on the characteristics 

(Ah, a', e i ) L l  of the economy. 

Proof: Let (f l ,  . . . , zi, zl,. . . , f r ,  q) denote the equilibrium and let el  = zhl ei denote the 

date 1 aggregate endowment of the economy. A straightforward calculation (see Mad.-Quinzii 

(1994, Exercise 5, Chapter 3) shows that thee equilibrium security prices are given by 

the agents' portfolio vectors are 

and their equrlibrium consumption streams are 

where we have used the equality 13,e'; = e'; implied by e'; E W .  Inserting the expression for 

fa into the utility functions (5) leads to (6). 0 

Since there is a sufficiently rich structure of financial securities for agents to share their 

endowment risks, the maximum welfare is obtained when, in addition, the riskless transfer of 

income is possible (1 E W); in this case, 11 proj,l I l r = l l  1 / I r =  1 and the equilibrium allocation 

is Pareto optimal, since the allocation is the same as if the markets were complete (W := R~). 

When the riskless transfer of inco:me is not ]possible (P $ W), then (1 projwl (I,< 1 and if 

agents do not have identical preferences (% # for some i , there is a loss of welfare The ) 
smaller the ?-distance of the market subspace W from 1, the greater the norm I (  proj :l (I-, of 

the y-projection of 1 onto W, and the greater the welfare of the agents. 

Since the vector projwl plays ern important role in the analysis that follows, it is useful to 

introduce the shorthand notation 

77, = projw1 

,and to summarize its main properties. 
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Proposition 2 (Properties of Least Risky Security): The y-projection qw of 11 onto W 

has the following properties: 

( i )  Under the ?-inner product on R ~ , ~ ,  represents the expectation operator on 'W 

(ii) 7, is the least risky income stream in the market subspace W in the following two 

senses: 

(a) geometrically, it is the vector in W which lies closest to B 

(b) statistically, it is the vector in W which has the miniruum standard deviation per 

unit of expected return 

(iii:) the minima in (a) and (b) lead to two measures of the riskiness of the market subspace: 

1 
(b)' - - 1 =(,= -- 

E(qW) (a)) 
Proof: (i) Since I -qw E w ~ , E ( ~ )  = [[1,y]] = [ [q , , , ,~] ]  for all y E W. 

(ii) (a) follows from (3). To prove (b), consider the problem: min{ var y I y E W, E(y) == 1) and 

suppose that qW/E(qW) is not the solution. Then there exists y' E W with E(y l) = 1 and var 

y' < ~ a r q , / E ( ~ , ) ~ .  Let y = E(qw)y' then y satisfies E(g) = E(qw) and var < varqw * 
E(g2) < E(qw)2. Then 11 I - g ll:= 1 - 2E(g) + E($) < 1 - 2E(qw) + E(q$) =]I 1 - sw 11; 
contradicting the definition of q,,. 

(iii) follows by noting that (i) implies E(&) = E(q,). 0 

Welfare Gains Function. We want to apply Proposition 1 to a purchasing power economy 

&(u, el a, V), namely a one-good economy with payoff matrix 

When a changes, it alters the market subspace 
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and our objective is to understand how the welfare of agents varies with the "characteristics" 

of the bond a. Since in (8), V is taken as fixed, a convenient wav of analyzing how welfare 

depends on a is to make the comparison with the case where a is redundant (a E V == (V)).  

The utility of agent i at the equilibrium with. market subspace Va can be written as 

where the first term G, = G& - fib can be interpreted as the utility gain to agent i of having 

the bond with characteristics a. By Proposition 1, this gain can be written as 

where ci = 4x1, ( % - %)2 is a non-negative coeflicient which is positive for all "non-average" 

agents. Since the subspace V, contains V, ) I  qva 11; 2 1) 5 I]:, SO that the gain G, is non- 

negative for all agents and is strictly positive if cz > 0 and a 4 V .  We are thus led to study the 

function G : FtS - R defined by 

which we call the welfare gains function, since the utility gains to all agents are proportional to 

the function G. This property of tht: model, that the utility gains of all agents are proportional to 

the common function G - in particular that all agents are made better off when a nonred~mdant 

bond a is added to an existing security structure V - requires some explanation. 

Ln general, introducing a new security has two effects: the first - which we may call the 

direct effect - is to increase the span of the markets i.e. the trading opportunities available in 

the economy, and this tends to increase the welfare of the agents; the second - which we may 

call the indirect effect - is to change all prices, both spot and security prices, and this can 

either increase or decrease agents' utilities. Combining the two effects can lead to  the apparently 

paradoxical result that introducing a new security decreases the welfare of all agents, is first 

shown in an example by Hart (19751). More recently CassCitanna (1994) and Ellul(1995) have 

studied the case where all (and hence the indirect) effects are marginal and have shown that 

if the markets are sufficiently incomplete then in a multigood economy the combination of the 

two effects can lead to any possible local change in agents' utilities. Even in a one-good model, 

because the prices of the existing securities normally change with the introduction of a new 

security, typically some agents gain and some agents loose from the introduction of a sxurity. 

In this paper the indirect price effects are canceled: there is no effect from spot prices because 
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of Assumption H, and no effect from security prices because of the linear-quadratic form of the 

agents' utility functions? as can be seen horn formula (7) for the equilibrium security prices. 

Thus the analysis concentrates 011 the direct; effect of changing the span of the markets and this 

effect is present in all economies. The analysis can thus be applied to an economy in which the 

price effects are sufficiently small., or it can be taken as the first half of a more complete study 

in which indirect effects are also explicitly taken into account. 

The next step is to analyze the properties of the welfare gains function G(a): we will 

show that the gain depends oniy on the statistical properties of the income stream a E R~ 

summarized by its mean, standard deviation and its correlation coefficients with the securities 

vl, . . . , vJ. Furthermore we will show that the gain can be described in a very compllete way 

for any number of securities J, and any number of states of nature S. The derivation of the 

properties of G as a function of the statistical attributes of a requires some calculatiorts which 

are left to section 5. Here we summarize .these properties and for the case (J = 1, S = 3) 

provide a simple geometric interpretation of' the results. 

Since G(a) is derived by proj~ecting 11 onto Va and V, it depends only on the directions of 

the vectors (a, vl, . . . , vJ) and not on their lengths. Thus all these vectors can be normalized 

and the most natural economic interpretatio:n is obtained by normalizing each vector so that its 

expected value is one. This requires that each of these date 1 payoff streams have a non-zero 

expected value: this is assured for vl , .  . . , vJ by Assumption I (iv), and will be assured1 for the 

bond by restricting attention to bonds with positive expected values ( a  E R' with E(,a) > 0). 

The following notation for normalized variables is convenient: for any random variable a: E 

with E (x )  > 0, the normalized variable with expectation 1 is denoted by 

If u(x) denotes the standard deviation of x, then o(B) = %i;f measures the standard deviation 

of the income stream x per unit of expected value: for brevity we write a? = ~ ( 2 ) .  Since the 
Z'JV Z,Y correlation coefficient p(z, y) = C& between a pair of vectors x, y E R' does not depend 

on their lengths, p(2, ij) = p(x, 3): for brevity we write pq. Let 

[pv;vl - pvq 
~ a = ( ~ a v l r - . . , P a v ~ ) r  Pv = 

PVJVl . . . PvJvJ 

denote the vector of correlation coefficients between the bond a and the securities vL , .  . . , vJ 

and the matrix of correlation coefficients between these securities, respectively. 



