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ABSTRACT

An infinite series of curves is constructed in order to show that all linear codes can be
obtained from curves using Goppa’s construction. If one imposes conditions on the degree
of the divisor used, then we derive criteria for linear codes to be algebraic-geometric. In
particular, we investigate the family of ¢g-ary Hamming codes, and prove that only those
with redundancy one or two, and the binary [7,4,3] code are algebraic-geometric in this
sense. For these codes we explicitly give a curve, rational points and a divisor. We prove
that this triple is in a certain sense unique in the case of the [7,4, 3] code.

Key words: algebraic-geometric codes, algebraic curves, divisors, generalized Goppa
codes, geometric Goppa codes.

I. Introduction

Since the early papers by Goppa [5],[6],[7], [8], algebraic-geometric codes have been in the
spotlight of coding theoretic research for about a decade. As is well-known, numerous ex-
citing results have been achieved using Goppa’s construction of linear codes from algebraic
curves over finite fields, both by algebraic geometrists and coding theorists. Because of the
difficulty of the subject, several explanatory papers and text books have appeared, see for
instance [9] or [16]. In this paper we investigate which linear codes can be constructed by
Goppa’s method. It turns out that it makes sense to distinguish between three types of
codes, according to the degree of the divisor used in the construction. For more details,
see Section II (Definition 2).

*All authors are with the Eindhoven University of Technology, Department of Mathematics and Com-
puting Science, PO Box 513, 5600 MB Eindhoven, The Netherlands. This research was partially supported
by the Netherlands organization for scientific research (NWO).



Although this paper is quite self-contained, a certain knowledge of algebraic geometry
is taken for granted. For this, we refer to [2],[4],[11],[16] or [22]. For coding theory, see
[15],[16] or [17].

Outline of the paper

In Section 1T we define weakly algebraic-geometric (WAG), algebraic-geometric (AG),
and strongly algebraic-geometric (SAG) codes (Definition 2). The class of SAG codes is a
proper subset of the class of AG codes, and the class of AG codes is a proper subset of
the class of WAG codes. Furthermore, we also explain what we mean by a WAG, AG or
SAG representation of a code. Some basic properties are mentioned. Section II actually
serves as an introduction to the rest of the paper. At the end of Section II we introduce
the notion of a minimal representation. We prove that every WAG, AG or SAG code of
dimension at least two has a minimal WAG, AG or SAG representation, respectively. This
is useful in Sections IV and V.

The WAG codes are the codes which can be obtained by Goppa’s construction when
no restrictions are imposed on the degree of the divisor used. Inspired by the notion of
a covering curve of Goppa [9] and a paper by Hansen and Stichtenoth [10], we prove in
Section III that every linear code is WAG. In this way we solve problem (3.1.19) of [22].
The curves are given explicitly. Goppa [7, p.78] claimed that every linear code is WAG,
but his proof is not sufficient, see Remark 5. Lachaud [14, (5.10)] made a weaker claim,
namely that every linear code is a subcode of a WAG code.

In Section IV we derive several conditions on linear codes to be AG. As proved at the
end of that section, all binary SAG codes have length < 8. By the results of Section III,
the class of AG codes therefore seems to be the most interesting. Special attention is paid
to Reed-Muller codes, Hamming codes and the binary Golay code and its extension. For
example, the conditions on AG codes imply that a ¢g-ary Hamming code of redundancy r
is not AG if » > 2 and (r,q) # (3,2).

In Section V we are interested in explicit WAG, AG or SAG representations of codes,
and in the question whether something can be said about the uniqueness of these represen-
tations. As an example, we investigate the family of g-ary Hamming codes in close detail
(Section V-A). We prove that these codes are SAG in the cases left open in Section IV. In
the case (r,q) = (3,2), that is, for the binary [7,4,3] code, we obtain the nice result that
this code has a unique minimal representation as an AG code. In Section V-B we discuss
another example, namely a code which was mentioned in [13], and prove that it is SAG.

