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Abstract—There has been a considerable progress these last
years in speech recognition systems [13]. The word recognition
error rate went down with the arrival of deep learning methods.
However, if one uses cloud-based speech API and integrates it in-
side a robotic architecture [33], one still encounters considerable
cases of wrong sentences recognition. Thus speech recognition
can not be considered as solved especially when an utterance is
considered in isolation of its context. Particular solutions, that can
be adapted to different Human-Robot Interaction applications
and contexts, have to be found. In this perspective, the way
children learn language and how our brains process utterances
may help us improve how robot process language. Getting
inspiration from language acquisition theories and how the brain
processes sentences we previously developed a neuro-inspired
model of sentence processing. In this study, we investigate how
this model can process different levels of abstractions as input:
sequences of phonemes, sequences of words or grammatical
constructions. We see that even if the model was only tested
on grammatical constructions before, it has better performances
with words and phonemes inputs.

I. INTRODUCTION

A. Robots as models to study language acquisition

Robots are interesting for studying language in many per-

spectives. Some of the long lasting questions are, for instance

how languages evolve or emerge [27], [28], how language

or symbols in general could be grounded [14], [26] or how

the linguistic or non-linguistic symbols may emerge from

grounding [31]. In particular, one may be interested to have

a robot able to mix vision and dialog interaction in order

to vocally command the robot to grasp some objects in

complex environments [1], [15], [32]. However, even if some

of these systems provide some transparency on how they

work1, they rarely help to understand how our brain processes

languages or how children could acquire one. Developmental

architectures [12], [19] are inspired from children development

and do not require to have all (vocabulary or syntactic) abilities

prefixed since the beginning of the learning period. Some stud-

ies have used different cognitively inspired frameworks with

robotics, such as Embodied Construction Grammar [8] and

1For instance, when they do not include multiple ad hoc “hacks” to make
them work in the desired experimental conditions

construction grammar [12], [25]. Our brains process utterances

in a robust fashion in a variety of contexts: we believe that

the lack of brain-inspiration in these systems results in a gap

of robustness with human performance. In our approach, we

try to build an architecture that is able to tackle several of

these points and get a step closer to the understanding of

brain processes, language developmental strategies and symbol

grounding.

B. Our question and hypothesis

Considering a system that learns to parse a sentence given

a stream of inputs, one question is what is the optimal

level of abstraction of the inputs2: phonemes, words or

grammatical constructions?

Here, we only compare purely symbolic input representation

and do not consider raw acoustic signals or distributed repre-

sentation of coding, such as word embedding. In particular we

want also to see the robustness to noise of these different

representations. This is particularly important when such a

system is used with real speech signals, and have to deal with

the misrecognition of words. We previously started a step in

that direction by enabling the model to generalize on sentences

with unknown (or unrecognized) words [18].

C. Broca sentence parsing model

The neural parser proposes to model how the human brain

processes sentences and is inspired from several studies in neu-

roscience [5], [16]. A schema of how the global architecture

is and how inputs are processed can be seen on Figure 1.

The model is an analogy to a sub part of Broca’s area (a

region of prefrontal cortex, involved for instance in syntax

processing) and the striatum (a subpart of the basal ganglia).

Both are generally involved in sequence processing and learn-

ing, and in particular in sentence parsing.

Because there are probably as many neuro-inspired models

as the number of modellers, we want to make clear our

claims about this neuro-plausibility and give some high-level

2Given a particular corpus, because one could assume that this could change
on the size and complexity of the corpus.