53. Welfare and the Statistical Charircteristics of the Bond 

The next proposition asserts that the gain G(a) depends only on (a&, pa) i.e. there exists a 

function g : R x E l J  - R such that G(a) = g(u&, pa). In order to deduce the properties of G 

from those of g it is necessary to determine the scbset (domain) of R x R~ on which g coincides 

with G i.e. the values (a ,  p )  E R, x R~ which correspond to the standard deviation and vector 

of correlation coefficients of a normalized random variable S E ItS. 

Proposition 3 (Existence of Statistical Gains Function): 

(i) Let (a, p) E R x R ~ ,  then the= e , . s  a random miable a E R~ with E(a) :> 0 such 

that (aa, pa) = (a, p)  if and only if either (a, p)  = (0,O) or a > 0 and p belongs to the convex 

domain 7Z defined by 

R = { p E R.' I [p, - ppT] is positive semi-defmite) (10) 

(ii) The boundary of R is a7C = E 721 det [p,  - pPT] = 0). If a is a random variable 

with pa E a72, then there exists y E V such that 

p(a, y )  = fl ^a - P = X(y  - E ( y ) l )  for some X E R (11) 

(iii) There e-vists a function g R x R.' - R such that if (a ,p )  E R++ x R U {O,O) then 

g(a, p )  = G(a) for d a E R' (with E(a)  > 0) such that (a&, pa) = (a, p) .  

Proof: (See section 5) 

The next proposition describes the properties of the function g ,  which we call the statistical 

gains function, since it expresses the gain fkom a bond a as a function of its statistical properties 

(aal pa).  Since the securities (vl, . . . , vJ) are taken as fixed, the projection qV of 11 onto 'V forms 

part of the data of the problem: tlo reflect this we let 

In Proposition 2 we introduced the two measures, 1 - E(q) and a+, of the riskiness of V (i.e. 

the market subspace in the absence of a). Both play an important role in the next proposition. 

1 - E(q) measures the maximum gain that can be attributed to any bond a since 

I t  11; - tl 7 11; 5 1- I1 7 [I;= 1 - a v 2 )  = 1 - E(7) 

The maximum gain is attained wh~en B E Val which happens either if a = 1, or if a is risky and 

IL can be obtained by a combination of a and some vector in V :  by (11) this occurs when a is 

perfectly correlated with some vector y # a in V .  
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For normalized bonds of a given variability a. the minimum gain as  a function of p depends 

on whether the bond is less or more variable than the (normalized) least risky income stream 

rj  in V: when a < a+ the bond is less risky than any security in V and thus necessarily leads to 

a positive gain; when a 2 a;, then the bond will not contribute towards risk reduction if it does 

not permit the risks in V to be Ihedged. 

All bonds a E R' with the same vector of correlation coefficients pa = p with vl, . . . , vJ , 

have the same correlation coeffi~cient p(a, 7) with the least risky security 77 in V, regardless of 

their variability: for rl can be written as n = xfXI A,+, so that 

which is a linear function of (pa,,]. , . . . , p,,~) which is independent of a,. As a result a coefficient 

of correlation r E [-I, 11 defines a subset of R 

which is the intersection of R by a hyperplane in RJ.  The domain R is thus partitioned into 

two regions depending on the s i , p  of the correlation coefficient between a and the least risky 

security q 

RC = E 12 1 p(a, q) :> 0 for all a E RS with pa = p )  

72- = e 7Zl p(a.7) < 0 for all a a R' with pa 

Proposi t ion 4 (Properties of' t he  Statistical Gains Function): 

(A) Properties of g as a function of p (for fixed a > 0): 

(0) For any a > 0, g(a, .) is is convex function on the interior of R. 

(i) (Low variability): if 0 < (7 < a+, then the maximum of g(a, -) is attained for aU p E aR 

and 

for all p E a~ g(a,p) = 1-E(q )  == 1-  - 
1 + a; 

The minimum is attained for the unique vector p* = (a/ael, .  . . , ~ / u ~ J )  and 

1 
g(u, p*) := - - 1 

l+a2 
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(ii:) (High variability): if u > a,j, the minimum of g(u, .) is attained for the vectors p whch 

lie in the J - 1 dimensional subset RTU with r ,  = a6/a m d  g(a, p) = 0 for all p E 1;:- . The 

maximum of g(a, -) is attained fix all vectors p E 872\%&,, and 

If dim V _> 2, then g(a, .) is discontinuous at the points a72 fl R,. 

(iii) (Intermediate case): if a = a+ the subset 7?&- = R, on which g(a, -) attains its minimum 

reduces to the point p* = (a/acl,. . . , U/U+J) E a7E and g(a, p*)  = 0. The rusxiruurn of g(a, .) 

is attained for all vectors in 6R\1t1 and is given by (1 2). If dim V 2 2, then g is discontinuous 

at p*. 

(B) Properties of g as a function of a (for fived p E R\8R). 

If p E Re, then g(., p) is strictly decreasing for all a > 0; if p E Rt, then there exists a 

critical variability a* = u4 /p(a, q) such that g(-, p) is strictly decreasing for a E (0, (7 ' )  and 

strictly increasing for a E (a*, 00). Thus g(., p) is strictly decreasing for all a > 0 if and only if 

p E R-' . 

Proof: (See section 5) 

Single Security Case ( J  = 1). P, geometric proof of Propositions 3 and 4 can be given in the 

simplest case J = 1, S = 3 (recall that Assumption I (iii) requires S 2 J + 2). Let v denote the 

payoff on the single security, (v) =: V. Since the welfare gain only depends on the normalized 

income streams, it suf5ces to restrict attention to income streams lying in the plane 

P =  {I E R3) Z(r )  = 1) = {ZE R31 [ [z-  1, 111 = 0 )  

which passes through the riskless imcome stream P and is y-orthogonal to 1. To simp1.ify the 

geometry we consider the case of equal probabilities so that the y-inner product coincides (up 

to the coefficient 1/3) with the Euclidean inner Since for a normalized income stream 

11 2- 1 \I;= a2(S), a circle in the plane P centered at 1 of radius a represents all the normalized 

random, variables Ei which have the same standard deviation a. Since dim V = 1, q = projvl 

is collinear to v so that Sj = v  ̂ and a3 = a+. The three cases appearing in Proposition 4A, 

'The same Figures 1-3 are valid in the general case of unequal probabilities by appropriately changing units 

along the co-ordinate axes i.e. by chang6ng from the standard basis {e l ,  e2, e ~ )  to the basis (e',, eh, c j )  with 

e', = k e , ,  s = 1,2,3.  
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a < (>: =) a; correspond to the cases where ij lies outside (inside, on) the circle of' radius o 

(see Figures 1-3). For any ch0ic.e of 2, the market subspace V, = (a;u) intersects the plane P 

along the line (S, 8 )  passing through H and 8 i.e. P 17 (a, v) = (S, G).  The closer the line (4, C )  

is to 1, the geater the gain in welfare. 