Notation

We use F,, to denote the finite field of ¢ elements. We use P! to denote the [-dimensional
projective space; it will be clear from the context over which field (usually F, or the
algebraic closure F,). If any confusion is possible, we use P/(F,) to denote the finite set of
(¢"™—1)/(g—1) points over F, in P, for instance. Similarly, A’ denotes the [-dimensional
affine space. By a curve over a field £ we mean a projective, reduced scheme over k of
dimension one. As with P! and A, we sometimes write X (F,) to indicate the finite set of
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F -rational points on X. The function field of X over k is denoted by k(X'). The group of
divisors on X is denoted by Div(X). If ¢ : X — X’ is a morphism of curves, then we denote
by ¢* both the induced homomorphism k(X’) — k(X) and the induced homomorphism
Div(X’) —Div(X), see [11, p.137]. If f € k(X) \ {0}, we denote by (f) its divisor, a
so-called principal divisor. The notation div(f) is also used in the literature. Similarly, if
w is a nonzero rational differential form on X, then we denote its divisor by (w), a so-called
canonical divisor. If P is a place of k(X) over k, that is a discrete valuation ring of k(X))
over k, then we denote by vp the discrete valuation function at P. In the literature the
notation ordp is also customary. If D is a divisor on X, then supp(D) denotes the support
of D, that is the set of places with nonzero coefficient in D. If Dy and D, are divisors on
a curve X, then we denote by Dy ~ D that D; and D, are linearly equivalent. By [D] we
denote the linear equivalence class of D, that is the set consisting of all the divisors on X
linearly equivalent with D. The complete linear system associated to D is denoted by |D].
This is the set of all effective divisors in [D]. We denote by Pic(X') the group of divisors
on X modulo principal divisors, the so-called divisor class group. By Picy(X) we denote
the subgroup of Pic(X) consisting of the divisors of degree 0 modulo principal divisors.
By Pic,,(X) we denote the coset of Picy(X) in Pic(X) consisting of the divisors of degree
m modulo principal divisors. By D,, we denote the set of effective divisors on X of degree
m. We define h := #Picy(X). In fact, we have h = # Pic,,(X) for every m. For all this,
see [16].
If C is a linear code, we denote by d(C') its minimum distance.

II. Algebraic-geometric codes and representations

Definition 1 Let X be a projective, nonsingular, absolutely irreducible curve defined over
F,. The genus of X is denoted by ¢(X), or simply by g, if it is clear which curve is
meant. Let Py,..., P, be n distinct F-rational points of X. We denote both the n-tuple
(Py,...,P,) and the divisor P; 4+ ...+ P, by D (the order of the P; is fixed). Let G be a
divisor on X of degree m with support disjoint from the support of D. Let F,(X) be the
function field of X over F, and L(G) = {f € F (X)*|(f) > —G} U {0}. Let Qx be the
vector space of rational differential forms on X and Q(G) = {w € Qx \{0}|(w) > G} U{0}.
Define the map
ayp, . L(G) — FZ,

by aL(f):(f<P1)77f(Pn>>7
and the ma
' ag : QG - D) — Fy,
by agq(w) = (resp,(w),...,resp, (w)).

Define
Cr(X,D,G) = Image(ar) and Cq(X,D,G) = Image(aq).



We abbreviate Cr(X, D,G) and Cqo(X, D, G) by Cr(D,G) and Cq(D, G), respectively, if
it is clear which curve is meant. See Goppa [5], [6], [7], [8], [9], or [16], or [22].

Theorem 1 .
a) If m < n then Cr(D,G) is a linear [n, k,d]| code with

k>m+1—g and d>n—m.

If moreover 2g —2 < m thenk=m+1—g.
b) If 2g — 2 < m then Cq(D,G) is a linear [n,k,d] code with

k>n—m-—1+g and d>m+2—2g.
If moreover m <n then k=n—m—1+g.
Proof: See [5], [16] or [22].
Proposition 1 The linear code Cqo(D,G) is the dual of CL(D,G).
Proof: See [8], [16] or [22].