Fig. 1. Sentence parsing model with different input conditions. The
system processes inputs as follows: (top left) from a sentence as input, the
model outputs (middle right) an action command that can be performed by
a robot. The processing of the sentence is sequential: each symbol of the
sequence (phoneme, word, ...) is given one at a time as a one-hot encoding.
The final thematic roles for each SW is read-out at the end of the sentence
(but partial predictions can be read-out when the parsing is on-going). Before
entering the neural network, the sentence is preprocessed depending on the
main condition (PHON, WORD or CONST) and on the optional condition
(INF and/or NOISE). Semantic Words (nouns, verbs, ...) are replaced by a SW
symbol. Infrequent function words (IWs) are replaced by the & symbol. Here,
the input layer only represents word symbols, but in the PHON condition
these are replaced by phonemes. Example of input sequences for different
conditions can be seen in Figure 2. Figure modified from [18].

information about our model in order to easily compare it with

other models:

• the computations rely on distributed units (leaky average

firing rate neurons),

• these computations are generic and not hand- or

task-designed3 contrary to some models (e.g. Bayesian)4:

there is no task a priori applied on the computations,

• it processes a sentence word by word instead of taking

the whole sentence in one shot or as a bag of words5,

• it is an anytime algorithm: it can give partial results (i.e.

predictions) before the end of a sentence,

• it can be trained in one-shot [16] or incrementally with

a Hebbian learning rule6,

• the learning algorithm does not unfold time contrary

to the Backpropagation Through Time (BPTT) algo-

rithm [35], [36],

• we do not use a specific framework for language, on

the contrary it is based on the general Reservoir

Computing (RC) paradigm,

• this RC paradigm is inspired from neuroscience and

recently inspired neurobiologists in return: e.g. how to

3In particular, the computations performed in the input and recurrent layers.
4Only input and outputs units are encoded with localist (i.e. one-hot)

symbols, but there is no reason to think that a distributed coding should make
the model work differently. Because each symbol given as input is already
subject to a random projection.

5Like a spoken sentence which comes like a flow and is available only
once: once has to rely on working memory to keep the information about the
whole sentence.

6X. Hinaut and S. Wermter, “An incremental approach to language acquisi-
tion: Thematic role assignment with echo state networks,” in Proc. of ICANN
2014, pp. 33–40.

Fig. 2. Symbol sequences given as input to the neural network depending
on the conditions. The same sentence (see 2nd line, WORD condition) is
given as input in order to see the effect of the different conditions. In PHON
cond., a sequence of phonemes is inputed into the network using CMU’s
dictionary representation: e.g. point is replaced by the sequence of symbols
“P, OY1, N, T”. In CONST cond., semantic words are replaced by a SW
symbol. In INF cond., infrequent words are replaced by “&” symbol: here,
then is replaced by “&”. In NOISE cond., 5% of the words are randomly
replaced by another one: here, and is replaced by put.

decode electrophysiological activity in the prefrontal cor-

tex of a monkey7.

Several models of sentence acquisition, comprehension or

production have been designed [12], in particular models based

on neural networks [3], [4], [7], [9]–[11], [23]). However,

to our knowledge none of such models combine all these

properties, even if not based on RC paradigm. More infor-

mation about previous versions of the model available in

supplementary materials8.

D. How to deal with Out-of-Vocabulary words?

In a developmental perspective it is important, for a child

or a robot, to be able to deal with unknown words. Even

if they do not need to infer their meaning yet. In such a

developmental approach it is also interesting to not only

rely on a fixed vocabulary, but on an evolving one [19]. In

speech recognition and natural language processing (NLP) in

general, some processed words may be unknown: i.e. not in

the vocabulary list of the processing system. Theses words are

called Out-of-vocabulary (OOV), and are often represented by

the marker UNK for unknown. How to deal with these OOV

words is a well-known problem in the field [21]. One can use

ad hoc and hand-crafted tricks to deal with such a problem,

which seems often the case in HRI, even if not explicitly

stated in the papers. On the contrary, we take advantage of

the generalization properties of our neural architecture and

incorporate the fact that a word was not recognized instead of

discarding it (see subsection II-E and [18] for more details).

II. METHODS

A. Echo State Networks (ESN)

The neural parser is based on an ESN [20]: a particular

kind of recurrent neural network (RNN) in which inputs are

projected to a random recurrent layer, and only the output

layer (called the “read-out”) is modified by learning.

7Neuroscience studies borrowed this idea of decoding non-linear and high-
dimensional computations through time.