Given 8, the distance of the line (5, G )  from 1 depends only on the radius a of the circle on 

which ii lies and on the angle O(S - 1, ii - P) between the vectors f - 1 and 5 - 1 -- or more 

precisely (by symmetry) on the cosine of this angle. This cosine is the correlation coefficient pa 

between a and v ,  since 

Thus the gain function G(a) depends only on (aa, pa) i.e. g(a) = g(u, p) for all a such that 

( a a , ~ ~ ~ )  = (a, p). In order for a pair (a, p) E R x R to correspond to the standard deviation 

and correlation coefficient of a random variable S, a must be non-negative and if a > 0, p must 

belong to the domain R = [-I, I.]. 

Figures 1-3 show how the welfare gains from a normalized bond 2 of a given standard 

deviation a vary as a function of the correlation coefficient p between ^a and the vector G ,  for 

the three cases a < (>, =) a+. In each case the maximum gain arises when the line (5,G) 

passes through 1, so that ]I E Val. This occurs if and only if 2 - B and v^ - ll are colhnear and 

distinct; since, by (13))  p IS the cosine of the angle between H - B and 3 - 1 ,  when a st a t  this 

corresponds to the case p = f 1. When a = at only p = -1 gives the maximum gain, since 

when p = 1, S = 8 and there is no welfare gain. 

To study the behavior of the function g(a, .) consider first the case of low-variability bonds 

(a < ae) shown in Figure 1. If we move clockwise around the circle of radius a from p = -1, 

where 1 E (5, G),  the normalized market line (2,G) moves further away from 1, reaching its 

maximum distance when p = p*, corresponding to the minimum of the gains function (shown 

on the right side of the figure) imd then moves back toward ]I until it reaches p = 1, where 

once again 1 E (2, C) and the gains function returns to its maximum value. The nalrmalized 

market line (̂ a, 8 )  is at its maximum distance from 1 when ^a - 5 1L 4 - 1 which is equivalent 

to E(,(5 - +)(^a - 1)) = cov (5 - 8, 2) = 0 u p* = a/u6. At p*, the line (4, v̂ ) is clloser to 1 

than 8 ,  so that the minimum gxm g(o, p*) is strictly positive. 

A similar analysis can be made for the case of high variability bonds (a > at) shown in 

Figure 2. Moving from p = -1 to p = 1 the distance of the line (2, 8 )  from 1 at first increases, 

reaching its maximum at p = p*, where 8 - H 1L G - 1 u p* = a c / o  and then decreases to 
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Figure 1: Low variability case: (left) in the plane P, the market line (&, 6 )  for diffemrt values 

of p and a fied a < a+; (right) the graph of g(a, .) . 

Figure 2: High variability case (a  > Q). 

20 
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Figure 3: Intermediate case (a  = a+).  

zero at p = -1. At p* the distance of the line (5,G) from P is the same as the distance of v  ̂

from B so that there is no welfare gain from 2 and g(a, p*) = 0. 

In the intermediate case ( a  = T+) shown in Figure 3, moving clockwise around the circle from 

p = -1 (where B E (ii, G)) the line (2,G) moves progressively further away from I, reaching its 

maximum distance for p* = 1: at this value of the correlation coefficient, the line (5, G) collapses 

to the: point G (i.e. there is a drop in the dimension of the market subspace) and g(a, :L) = 0. 

In all three cases the minimum gain always occurs when there is no "synergy" between the 

bond ^a and the security 8 for reducing market risks: the projection of 1 onto the market line 

(5, 5) is ^a when a < a6 and is 5 when a 2 at. For all other values of p (i.e. p jf p*), a 

combination of 2 and G creates the least risky security on the line (2, G) and this semcurity is 

less risky than either 2 or 5 taken on their own. Placing the family of curves on the right side 

of Figures 1-3 on a common graph (Figure 4) shows how the welfare gains change when the 

variability of the bond is increase!dI2 for a given p. For negative correlation -1 < p 5 0, g(-, p )  

2The family of curves in Figure 4 is best understood by noting that there are three 'limit curves" corresponding 

to the casea u = 0, a = a* and a = oo. When a .--. 0 the graph of the gains function moves towards the horizontal 

line obtained for a = 0; as u is increased the curves are pulled down towards the curve obtained for u = o*, the 

minimum in each case being on the dotted line. For a > u*, as o is increased the curves slide towards the curve 

obtained for o = m, the minimum in each case being zero. 
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-1 0 I 

Figure 4: Welfare ga i~ ls  for a family of bonds of increasing variability. 

is a decreasing function for all values of a; for positive correlation 0 < p < 1, g( . ,  p) is decreasing 

for a < a, j /p  and increasing for a :> q / p :  no'te that- for a > u6/p ,  while g( . ,  p) is increasing it 

is bounded above by g(oo, p). Note also that increasing the variability of a low variability bond 

(a I a,j) always decreases the welfare gain, provided p # f 1. 

General Case (J 2 2). Direct geometric arguments of the kind given above are no longer 

available in the multidimensional case J 2 2, since by Assumption I, S > J + 2. What is 

remarkable is that by explicitly ca~lculating the function g(o, p) and deriving analytically its 

properties, it is possible to show how these results extend to the multi-dimensional case J 2 2. 

The explicit derivation of the function g(a,  p) and the study of its properties is given in section 

5. 

In geometric terms, Proposition 3(iii) asserts that the welfare gain from a normalized bond 

^a depends only on its distance a fmm Il and on the angles (more accurately the cosines of the 

angles) p l ,  . . . , p~ with the J securities v l , .  . . , vJ. Part A of Proposition 4 shows that the gains 

function g(a,  .) behaves somewhat differently according as this distance a is smaller or greater 

than the distance of of the (normalized) least risky security i j  in V from 1. The restriction 

on p = ( p l , .  . . , pJ) given by the domain R, which generalizes the constraint p E [-I, 11, when 

J = 1 ,  describes the restrictions on p in order that the pair (a, p) correspond to a bond 2 E R ~ .  

For any a > 0, when p E CV?., a bond with angles p = (pl,.  . . , pJ) is perfectly con-elated 

with a vector y E V i.e. 2- 1 is collinear to G-- P (see (11)) and if a $ V then B E V,. If a. < a+, 

then a cannot belong to V and all p E aR give the maximum of g(a, .). If a Za i ,  then a may 



53. 'Welfare and the Statistical Chamcteristics of the Bond 

lie in V :  thus when p varies in aR, the subspace V, can either contain I. in 11-hich case the gain 

is mtaximal, or for some values "collapse" to V, in which case the gain is zero. These changes in 

the dimension of V, create the discontinuities reierred to in (ii) and [iii) of Proposition 4(A). 

When 0 < a < a+ the distsrnce from 1 to V,  is less than or equal to the distance from 1 

to (a) and the minimum is attained when the projection qva of 1 onto Va is collinear to a. It 

turns out that t b  occurs for a unique vector p* >> 0 of correlation coefficients. Whea a 2 a i ,  

the distance from 1 to Va is less than or equal to the distance from R to V and the illinimum 

is attained when the projection qva of 1 onto Va coincides with the projection q of 11 onto V :  

in this case the bond does not contribute anything toward risk reduction and the minimum is 

zero. If a > a*, this occurs for all the vectors p in the intersection 72, of a h?rperpl.ane with 

R, the hyperplane being tangent: to 8 2  when a = a+ 

Figure 5: Welfare,gains as function of p for the two security case ( J  = 2). ( a )  Low variability: 

a family of gains surfaces for increasing values of the parameter a .  with a < a$. (b) High 
~aria~bility: a gains surface with a > ai. 