Definition 2 We call a g-ary linear code C' weakly algebraic-geometric (WAG) if there
exists a projective, nonsingular, absolutely irreducible curve X defined over F, of genus
g, and n distinct rational points Pi,..., P, on X and a divisor G with support disjoint
from the support of D, where D = P, + ...+ P,, such that C' = C(X,D,G). We call
the triple (X, D, G) a weakly algebraic-geometric representation (WAG representation), or
shortly, a representation of C. An algebraic-geometric representation (AG representation)
is a representation (X, D, G) with deg(G) < n. We call a code algebraic-geometric (AG) if
it has an AG representation. A strongly algebraic-geometric representation (SAG represen-
tation) is a representation (X, D,G) with 2g — 2 <deg(G) < n. A code is called strongly
algebraic-geometric (SAG) if it has a SAG representation.

Remark 1 There exists a differential form w with a simple pole at each P; and such
that resp,(w) =1 for i = 1,...,n. We have Cq(X,D,G) = CL(X, D, (w) — G + D), see
21, Corollary 2.6] or [16, Lemma 3.5]. As a consequence we have that C' is WAG if and
only if C' = Cq(X, D, G) for some curve X and divisors D and G as above (without the
constraints on the degree of G). The code C is AG if moreover 29 — 2 <deg(G). The code
C'is SAG if moreover 2g — 2 <deg(G) < n. In view of Proposition 1 we therefore have the
following corollary.

Corollary 1 If C is WAG or SAG, then C*+ is WAG, SAG, respectively.
Remark 2 There exist codes which are AG while the dual is not. For an example, see

Remark 13.

Definition 3 Let n > 1. Let m : Fj — Fg"l be the projection defined by deleting
the i*" coordinate. If C is a code in F7 then define C; by C; = m;(C). We say that C; is
obtained from C' by puncturing at the i** coordinate.
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Lemma 1 If C is WAG then C; is WAG.

Proof: Suppose that C = C(X, D, G), where D = (Py,..., P,).
Let Dz = (Pl, e 7PZ‘_1,B+1, .. ,Pn) Then Cz = CL<X7D2,G>

Remark 3 If C'is AG or SAG, then C; need not be AG, SAG ,respectively, see Remark 19.

Definition 4 Let C' be a linear code in F} and o a permutation of {1,...,n}. Define

oC ={(zo1), - Tom)) (@1, ..., 2,) € C},

Two linear codes C and C5 in F, are called equivalent if Cy = oC} for some permutation
oof {1,...,n}. Let A= (\1,...,\,) be an n-tuple of non zero elements in F,. Define

MO = {()\11'1, .. .,AnZL’n)KZEl, R ,ZEn) S C}

The codes C and Cy are called generalized equivalent or isometric if there is an n-tuple
A= (A1,...,A\,) of nonzero elements in F, and a permutation o such that Cy = AoC}.

Lemma 2 If C; and Cy are isometric codes and Cy is WAG, AG or SAG, then Cs is
WAG, AG, SAG, respectively.

Proof: Suppose C; = C(X, D,G) and Cy = AoCy for some non zero elements Ay, ..., A\,
in F, and a permutation o. There exists a rational function f such that f(P,q)) = A; for
all 4, by the independence of valuations, see [2, p.11]. Let 0D = (Py(1),..., Pyn)). Then
the divisor G — (f) has disjoint support with oD, since all the \; are nonzero. We have
Cy=CL(X,0D,G — (f)) and Cy is WAG. The degrees of G and G — (f) are equal. So, if
C1 is AG or SAG, then Cj is AG, SAG, respectively.

Definition 5 We call a g-ary linear [n, k] code projective if every two columns of a generator
matrix of C' are linearly independent. Thus if we view the columns of a generator matrix
as points in the (k — 1)-dimensional projective space P*~! expressed in homogeneous co-
ordinates, then we get n distinct points. This definition is obviously independent from the
generator matrix chosen. By S(r,q) we denote any g-ary projective code of dimension r
and length (¢" — 1)/(q¢ — 1). Such a code is called a Simplex code. By H(r,q) we denote
the dual of S(r,q). This is a q-ary Hamming code of redundancy r. If all the n points of
a projective code lie in the complement of a hyperplane then we call the code affine.