8Supplementary material and source code are available at https://github.
com/neuronalX/Hinaut2018_icdl-epirob



The units of the recurrent neural network have a leak

rate (α) which corresponds to the inverse of a time constant.

These equations define the update of the ESN:

x(t+ 1) = (1− α)x(t) + αf(Winu(t+ 1) +Wx(t)) (1)

y(t) = Woutx(t) (2)

where u(t), x(t) and y(t) are the input, the reservoir (i.e.

hidden) state and the read-out (i.e. output) states respectively

at time t. α is the leak rate. Win , W and Wout are the

input, the reservoir, and the read-out matrices respectively.

f is the tanh activation function. After the collection of all

reservoir states, the following equation defines how the read-

out (i.e. output) weights are trained. In order to prevent from

overfitting9, we use ridge regression (also known as regression

with Tikhonov regularization), which probably provides the

most stable solution in this context [22]:

Wout = YdXT(XXT + βI)−1 (3)

where Yd is the concatenation of the desired outputs, X is

the concatenation of the reservoir states (over all time steps

for all trained sentences), β is the regularization coefficient

(called ridge in the remaining of the paper) and MT is the

transpose of matrix M.

B. Corpus

The corpus was obtained by asking naive users (agnostic

about how the system works) to watch several actions in a

video and give the commands corresponding to the motor

actions performed, as if they wanted a robot to perform the

same action. The video used is available online with the first

experiments we did with robots [17]. Five users were recruited

and each user provided 38 commands: this gives a total of

190 sentences. Note that some sentences provided by users

are complex and some times probably ungrammatical (see

Table I).

C. Experiments

Based on a previously developed neural parser model [16],

[18] we enhanced it in order to make it able to process a given

sentence at three different levels of abstraction:

• sequence of phonemes (PHON)

• sequences of words (WORD)

• grammatical construction (CONST)

From these three kinds of inputs we define the three

different conditions of our experiments. All inputs are given

symbol by symbol, in a one-hot (localist) encoding. Please

refer to the supplementary materials and to [16], [18] in order

to have more details on the model.

9For the current data set, the optimal number of neurons is approximately
of 160, 280 and 300 neurons for the WORD, CONST and PHON conditions.
Thus we need to regularize if we want to use more units in the reservoir (i.e.
500).

TABLE I
SOME SENTENCE EXAMPLES FROM THE NOISY ENGLISH CORPUS.

DIFFERENT TYPE OF SENTENCES ARE GIVEN: 1. SEQUENCE OF ACTIONS

2. IMPLICIT REFERENCE TO VERB 3. IMPLICIT REFERENCE TO VERB AND

OBJECT 4. CROSSED REFERENCE 5. REPEATED ACTION 6. UNLIKELY

ACTION 7. PARTICULAR FW

TYPE SENTENCE EXAMPLE

1 touch the circle after having pushed the cross to the left
1 put the cross on the left side and after grasp the circle
2 move the circle to the left then the cross to the middle

3 put first the triangle on the middle and after on the left

4 push the triangle and the circle on the middle
5 hit twice the blue circle
5 grasp the circle two times

6 put the cross to the right and do a u-turn

7 put both the circle and the cross to the right

D. Details on the Phoneme Extension of the Model

In the case of PHON condition, we extended the model [16]

to process directly sequence of phonemes instead of sequence

of words. Each word is replaced by its corresponding list of

phonemes based on the Carnegie Mellon University word-

phoneme correspondence dictionary (CMUdict v0.07)10. No

additional space or any other clue enabling the model to detect

boundary of words was added. Each sentence is then encoded

as a succession of input unit activations in a localist (i.e. one-

hot) encoding: 1 for the corresponding phoneme, and 0 for

others. The outputs are generated as in the previous model,

as if the grammatical constructions were processed. Thus, the

model has no simple cue indicating that a semantic word is

being processed (i.e. activation of the SW input unit, as it is

the case in the previous model).