Figures 5 (a) and (b) show the graphs of the gains function g(a, .) when J = 2, for the case 

of bonds of low variability ( a  < ai) and high variability ( a  > at)  respectively. The graphs are 

obtained from the explicit expressions for g derived in section 5 assuming that plz = C) (so that 

i372 is the unit circle) and a , ~  = a,2. When ( p l , p z )  are restricted to lie along the line pl = p2, 
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the family of gains surfaces reduce to curves similar to those in Figures 1 and 2. 

Part B of Proposition 4 which analyses the gains function g(., p) shows that the result 

demonstrated in Figure 4 when J = 1, holds for the general case J 2 2 provided ac/p is replaced 

by a* = ajj/p(a, 77). In particular if p(a,  77) > 0 then even though g ( . ,  p )  decreases for a < a*, 

it is strictly increasing for a > a': thus p(a, q )  1 0  is a necessary and sufficient condition for 

g ( . ,  p)  to be strictly decreasing for all a > 0. This plays an important role in the general version 

of Proposition 5 studied in the next section. 

4. Nominal versus Indexed Bond 

The model outlined in section 2 when combined with the results of the previous section 

provides a fkamework for analyzing the circumstances under which a nominal and/or an indexed 

bond are more likely to be traded, in an economy. We begin by considering two extreme cases 

where t l e  answer is clear cut, since one of the bonds is the "ideal" bond with const.ant real 

purchasing power payoff. 

(a) Conditions under which aN 
:= Jl or aR = 1 

The payoff of the nominal bond in the purchasing power economy is 

The variations in the purchasing power of money vs depend on how the money supply iWs varies 

with aggregate output, as measured by the index h(ws). In order for us to be constant across 

the states, the money supply Ms must be proportional to h(ws) or, in terms of growth rates, 

the rate of growth M, of the money supply must match the rate of growth g, of real output so 

that (for some constants) 

This condition would be satisfied in the idealized setting where a monetary authority (or a 

banking system) perfectly controls (adapts) the money supply to the fluctuations in real output 

(h(wS)). In this case, since the naminal bond is the ideal bond aN = v = I, there is no role for 

an ind.exed bond. 

If ,the bond is indexed on the value of a bundle of goods b E then it becomes a real bond 

whose purchasing power across the states 
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is not influenced by fluctuations in the purchasing power of monev. However if the relative 

prices of the goods (proportiona.1 to Vh, (w, ) )  varv across the states, then the purchasing power 

aR fluctuates. In this model, in view of Assumption H, it would be possible to avoid these 

fluctuations by indexing on a stsate dependent bundle b, = w,/h(w,) which is proportional to 

aggregate output in state s. Indlexing on this ideal state dependent bundle permits the creation 

of the riskless real income stream 

If indexation could create such a riskless real income stream, then agents would onky use the 

indexed bond and the nominal bond would disappear. 

In a more realistic model in ~uhich agents do not have identical preferences for goods within 

each state, no such ideal reference bundle - and hence no such ideal index - exists. We 

invoked Assumption H to simplify the analysis of equilibrium - by factoring out the influence 

of the income earned by agents on the financial markets on the determination of spot prices - 

certainly not to suggest that there is an ideal index. To capture the inherent imperfections of 

indexation in spite of the simplifying Assumption H, we assume that the reference bundle must 

be state independent. This assumption also captures the fact that in practice an index is more 

credible if its computation does not involve the use of a state dependent reference bundle, since 

the possibility of changing the bundle as the contingencies vary opens the door to manipulations 

to either understate or overstate inflation, depending on the interests of the parties involved. 

Although neither of the extreme cases where the purchasing power of money is constant 

or there exists an ideal index is likely to be met in practice, it is instructive to identify the 

circumstances in which one of the two types of bond - nominal or indexed - has a relative 

advantage over the other. This may be done by analyzing which bond creates the greater social 

welfare, under the assumption that only one of the two bonds is traded. 

(b) Conditiom under which ah' or aR is socially preferred. 

We want to apply the analysis of section 3 to a purchasing power economy £(u, e, a, V) 

where a denotes either the nominal or the .indexed bond and V is the matrix of payoffs on the 

underlying risk sharing securities, all payoffs being expressed in purchasing power. Consider 

first the simplest case where V consists of a single security (J = 1). Given Assumption S its 

payoff v must be 
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The projection rl of 1 onto V must then be collinear to u so that i j  = h , (wl ) /E(h(wl ) ) .  Thus 

u,j depends on the variability of a

ggr

egate output (measured with the aggregator h). 

The risk characteristics of the real bond depend on the underlying real side of the economy. 

Since aR = Vh(ul)b, the variability U ~ R  of the normalized indexed bond depends on the 

magnitude of the fluctuations in relative prices, which in turn depends on the extent to which 

supply-side shocks idhence the relative quantities of the goods across the states. If the real 

shocks which affect the economy are primarily economy-wide, affecting all sectors (goods) in 

a similar fashion, then the fluctuations in output captured by v,j will be greater t,han the 

fluctuations in relative prices summarized in U,g (see Figure 6(a)). Conversely the csse a&R > 06 

arises when the real shocks are primarily sectoral, affecting sectors differentially while creating 

only small fluctuations in the level of output (see Figure 6(b)). Clearly the greater the relative 

price fluctuations the smaller the potential gains from an indexed bond. The correlation P,R 

Figure 6: In (a), economy-wide shtxks are greater than sectoml shocks (a6 > a,+); in (lb), the 

reverse (ac < 0;~). 

depends on how the prices of the goods which are most heavily weighted in b covary with 

aggregate output: if the supply wc, of the goods l ,  whose components bL in the index have a 

substantial weight, are positively (negatively) correlated with aggregate output (h(w,)), then 

Q a ~  w i l l  be negative (positive). In view of Figure 4, when the correlation is relatively small, the 

potential gain is greater when the correlation is negative than when it is positive. 

The risk characteristics of the nominal bond depend on the interaction between the real and 
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the monetary sides of the econoirny. In the analvsis that follows it is useful to distinguish two 

categories of economies depending on the role attributed to monetary policy: 

(i) :Economies in which a primay objective of ~nonetary policy is to stabilize the purchasing 

power of money. &/lost developed countries are in this category with average annual inflation 

lying between 1 and 15% per annum and standard deviation of the same order of magnitude. 

Even in these economies, there is always some variability in the purchasing power of money 

due to imperfections in the control of the money supply process by the Central Bank or to the 

fact that monetary policy must a h  meet other objectives such as full-employment. This is the 

category of economies in which the absence of indexed bonds has been somewhat of a puzzle 

to economists. 

(ii) Economies in which the money supply is used to finance government expenditure. These 

are typicdy economies in which idation is high and very variable, the variability in inflation 

being due to periodic attempts to drastically lower the rate of inflation. Many less developed 

countries are in this category, haxing mean and standard deviation of inflation per ailnum in 

exces. of 200%. In these economj.es nominal bonds are typically replaced by indexed bonds. 

The economies in (i) and (ii) differ by the magnitude of U ~ N .  For both categories of 

economies, however, the statistical relation underlying the Phillips curve, namely that inflation 

and output are positively correli~ted, suggests that typically the purchasing power o!f money 

and output are negatively correlated ( p , ~  < 0). The fact that nominal bonds are typicady used 

in economies of type (i), while indexed bonds are typically used in those of type (ii), c:an then 

be explained by the following proposition which is a corollary of Proposition 4. 