Remark 4 If n > 3, then a code C' is projective if and only if d(C’L) > 3. The code
C is affine if and only if C is projective and there exists a codeword with weight equal
to the word length. The maximal word length of a projective code of dimension r is
(¢" —1)/(¢ — 1). For fixed r and ¢ all g-ary Simplex codes of dimension r are isometric.
The same holds for Hamming codes. The maximal possible word length of an affine code
of dimension r is ¢"~!. For fixed ¢ and r all affine g-ary codes of dimension r and word

bt



length ¢"~! are isometric and are called g-ary first order Reed-Muller codes.

Remark 5 Suppose C' is an affine code and we want to show that it is WAG. By Lemma
2, we may assume after an isometry, that the all one vector is a code word and it is the first
row of a generator matrix of C. Let the n points Q1, ..., @, in P*~! correspond to the n
columns of the generator matrix. Suppose there exists an absolutely irreducible, projective
curve X over F, in P*~! which goes through Q,...,Q,. The curve may be singular, but
suppose there exists a rational point P; in n=1(Q;), for every 4, where n : X — X is the
normalization. Let xo, ..., z;_1; be homogeneous coordinates of P*~! corresponding to the
first upto the k* row of the generator matrix. Then none of the points @1, ..., Q, lies in
the hyperplane H, given by xg = 0. Let G = n*(X - H) be the pull back of the intersection
divisor X - H to the normalization. Let f; = (z;/x¢)on. Then fo,..., fr_1 € L(G) and they
are linearly independent, since the rank of the generator matrix of C' is k. So I(G) > k.
If I(G) = k then C' = C(X,D,G), where D = (Py,..., P,), that is to say C is WAG. In
other words, we are looking for a curve X in P*~! going through Q1, ..., Q, such that the
linear system of hyperplane sections of X is complete, and such that for every i there is
a rational point in n7(Q;). In the next section we show that indeed there exists such a
curve, going through all the ¢*~! rational points of P¥~! outside a hyperplane. Such curves
were called covering curves by Goppa [9, Ch.4,Sect.10]. Goppa [7, p.78] claimed that every
linear code is WAG. In the proof he only mentioned that if Q4, ..., Q, are n distinct points
in P*~1, then there exists a curve passing through Q, ..., Q,. First of all this reasoning
only applies to projective codes, and secondly, the linear system of hyperplane sections of
this curve does not need to be complete. This would only prove that every projective code
is a subcode of a WAG code, see Lachaud [14, (5.10)].

Remark 6 Let C' be a g-ary projective code of dimension at least 2. Suppose C' =
CL(X, D, G) for some curve X and divisors D and G. If L(G) = L(G — P) for some point
P of X, then P is not in the support of D. Otherwise P = P; for some ¢ € {1,...,n},
so all the codewords have a zero at place i, contradicting the assumption that C' is pro-
jective. Thus G — P has disjoint support with D and C' = C(X, D,G — P). Repeating
this procedure we may assume without loss of generality that G is a divisor such that
L(G) # L(G — P) for all points P, that is to say G has no base points. Let [G) = [ and
let fo,..., fi_1 be a basis of L(G). Consider the morphism

g X — Pl_l7

given by the collection of morphisms {¢; : X\supp(G;) — P'""'}'_{, where G; = G + (f;),
and ¢; is defined by

oy lopy. S
i (P) = (fj<P) R (P)),
for P € X \ supp(G,), see [12, p.128]. Then pg(P) = (fo(P) : ... : fii1(P)), for P €

X\supp(G). This holds in particular for the P;. The morphism ¢g depends only on the
linear equivalence class of G, and on the choice of the basis fy, ..., fi_1 of L(G). A different
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choice of a basis of L(G) gives a morphism which differs by an automorphism of P'=! (see
[11, p.158]). Let Ap be the reduced image of X under the morphism ¢g. Then X} is not a
single point. Even stronger, Ay is not contained in any hyperplane. This follows from the
fact that fo, f1,..., fi_1 are linearly independent. Hence @ is a finite dominant morphism
X — A of curves. Since X is absolutely irreducible, A, is absolutely irreducible too.
Finally, we have

deg(G) = deg(c) - deg(Xo),
since G has no base points, see [12, p.213] .