E. Infrequent symbols category

For the sequence of words (WORD) and grammatical con-

struction (CONST) inputs we also add a condition where we

replace infrequent words by an “&” marker in order to see if

this enables better generalization. Before training, we simply

replace the most infrequent words in the training corpus.

We count the number of occurrences of the words in the

training corpus and define a threshold θ (θ = 5). The words

that have a lower number of occurrences are replaced by an

Infrequent Word (IW) marker “&”. This enables our system

to smartly process unknown words during test phase [18]. The

idea behind is the following: the reservoir is trained to have

such IW markers at different positions inside sentences, thus

enabling it to not “freak out” when an unknown word appears.

This word replacement was not used in the PHON condition

for several reasons:

• if we use phonemes we may not have access to word

recognition, so the problem of misrecognizing a word

does not exists in this case.

• although it could help, the aim is to assess if relying on

PHON without speech recognition is possible.

10Available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict



F. Dealing with noisy inputs

As we are interested in the performance in real world

scenarios of this neural parser, we would like the system to

be able to handle and recover from speech recognition errors.

In Human-Robot Interaction studies, it is common that this

issue is not considered (badly recognized sentences are just

discarded) or ad hoc methods are applied (e.g. researchers

write by hand a correspondence dictionary in order replace

words that are phonetically close to the desired ones). Even

using mainstream APIs, such as the Google Speech API,

doesn’t prevent this issue (i.e. several words are not correctly

recognized) from occurring in many sentences. Such APIs

seem to be optimized for web searches, etc., but not for

HRI vocabulary. Twiefel et al. [33], [34] have been able to

enhance the results from Google API by post-processing its

results: by decomposing the sentences obtained in sequences

of phonemes and then finding the most probable sentence

based on Levenshtein distance. Although the performances of

the robotic architecture tested in these studies provide robust

results, even in the presence of significant ambient noise11,

we want to enable the core part of the architecture (i.e. the

recurrent network) to be intrinsically more robust.

G. Training and testing

For all but noisy experiment conditions, we did a 10-fold

cross-validation. For all experiments we averaged over 50

instances12. In order to evaluate the performance, we record

the activity of the read-out layer at the last time step, which

is when the final dot is given as input. We first discard the

activations that are below a threshold of 0.5. Finally, if there

are several possible roles for a particular SW, we do a winner-

take-all and keep the role unit with the highest activation.

More implementation details on the training and testing

procedures, about simulating noisy speech, and about hyper-

parameters are available in the supplementary materials

III. RESULTS

A. Phonemes, words or grammatical constructions?

In Table II are presented the overall results for all the

condition combinations. For PHON, WORD and CONST

conditions, we obtain generalization errors of 18.49% (+1.76),

18.12% (+1.38) and 21.46% (+1.41) respectively. If we add

the option of replacing infrequent words13, error for WORD

and CONST decrease to 16.51% (+1.26) and 17.71% (+1.49)

respectively14. In Table II, one can see that the result of

(PHON, default) condition have been pasted in the (PHON,

INF) condition, this is because there is no need to consider

infrequent words in the PHON cond.

11We successfully tested the system in a crowded noisy environment, Night
of Science in Hamburg in fall 2015.

12Erratum: in a previous version of the paper, it was erroneously written
100 instances instead of 50. This does not affect the results and order between
the results. This can be checked with the code published online.

13i.e. occurring less than five times in the data set
14We outperformed previously obtained results from [17] and [18] that were

applied only on CONST.

From these results we conclude that in general conditions

(without word replacement), the WORD condition (i.e. se-

quence of words) performs better than the two other condi-

tions, although the improvement of performance is not striking.

It is surprising that the condition using phonemes has a very

close performance although it processes more complex inputs

with the same reservoir size: the inputs streams are longer,

and there is no cue indicating the boundaries between words.

We can also notice that replacing infrequent words helps the

WORD, and particularly the CONST, conditions to improve

generalization. Therefore this option (of replacing infrequent

words) should be used by robotic systems confronted to OOV

words.