Proposition 5 (Nominal versus Indexed Bond): Given ( U ~ R ,  p , ~ )  which depend on the 

real side of the economy, with  pa^ # f 1, and gven  pa^ satisfying -1 < p , ~  5 0, there exists 

a* such that if U&N < u*, then the nominal bond leads to greater social welfare and if U;,N > a*, 

then the indexed bond leads to greater social welfare. 

Proof: Since -1 < p , ~  2 0, by ]Proposition 4B, the function g(., p , ~ )  is strictly decreasing in 

a. Thus if a* is defined by 

, ( I ( ~ * , P ~ N )  = g ( a & ~ y ~ a ~ )  = g  

then ~(u&N,P,N)  > if O ~ N  < a*, and ~(u&N,P,N) < if U&N > a*. 0 

Thus in an economy which is subjected to real shocks there is always an interval [0, a*) 

of fluctuations in the purchasin,g power of money on which the nominal bond is preferred. 
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This interval is larger, the ,water the relative price fluctuations C T ~ R  and the more nega~tive the 

correlation P,,N~ between the purchasing power of money and aggregate output. The exisitence of 

sectoral shocks leading to relative price fluctuations and a relatively strong positive correlation 

between inflation and output may thus be two important elements which help to explain the 

lack of indexing in Western economies. The proposition also supports the observation that in 

economies with high and variable inflation, agents typically resort to indexed bonds. For even 

in economies with substantial reltrtive price fluctuations there is always a level of varii~tion in 

the purchasing power of money beyond which agents switch from a nominal to an indexed bond. 

Pn>position 5 extends in a relartively straightforward way to the case where there are many 

securities (J > 1) that generate the market subspace V. If neither P,,R nor  pa^ are in dR, 

that is, if neither the indexed nor the nominal bond is perfectly correlated with a marketed 

(real) income stream y E V (p(a", y) # f 1 and p(aN, y) # f 1, V y E V) and if p(aN, q) L 0, 

where the least risky income stream q in V no longer coincides with aggregate output h(wl), 

then by Proposition 4B, g ( . ,  p , ~ )  is strictly decreasing in a so that there exists a a *  with the 

properties stated in Proposition 5, namely if U p  < a* then the nominal bond is preferred, while 

if U&N :> a* then the indexed bond gives greater social welfare. If the least risky income stream 

q in V is positively correlated with aggregate output h(wl), then the condition p(aN, 71) S 0 is 

likely to be satisfied. A qualitative analysis similar to that given for the single security case 

can then be made in the more realistic case J > 1 - many securities inevitably being required 

if the spanning Assumption S is to be a reasonable approximation. 

(c) When the restriction to trading only one of the two bonds is a reasonable acrsumptiion. 

The analysis in (b) was based on the assumption that only one of the two bonds is traded. 

We need to clarify the conditions under which this restriction is reasonable. For there can 

be circ~~mstances when the correlations p(aN, d ) ,  ~ ( a ~ ,  +) and p(aR, aN) are such that agents 

would 1Se much better. off trading both the nominal and the indexed bond, so that restricting 

them to trading only one of the two securities gives an artificial result. The analysis in (t)) leads 

to a result with explanatory power only if, when agents trade the preferred bond, augmenting 

their opportunity set by permitting trade in the other bond would not add much to their 

welfare. In such circumstances, even a small transaction cost would cancel the benefit of using 

the second-best bond. 

To cover the two cases where the nominal (resp. indexed) bond is preferred, let a denote 

the preferred bond and let a' denote the second best bond. The market subspace when the 
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prefened bond (from the analysis in (b) above) is used is W = (V. a) and bv Proposition 4, 

the maximum welfare gain from adding the second bond a' is 1 - E(qw), where q, is the least 

risky security in W. There are h m  reasons why introducing the bond a' may add only ;a smaller 

welfare gain. First, the maximum potential gain 1 - E(qw) from introducing any additional 

security may be small. Second, the characteristics of the bond a' may be such that only a small 

part of this maximum gain can be captured: since a is preferred to a', the least risky security 

qW nlust be closer to P than a' i.e. u(a1) > u(7jw), SO that a' falls into the high vrrriability 

category of Proposition 4, in which the gain may be zero. 

In the case of economies of type (i), in which the nominal bond is preferred, a com.bination 

of these two reasons serves to explain why the indexed bond is not more widely used. First, 

if the nominal bond is negativeky correlated with most of the securities V (the stocks), then 

diversification between the nominal bond and the stocks may permit risks to be significantly 

reduced, in which case u(7j,) is small. If u ( iR)  is relatively large and the correlation p(aR, 7 j w )  

is pos'itive then the gains from introducing aR may be close to the minimum which is zero. 

In the case of economies of type (ii), in which the indexed bond is preferred, it is the second 

reason which is likely to explain why the nominal bond is not used. Even if the potential 

gain :is large, the nominal bond is not well-adapted to capture these gains, since the high 

variatiability of iN is not compensated by a high correlation with real variables. In these 

economies the correlation between money and real output (the Phillips curve) is likely to be 

si@.cantly reduced. First, variations in the ppm are due to alternations between periods 

of high government expenditure supported by increases in the money supply and periods of 

stabilization, whose timing has :more to do with political events than with the objective of 

smoothing real output. Second, i.ndexation serves to isolate the private sector from the impact 

of monetary shocks. By Proposition 4, in the high variability case, the minimum gain of zero 

N occurs when p(a , rl, ) = oily \ U N  : thus if the variability OIN is very high and p(aN, 17,) 2 0, 

then the welfare gain from introdlucing the nominal bond is likely to be close to zero. 

5. Proof of Properties of tlhe Statistical Gains Function 

In this section we prove Propositions 3 an 4. The order of the proof will not exactly follow 

the statements of these propositions. It is convenient to begin by calculating the statistical gains 

function, namely the function g(cr6, pa) which expresses the welfare gain G(a) from a blond a as 

a function of its normalized standmd deviation and its vector of correlation coefficients with the 
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underlying securities v', . . . , uJ ((iii) of Proposition 3).  We then exhibit the domain on which 

the function g(a, p )  expresses the ,welfare gain of some random income stream a E R' ((i) and 

(ii) of Proposition 3). Finally we tstablish the properties of g as a function of p and a (A  and 

B of Proposition 4). 

Some matrix notation simpliiies the calculation of g .  Since the purchasing power payoffs on 

the securities can be normalized to have unit expectation, we let 

denote the matrix of normalized payoffs. The J x J diagonal matrix of standard deviations of 

these J normalized payoffs is denoted by 

and PV = [ ~ v i v l ] i , ~ = ~ , . . . , ~  

intermediate cakulations, 

denotes their J x J matrix of correlation coefficients. For some 

it is convenient to introduce the following measure of stochastic 

dependence, defined for non-centered random variables: if x, y E R', E(x) # 0, E(y) # 01 define 

Since k(x, y) = 1 + p(x, y)a(S)a(%), k(x, y) is greater (less) than 1 for positively (negartively) 

correlated random variables. This measure of stochastic dependence appears naturally in the 

projection formulae. Thus we define 

Computation of the function g. Recall that the gain function G : R' - R is defined 

by G(a) =(( qv, 11; - 11 q (1;. Not surprisingly, the reduction in the distance from B (or the 

increase of the length of the projection) achieved by changing the market subspace from V to 

V, = (V, a) depends only on the innovation c:omponent of a relative to the subspace V. Let 
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denote the decomposition of a into its component a* on V and its innovation com.pon,en.t a' E V _IL 

and let qal = proj(,t)l denote the projection of 4 onto the one-dimensional subspace generated 

by a'. 