Additionally to the global hyper-parameter (HP) search,

for each condition we made a HP search in order to select

the optimal regularization coefficient for each condition using

hyperopt with TPE (Tree of Parzen Estimators) algorithm [2]

for a hundred evaluations15. Surprisingly PHON and WORD

conditions have a similar optimal ridge parameter (2.5e-

04), compared to CONST condition (5e-06). Although, from

the landscape formed by the parameter exploration: WORD

condition has its best values around the optimal ridge with

much worse performances for other ridge values, and PHON

condition has similar performances when the ridge has a lower

value (i.e. less regularization). Due to this landscape, we could

speculate that PHON condition is less prone to overfitting than

WORD condition.

We performed additional experiments (available in supple-

mentary materials) in order to (1) explore whether adding a

feedback connection from the output units to the reservoir

could improve the performance, and to (2) explore how the

number of neurons inside the reservoir influence the perfor-

mance of the three main conditions.

B. Tasks difficulty

In order to evaluate if each condition was of the same

difficulty - in a different manner than evaluating purely gen-

eralization performance -, we did a supplementary parameter

exploration. We did a TPE search changing only the number

of neurons inside the reservoir without using regularization,

i.e. we simply use the pseudo inverse [22] instead of ridge

regression. We did this search with the infrequent word

replacement option for WORD and CONST conditions. For

the current data set, the optimal number of neurons are of

approximately of 160, 280 and 300 neurons for the WORD,

CONST and PHON conditions respectively. If we assume the

optimal number of neurons (when no regularization is applied)

is representative of task difficulty16, then we could conclude

that the WORD condition is easier than CONST and PHON

condition. Thus it is somehow “unfair” to compare the three

15The ideal ridge regularization coefficient is told to be dependent on each
reservoir instance. However we prefer to use a general value a priori which
is more useful for applications.

16Of course this is also tightly linked to overfitting problems. Another
parameter search by changing the ridge actually indicates that WORD
condition is much more sensitive to ridge parameter than the PHON condition.



TABLE II
MEAN ERROR IN PERCENT (AND STANDARD DEVIATION) FOR FULL

SENTENCE COMPREHENSION FOR DIFFERENT CONDITIONS.

conditions with a number of reservoir units fixed to 500, and

not allowing CONST and PHON to have more reservoir units

as the tasks seem more difficult17.

C. Noisy speech recognition

Results in Table II show that adding noisy input affect the

performances18, although they do not dramatically fall. For the

PHON condition we pass from an error of 18.49% (+1.76) to

33.11% (+0.77); for WORD from 18.12% (+1.38) to 29.73%

(+0.48); for CONST from 21.46% (+1.41) to 40.53% (+0.77).

Interestingly the noise do not affect the three conditions in the

same way. The CONST condition is the most affected by noisy

inputs. This could be explained by the fact that the system

could only rely on function words to parse the sentence. PHON

condition is bit more affected than the WORD condition.

Further explorations would be necessary to understand if this

comes from the hyper-parameters that could be optimized

specifically or not. Actually, the way the noisy condition

is designed is “unfair” to the PHON condition, because if

phonemes are used as input one would expect to have noise

on the phonemes and not on the whole words.

IV. DISCUSSION

Considering a system that learns to parse a sentence given a

stream of inputs, we answered the question what could be the

optimal level of abstraction of the inputs (phonemes, words or

grammatical constructions) given a particular English corpus

of robot commands provided by users. This optimal input

abstraction may be different for other corpora, in particular

if they are of different size. In this study, we only compared

purely symbolic input representations and do not consider

raw acoustic signals or distributed encoding representations,

such as word embedding. Although we have unpublished

results showing that our system is able to process words with

word2vec representation [24] (a particular kind of embedding),

we did not focus on it in this study19.