Lemma 1: The welfare gain G(a)  from introducing a bond a E R' is given by G(a) =(I qa, 11;. 

ProoE The decomposition of 1 onto Va and its orthogonal complement vaL gives 

1 = nya + 1', nya E Va, 1' € v? 

Since V, = V $ (a'), %a can in -turn be decomposed into 

qva = u + v ,  U E V ,  V E  (a') 

Lemma 2: The welfare gains 15nction G : R' - R can be expressed as a function g : 

R+ x R~ - R of the normahzed -8bles ( E ( s 2 ) ,  ka) for all a E R' such that E(a) # 0 

G(a) = ij ( ~ ( $ 1 ,  ka)  = 
, i f a  $ ( V )  

\ 0, if a E ( V )  

Proof: By formula (4) of section 3 for the projection matrix Bw with W = (a'),  

so that 
E  (a') 

== I1 q-/ 11; = - 
E ( a 9  

Since a' = a - Bva, 

where the second equality is obtained by dividing the numerator and denominator by ~ ( a ) ~  

and exploiting the orthogonality of a  and a': aT[?](a - Bva) = 0. Since the y-projection onto 
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(V) is not affected bv the length of the vectors which span the subspace (V),  the y-projection 

matrix can be written as 

Using the relations lT[?]V = IT and PT[+i = k, leads to formula (1). 0 

Since the variables ( E ( s ~ ) ,  k,) can be expressed as functions of (aa, pa), 

substituting the expressions in (2) into equation ( I ) ,  leads to a function g(a6, pa) satisfying 

which proves (iii) of Proposition 3. The exact formula for g is cumbersome and it is always 

more convenient to make calculati.ons using the function 5. 

Consider therefore the functions lj : R x RJ - R defined by 

and g : R x R~ - R defined by 

When the variables (a, p) correspond to the standard deviation and vector of correlation coeffi- 

cients of a normalized random variable ii E FtS, then g(o, p)  is the welfare gain attributable to 

the bond a. Thus the properties of g need to be studied only for these relevant values of (a ,  p) 

which we now characterize. 

Relevant domain of g. We begin by proving the sufficiency part of Proposition 3( i ) .  

Lemma 3: If a E R', then either (a,, pa) == (0,O) or a, > 0 and pa is such that [pv - pap:] 

is positive semi-definite. Furthermore if E ( a )  # 0 and cr, > 0 then the following properties are 

equivalent : 

(9 det [PV - P , P ~ ]  = 0 

(ii) there exists y E V such that p(a, y )  = f 1 
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(iii) there exist y E V and X E R s ~ ~ h  that S - lt = X(y - E ( y ) l )  

Note that if a 6 V then (iii) implies that 1 E V, 

Proof: If a E RS, then -1 5 p(a, y) 5 1 for all y E R' and in particular for all y E V. If 

a (a )  = 0 and E(a)  # 0 then a =: A 1  and pa = 0. If a(a) > 0, then -1 5 p(a, y) 5 1, V y E V 

is equivalent to 

Letting X j  = ijg,,j, (5) is equivalent to XTpap;X 5 XTpvX for all X E RJ or [pv - pap:] 

positive semi-definite. There exists y E V such that p(a, y) = f 1 if and only if there exists 

i E R~ such that (5) holds with equality, or if and only if there exists X E RJ such that 

XT[pV - pap:]X = 0 Cj det [pv -pap:] = 0. Thus (i) is equivalent to (ii). On the other hand 

(ii) is equivalent to 

[[a - E(a ) l ,  y - ~(~)l]]&=j/ a - E ( a ) l  11:11 y - E ( y ) l  0 for some y E V 

If E(a )  # 0, dividing by ( ~ ( a ) ) ~  gives 

[[B - 1 ,  y - ~ ( ~ ) 4 ] ~  = I ]  i - 1 /I:][ y - E ( y ) l  /I:# 0 for some y E V 

By the Cauchy-Schwartz inequality this occurs if and only if S - 1 and y - E(y)B, which are 

non-zero, are linearly dependent, whlch gives (iii). (iii) can be written as (1 - XE(y))B = a- Xy 

for some X E R. If a 6 V then 1 -- XE(y) # 0 and 1 E Va. 0 

The next lemma proves that the restriction a > 0 and [pv - ppT] positive semi-definite, 

completely characterizes the (o, p )  which correspond to the standard deviation and vector of 

correlation coefficients of non-constant random variables in RS. 

Lemma 4: Let R = {p E RJ 1 [pv - ,opT] is positive semi-definite) 

(i) R is a convex subset of R' 

(ii) = {p E RJ I det [pv - ppT] = 0 )  

(iii) If (a,  p) E (0,O) U R++ x R., then there exists a E RS with E(a)  # 0 such that (a,, pa) = 

(0, PI. 

Proof: The proof of (i) and (ii) is straightforward and is left to the reader. Proving (iii) is 

equivalent to showing that if a :> 0 and p E R then the following system of equations has a 

solution: 
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Find a E R' such that 

In terms of the standardized variables 

the problem ( A )  is equivalent to: 

Find x E R' such that 

:since rank 5 J + 1 < S, the problem (A f) has a solution if and only if the minimum value 

satisfies h ( p )  I 1. For if z* gives the minimum of this problem then, for all solutions y E EtS of 
#. 

the homogeneous equations C[y]y =: 0, x = x* + Ay satisfies @ y ] x  = [;I and an appropriate 

1 choice of X leads to X ~ [ ~ ] X  = 1. The solution of the problem ( P )  is given by x* = C p v  p  

where pv = c [ ~ ] c ~  is the symmetric positive definite matrix of correlation coefficients of the 

1.ectors v l ,  . . . , v J ,  and h ( p )  = x * * [ ~ ] x *  = drp;lp. If [pv - ppT] is positive semi-definite, 

then for < = p;'p, t T [ p V  - pPT][ 3 0 which implies p T p ~ l p  - (pTp;1p)2  2 0 and since 

T -1 c1 P v  P > 0, h ( p )  I 1. 

Note that for any (a,  p) E R++ x R, the expected value of the random variables a E R' such 

that (ua, pa) = (a, p)  is arbitrary: if x is a solution to (A'), then for any X E R, a = a x  + X I  is 

a solution to (A). 0 
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Lemmas 1-4 complete the proof of Proposition 3. It remains to establish the properties of 

the statistical gains function g on the domain R++ x R. 

Properties of t h e  function q. The function g(a, p) defined by (4) is obtained from the 

function g(m, k) defined by (3), via the chaiage of variable 

While the variables (a, p) have ir more natural economic interpretation, the variables (m, k) 

are better adapted to analyzing properties derived from projection formulae: the properties of 

g(a, p) will thus be derived from the properties of the function c(m, k). 

The function ?(m, k) is rational function which we write a s  

The relevant domain for ij is the image of R++ x R under the change of variable (6). It is 

convenient to begin by studying when the denominator Q(m, k) vanishes. 

Lemma 5: If (a, p) E EL++ x 72 and (m, k) is defined by (6), then 

(i) Q(m7 k) 2 0 

(ii) Q(m, k) = 0 a every a cf R~ such that (a,, pa) = (a, p) satisfies a E V 

(iii) Q(m, k) = 0 ==s p E dR and a 2 a*. 

Proof: Let a E R~ be such that (Q, pa) = (a,  p) and let (m, k) be deduced from (a,  p) by (6), 

then ?(m, k) = (E (~ ' ) )~ /E(@)  where a' is the innovation component of a relative to V. Thus 

Q(m, k) = E(aR) 2 0 and Q(m, k) = 0 if antd only if a' = 0 u a E V, which proves (i) and 

(ii). If a E V, then there exists y E V (y = a) such that p(a, y) = 1, and by Lemmas 3 and 4, 

p E dR. Moreover in this case a = a6 > 04, since a6 c a6 would contradict the minimum risk 

property of 7 j  in Proposition 2 (ii) b. 0 

Lemma 6: For all a E R++, g ( , ~ ,  -) is a convex function on int R. 

Proof: Given the linearity of thle change of' variable (6), it suffices to prove that k - ?(m, k) 

is a convex function of k on the domain Q(m, k) > 0. The matrix of second derivatives of ij 
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with respect to k is given bv 

where V (resp. vT) denotes the gradient (resp. transpose of the gradient) and where 

V N ( ~ )  = -2(1- i T ~ - l k ) ~ - l i  

L > ~ N ( ~ )  = 2 ~ ~ ~ 1 1 ~ ~ "  

Inserting these expressions into (7) leads to 

which is non-negative for all z E l tJ ,  since K-' is positive definite and Q > 0. 

We now study the minima of the function g(a, .). Since g is a convex function of int R, the 

values of p E int R for which g attains a minimum are the solutions of the first order condition 

V d ( a ,  p) = 0. Since 

vfl(a, P )  = u[up]VkG 

and since [a?] is invertible, these d u e s  of p correspond to the values of k such that Vkg(m, k) = 

0 (with m = 1 + a2). Define the functions H : RJ - R and F : RJ - R~ 

noting that the numerator of saf;isfies N(k) = ( ~ ( k ) ) ~ .  Then 

Since K-' is invertible, Vkij(m, k) = 0 if and only if 

either (i) H(k) = 0 
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or (ii) F(m, k) = 0 

The next two lemmas locate the zeros of H and F respectively. For fixed m. = 1 + a2, the zeros 

of H define a hyperplane in RJ. 

Lemma 7: (a)  Let p E Ha17R, then (i) g(o,, p)  = 0 and (ii) a E RS is such that (aa, pa) = (a,  p)  

if and only if 

3 4 ~ , 1 - , ] = 0  - ma=, ~h 7) =: 

(p) If a < a+ then 31, does not intersect R.  

(7) If a = ail  then 31, is tangent to R at the unique point p* = U ~ [ U ~ ] - ' B  E 6%. 

( 6 )  If a > a+ then 31, intersects R and the relative interior of Run int R is an open subset 

of dimension J - 1. 

2 

ProoE (a) (i) If p E 31, n R then g(o,p) = P(m, k )  = &# = 0. (ii) Note that E(B)  = 

1, j = 1.. . . , J implies ? T [ y ] P  = 1. Thus q, which is the projection of ll onto (V), is given by 

so that 

E(:q) = l l T [ y ] Q ~ - l l  = lTK- l1  

Thus if a E R', since ka = ( ~ ( 5 , .  . i), . . . . E(G< i ) )  = 3 ~ 2  

(11)  and the definition of H in (8) imply 

Thus B - q is orthogonal to 5. Since by definition I - q is orthogonal to V, ll - q E v,'L which 

implies that q is the projection of B onto 11, i.e. q = 77v, Furthermore 1 - E(2q) = 0 

1 - E(q) - p(a, q)aaq = 0 and d:ividing by .E(q) this is equivalent to 

where the last step is derived frclm the equidity a: = & - 1 proved in Proposition 2 (iii). 
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(3) By (a), p E 31, n R implies ~ ( a ,  7) = a3/u which is impossible if u < uq: thus R, n R = 0. 

(y) If a E is such that (ah, pa)  = (a, p) with a = ai, and p E H, nR then by ( a ) ,  p ( a ,  q )  = 1 

and by Lemma 3, ii - B = X(q - .G(q) 1) = A'($ - 1) with A' > 0 since the correlation is positive. 

a6 = gi u I( a - B 11-,=11 ?j -. 1 /I7 which implies ii = 5j so that p, = p,, and by Lemma 5, 

p, E 8'2. p1 is readily computed, since k, = PT[?]i) = -&cT[7]P~-1~ = &KK-'I = B m 
so that solving from I + a,j [at]/;+ = 4 gives 

B (6) Since X,, is a hyperplane in R ~ ,  it suf£ices to show that Ron int R # 0. Consider k* = m. 
I7 ? 

By (lo), H ( k * )  = 0. Let us prove that p* such that k* = 1 + a[ae]p*  namely p* = $ [ o ~ ] - ~ I ~  

lies in the interior of 72. For any X E R ~ ,  consider the vector y = x$i A,$ with co-ordinates 

X on the normalized basis of V .  Then 

Since a > a+ and since 7j is the minimum risk income stream in V, a6 2 ail, so that the 

expression is always strictly positive, implying that p* E int R. 13 

For fixed m = 1 + a 2,  the zeros of F define the subset of R~ 

Lemma 8: (a)  I f  a < a,=,, then 3, fl R = { p * }  where p* = o[aP]-'1 = ,...,L) E 
UCJ 

int R, and 
1 1 

!?(a, p*) = :7 - - 
I + u  1+0; (12) 

(p) I f a  1 ai, then F U n R  c 3i,naR. 

Proof: By (8), F ( m ,  k )  = -Q(m, k)l+ H ( k ) k  so that F is a linear combination of the vectors 

{I, k). Either k is collinear to 1 or these vectors are linearly independent. In the first case 

F = 0 only if k = mB and this corresponds to a value p* such that 
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p* E R if for all X E EtJ 
* *T 

~ ~ [ a p l ~ p v  - P P ][ao]X L 0 

which is equivalent (see proof of Lemma 7 ( S ) )  to a; - u2 2 0 for all y E V ,  or to a 5 a*. I f  

a < a* then the inequality is strict so that p* E int R. Since k* = m l ,  it follows from (10) that 

( 1  - r n l T ~ - ' 1 )  ( 1  - rnE(q)) 
g(u, p*) = G(m,  k*) = - - 

m - m211~~-111 m(1- mE(7))  

If a = afi, then p* is given by (1.3) with a = ai, and thus coincides with the point in Xu n aR 

given by Lemma 7(7) and g(a, p* )  = 0. 

If the vectors {k, 1 )  are lineitrly independent., then F = 0 if and only if Q = 0 and H = 0: 

by Lemma 5 ,  the former implies p E aR and u 2 a* and the latter implies p E 7-1,. Thus if 

u 2 a , j , 3 , ~ R ~ X , n a R .  O 

Since by Lemma 6 ,  g(a, .) is convex on int R, it follows from Lemmas 7 and 8 that if a 5 a3 

then g (a,  . ) attains its minimum at the unique point p* given by ( U ) ,  and g (a,  p* ) is given by 

(14). If u > a* then g(o, .) attains its minimum for all points p on the intersection of the 

hyperplane 7-1, with ?E and g(a, p )  = 0 for all such points. By Lemma 7(a) ,  'R, i l  R coincides 

with the set %, with r, = ai/cr consisting of the vectors p E R such that p(a, 77) = u+/u for 

all a E R' with pa = p. 