One could argue that comparing different levels of abstrac-

tion is probably more relevant to a neuro-cognitive robot than

to a child: because in order to represent words she needs to

chunk phonemes, and to have constructions she should chunk

groups of words and identify some words as being variables

17Effect of reservoir size is discussed in supplementary materials.
18All results were averaged over 50 instances.
19We did not focus on such representations in order to keep the comparison

between levels of symbolic abstraction only. Otherwise we should also have
compared it with embedding for phonemes and for grammatical constructions.

(e.g. semantic words). However, this study tries to understand

what kind of information in the inputs are most relevant for a

robot to learn to parse sentences.

In a nutshell, this study raise the question whether pro-

cessing sentences as sequence of words (WORD condition)

is always optimal or not. This assumption is often made

by default in HRI experiments, but this may depend on the

context. Our results suggest that the little advantage of a

particular kind of input could change for slightly different

conditions or corpora20.

A first remark on the results is that we outperformed previ-

ous results obtained on the same corpus in CONST condition:

here we obtain 17.71% (+1.49) instead of 21.4% (+2.2) in

previous study [18] using the same number of reservoir units.

Results showed that WORD condition (i.e. sequence of words)

is the one performing best in normal conditions, but only from

a short increase in performance. It remains to be explored

whether these results depend on the training dataset and on

its size. In particular, we speculate that the CONST condition

is not performing well because the user-based corpus is small

and contains a lot of sentence variants to say similar things

(e.g. see Table I). Thus, the model in the CONST cond.

doesn’t have enough repetitions of these sentence variants in

order to robustly generalize only on grammatical constructions

(i.e. sentence templates). Conversely, in the WORD cond.

the model can rely on the precise semantic words used in a

sentence as supplementary cues to help generalization: which

explains the better generalization of WORD over CONST for

this small corpus.

Surprisingly the PHON cond. performs nearly as well as

the WORD cond. in default experiments. The task seems

more difficult in the PHON cond. because the network has

to deal with longer time scales and no word segmentation is

provided. We believe the PHON condition would also benefit

from a bigger corpus enabling the network to extract more

statistical regularities from phoneme sequences. Thus, we aim

to repeat the experiment on a much larger corpus in order to

demonstrate better performance in both PHON and CONST

experiments.

We also explored noisy conditions, where 5% of the words

were randomly replaced by other words. WORD and PHON

conditions resisted better to noise than CONST condition;

with WORD cond. maintaining its leadership. However, more

realistic noisy conditions21 could be obtained by randomly

replace/insert/delete phonemes: we speculate that with such

noise design the PHON condition would outperform the two

other conditions. Consequently, we will extend this work to the

processing of sequences and phonemes provided by a speech

recognizer such as DeepSpeech [13]: this will provide more

20We did not perform statistical comparisons between the different condi-
tions because such tests are likely to not have enough statistical power given
the size of the corpus

21More realistic noisy conditions could be obtained with a speech recog-
nizer giving access to the sub-word information (i.e. phonemes recognized),
instead of Google speech API for instance.



realistic phoneme/word recognition errors, and supposedly

favor the PHON condition.

Despite the small corpus used, the current performances

are already interesting and useful for small corpus applica-

tions in Human-Robot Interaction experiments. Because the

core part of the model is a generic neural architecture, it

could be easily reused or adapted for other computational

or robotic experiments in language acquisition. In particular,

we would like to extend this work by integrating our neural

parser with multi-modal (e.g. vision, sensori-motor, ...) and

behavioral robotic experiments [6]. For instance, the semantic

and syntactic information of such complex sentences could

be integrated into robotic experiments grounding linguistic

symbols to robot behavior and to the visual modality [29],

[30], [37]. Syntactic richness of natural language sentences

are often simplified in such experiments (for the benefit of

motor or visual modalities), and rather rely on stereotypical

sequence of few semantic words without function words (e.g.

“hit left blue”). Our model could help in such architectures by

increase the syntactic variability a robotic architecture could

deal with.

Supplementary material and source code are available at

https://github.com/neuronalX/Hinaut2018_icdl-epirob

ACKNOWLEDGMENT

The author would like to thank Bhargav Teja Nallapu for

valuable feedback on the paper, and Johannes Twiefel for

interesting discussions.