The next lemma locates the values of p for which g(o, .) attains its maximum on R: this 

consists of all the boundary points of R which do not lie on the hyperplane 7-1,. Since g is 

zero on 'R,, it follows that g has a discontinuity at the boundary points which lie on 'R,, when 

J 2 2. 

Lemma 9: ( a )  g(a, .) attains its maximum on R for all p E aR\7-1, and g(a,p) = 1 - 

E(7),  v p E m\Ro 

(0) If a < 03, then g(a, .) is continuom on R. If a 2 a* and J 2 2, then g(a;) has a 

discontinuity at p E dR n 31, and g(a, p)  = 0, V p E d7E n7-1,. 

ProoE ( a )  Since g(o, p )  = G(a) =I[ qva 11; - 11 qv I[:, for all a E R' such that ( ~ a ,  pa) = 

(a,  p ) ,  g attains its maximum wlhen qv, = B t" R E Va. By Lemmas 3 and 4, this occurs 

when p E dR and a $ V.  Since a E V is equivalent to E(a t) = 0 where at is the innovation 
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component of a, and since (see proof of Lemma 2) E(at)  = H ( k , ) ,  the maximum of g(a,  . j  1s 

attained for p  E dR\'H,. 

(p) Since g  is a rational function it can be discontinuous only at the points where the 

denominator is zero. When a < 06, by Lemma 5 ,  Q > 0, so that g ( a ,  -) is continuous on R. 

When a > a+ Q = 0  when p ~f a72 n 3.1, and g ( a ,  .) has a potential discontinuity at such 

points. Since R is a manifold ~11th boundary of dimension J, its boundary aR is a manifold 

of dimension J - 1. When J - 11 = 0 ,  aR consists of isolated points and we saw in section 3 

that g ( a ,  .) is not discontinuous $at p E 8 2  n 3.1,. For J 2 2, when p moves in dR, which is 

now of dimension J - 1 2 1, g(a,  -) has the value 1 - E(q) when p 4 X,, and 0 when p  E 3.1,. 

Thus there is a discontinuity which arises from the drop in dimension of Va which looses one 

dimension when a goes from being outside V (in which case it contributes a great deal) to being 

inside V (in which case it contributes nothing). 13 

Since &, = 31, il R, this co;mpletes the  roof of part A of Proposition 4. It remains to 

study   he properties of g  as a function of cr. In section 3 it was shown that the correlation 

coefficient p(a ,  7) with the least risky security 77 is the same for all a  E R' with the same vector 

of correlation coefficients pa. The expression for p(a ,  17) as a function of pa is 

Substituting the expression for k, in (2) gives 

Thus 

p E R+ (resp.'R-) B ~ K - '  [ o Q ] p  > 0 (resp. < 0)  

The behavior of g  as a function of a depends on whether p lies in Rf  or R-. 

Lemma 10: Consider any p  E ink R. 

(a) If p E 72-, then g( . ,  p )  is strictly decreasing for all a > 0. 

(p)  If p E R+, then there exists a* = a 6 / p ( a , q )  such that g ( - , p )  is strictly decreasing for 

a E (0, a') and strictly increasing for o E (a* ,  w) . 
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Define 

L(a, p )  = apT[ai;] K - ' F ( ~ ,  k )  - a 2 ~ ( k )  

with (m, k) given by (17). Then 

-. = - 
au uQ2 

Let us show that L(o, p) < 0, V (a, p)  E FL++ x int R so that 

89 (sgn) - = - (sgn) H 
aa 

L can be written as 

with (m, k) given by (17), which by appropriately regrouping terms gives 

where L < 0 follows from Q > 0 and g < I - E(q) for a > 0 and p E int R. Thus if H > 0 

(resp. < 0 )  then g(.,p) is strictly decreasing (resp. increasing). The expression for H as a 

function of (a ,  p)  is 

which by (15) can be written as 

Thus if p(a, 77) 5 0 then H(a, p) :> 0 for all a > 0, which proves (a) .  If p(a, q )  > 0, define 

If a E (0, a*) then H(a, p) > 0 and if a E (a*, m) then H(a, p )  < 0,  which proves (P) .  

This completes the proof of Proposition 4. 



References 

References 

BALASKO, Y. and D. CASS (11989), "The Structure of Financial Equilibrium with Exogertous 
Yields: The Case of Incomplete Markets", Econometrics, 57, 135162. 

CASS, D. and A. CITANNA, (1994), "Pareto Improving Financial Innovation in Incomplete 
Markets," forthcoming in Economic Theory. 

DORNBUSCH, R and M.H. SIMONSEN (1983), Inflation, Debt and Indexation, Cambridge, 
Mass: MIT Press. 

ELLUL, R. (1994), "Welfare Effects of Financial Innovation in Incomplete Market Economies 
with Several Consumption Goods," Journal of Economic Theory, 65, 43-78. 

FISCHER, S (1975) "The Demand For Index Bonds1', Journal of Political Economy, 83, 509- 
534. 

FISCHER, S. (1986), Indexing, Inflation and Economic Policy, Cambridge, Mass.: MIT Press. 

FISHER, I. (1922) "The Making of Index Numbers," Boston: Houghton M a i n .  

FRIEDMAN, M. (1968), "The Role of Monetary Policy," American Economic Review, 58, 1-17. 

FRIEDMAN, M. (1991), "Monetary Correction," in Monetarist Economics, Cambridge: Basil 
Blackwell. 

GEANAKOPLOS, J.D. and MAS-COLELL (1989), "Real Indeterminacy with Financial As- 
sets", Journal of Economic Thwry, 47, 22-38. 

GEANAKOPLOS, J.D. and M. SlHUBIK (1990), "The Capital Asset Pricing Model as a Gen- 
eral Equilibrium Model with Incomplete Markets," Geneva Papers on Risk and Insumnce 
Theory, 15, 55-71. 

HART, O.D. (1975)) "On the Optimality of Equilibrium When Markets are Incomplete," Jour- 
nal of Economic Theory, 11, 418-443. 

JE'VONS, W.S. (1875), Money an,d the Mechanism of Exchange, London: Routledge and Kegan 
Paul. 

MAGILL, M. and M. QUINZII (1!992), "Real Effects of Money in General Equilibrium," Journal 
of Mathematical Economics, 21, 301-342. 

MAGILL, M. and M. QUINZII (1994), Theory of Incomplete Markets, Volume 1, Cambridge: 
MIT Press (forthcoming) . 

MARSHALL, A. (1887), "Remedies for Fluctuations in General Prices," Contempomry Review, 
reprinted in Memorial of Alfred Marshall, A.C. Pigou ed., London: Macmillan. 

MARSHALL, A. (1923), Money, Credit and Commerce, London: Macmillan. 



References 

SIODIGLIANI, F. (1976), .'Some Economic Implications of the Indexing of Financial .bsets 
with Special References to Mortgages", in M. Monti ed., The New Inflation, and Monetary 

Policy , London: MacMillan. 

VIARD, A.D. (1993), "The Welfare Gain from the Introduction of Indexed Bonds", Journal of 
Money, Credit and Banking, 25, 612-628. 