REFERENCES

[1] E. Bastianelli, G. Castellucci, D. Croce, R. Basili, and D. Nardi,
“Effective and robust natural language understanding for human-robot
interaction.” in ECAI, 2014, pp. 57–62.

[2] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in Science Conference, 2013, pp. 13–20.

[3] H. Brouwer, M. W. Crocker, N. J. Venhuizen, and J. C. Hoeks, “A
neurocomputational model of the n400 and the p600 in language
processing,” Cognitive science, vol. 41, pp. 1318–1352, 2017.

[4] F. Chang, “Symbolically speaking: A connectionist model of sentence
production,” Cognitive science, vol. 26, no. 5, pp. 609–651, 2002.

[5] P. Dominey, M. Hoen, and T. Inui, “A neurolinguistic model of gram-
matical construction processing,” Journal of Cognitive Neuroscience,
vol. 18, no. 12, pp. 2088–2107, 2006.

[6] P. F. Dominey and J.-D. Boucher, “Developmental stages of perception
and language acquisition in a perceptually grounded robot,” Cognitive

Systems Research, vol. 6, no. 3, pp. 243–259, 2005.
[7] J. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,

pp. 179–211, 1990.
[8] M. Eppe, S. Trott, and J. Feldman, “Exploiting deep semantics and

compositionality of natural language for human-robot-interaction,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International

Conference on. IEEE, 2016, pp. 731–738.
[9] S. L. Frank, “Strong systematicity in sentence processing by an echo

state network,” in International Conference on Artificial Neural Net-

works. Springer, 2006, pp. 505–514.
[10] S. L. Frank, W. F. Haselager, and I. van Rooij, “Connectionist semantic

systematicity,” Cognition, vol. 110, no. 3, pp. 358–379, 2009.
[11] S. L. Frank, P. Monaghan, and C. Tsoukala, “Neural network models of

language acquisition and processing,” Preprint: stefanfrank.info, 2017.
[12] J. Gaspers, P. Cimiano, K. Rohlfing, and B. Wrede, “Constructing a

language from scratch: Combining bottom–up and top–down learning
processes in a computational model of language acquisition,” IEEE

Transactions on Cognitive and Developmental Systems, vol. 9, no. 2,
pp. 183–196, 2017.

[13] A. Hannun et al., “Deep speech: Scaling up end-to-end speech recog-
nition,” arXiv preprint arXiv:1412.5567, 2014.

[14] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear

Phenomena, vol. 42, no. 1-3, pp. 335–346, 1990.
[15] J. Hatori et al., “Interactively picking real-world objects with

unconstrained spoken language instructions,” arXiv preprint

arXiv:1710.06280, 2017.
[16] X. Hinaut and P. Dominey, “Real-time parallel processing of grammati-

cal structure in the fronto-striatal system: a recurrent network simulation
study using reservoir computing,” PLoS ONE, vol. 8, no. 2, p. e52946,
2013.

[17] X. Hinaut, M. Petit, G. Pointeau, and P. Dominey, “Exploring the
acquisition and production of grammatical constructions through human-
robot interaction with echo state networks,” Frontiers in Neurorobotics,
vol. 8, 2014.

[18] X. Hinaut, J. Twiefel, M. Petit, P. F. Dominey, and S. Wermter, “A
recurrent neural network for multiple language acquisition: Starting with
english and french,” in NIPS 2015 Workshop on Cognitive Computation:

Integrating Neural and Symbolic Approaches, 2015.
[19] N. Iwahashi, “Robots that learn language: Developmental approach

to human-machine conversations,” in Symbol Grounding and beyond.
Springer, 2006, pp. 143–167.

[20] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” Bonn, Germany: German National Research Center

for Information Technology GMD Tech. Report, vol. 148, p. 34, 2001.
[21] D. Jurafsky and J. Martin, Speech and Language Processing: An In-

troduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition., 2nd ed. Pearson International, 2009.
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