Definition 6 Let C be a projective code of dimension at least 2. If (X, D, G) is a (WAG,
AG or SAG) representation of C' and G is a divisor without base points and deg(¢g) = 1,
then we call (X, D, G) a minimal (WAG, AG or SAG) representation of C' (respectively).

Proposition 2 Suppose C' is a projective WAG code of dimension at least two. If (X, D,G)
is_a representation of C', with G base point free, then there exists a minimal representation
(Xo, D G) of C and a finite morphism ¢ : X — X, with the following properties:

9 D=(p(P),...,0(F). )

ii) p*(G) ~ G, where p*(Q) is the pull back of G under .
i1) deg(p)

=de ( a).
) deg(G) =deg(G)/ deg(p) <deg(G).
v) g( 0) < g(X), with equality if and only if deg(¢) = 1.
vi) If (X, D, G) is an AG representation, then so is (XO, D G)
vi) If (X, D, Q) is a SAG representation, then so is (Xy, D, G).

Proof: Let I(G) = I. The kernel of the linear map «y, is L(G — D), see Definition 1. We have
k =dim(C) =I(G) —I(G — D). Let fo,..., fi—1 be a basis of L(G) such that fi,..., fi_1 is
a basis of L(G — D). Let A be the (I X n)- matrix

(fj(Pi))j:() ..... I-13i=1,..n-

The first k rows of A form a generator matrix of C. The remaining [ —k rows have only zero
entries. Let the morphism ¢ be defined by the above basis of L(G). The reduced image &
of X under pg is possibly singular. Let n : /'f’o — X, be the normalization of X;. Then n is
a birational morphism. Hence we have a rational map ¢g : X — )Eo such that nopg = pg.
The curve X is nonsingular, hence ¢ is a morphism. The n points ¢g(FP;) (i = 1,...,n)
are rational and we claim that they are all distinct. Indeed, if ¢g(Ps) = @c(P;) then
va(Ps) = pg(P). But og(Ps) corresponds to the s column of the matrix A, and C is
projective, hence s = t. Put P, = ¢g(P;) and D = (Py,...,P,). For j =0,...,1—1, we
denote by g; the function z; /o, which is a rational function on X such that f;/fo = g;opc.
We denote gjon by g;. Let H be the hyperplane in P! with equation 2y = 0 and let H- X,
be the intersection divisor of H with &p. Define Gy := G+ (fy). The pull back ¢ (H - A&p) is

equal to Go. Let Gy = n*(H - Xy). Then @¢ induces an injective map @F from the function
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field of X} into the function field of X', and maps L(G)) injectively into L(Gy). This map
is also surjective since ¢5(g;) = fj/fo, for j =0,....,0 =1, and 1, f1/fo,..., fi_1/fo is a
basis of L(Gy). Let ¢g, be defined by the basis go,...,gi-1 of L(Gy). Note that va, is
equal to the normalization map n. There exists a divisor G which is linearly equivalent
with Gy and has disjoint support with D, by the theorem of independence of valuations,
see [2, p.11]. We have o5 = ¢g , where ¢g is defined by a suitable choice of a basis of
L(G). Hence ¢5(P;) = no ¢pa(P;) = pa(P), for i = 1,...,n. All these points have their
last [ — k coordinates equal to zero. Thus there is an n- tuple A= (A,..., ) € F7, with
all \; # 0, such that Cp(Xy, D,G) = A\CL(X,D,G). As we see from the proof of Lemma
2, we may assume without loss of generality that CL(./'\?O, D,é) = CL(X,D,G). In the
proposition choose ¢ = @¢¢. We have deg(ps) =deg(n) = 1, deg(p) =deg(y¢) and

deg(G) = deg(Gy) = deg(Go) _ deg(G)

deg(p) — deglpg) = 18LE)

see the end of Remark 6. Since G is base point free and ¢ restricts to an isomorphism
L(Gy) — L(Gy), G is base point free too. Since ¢* preserves linear equivalence and G' ~ Gy,
we have ¢*(G) ~ ¢*(Gy) = Gy ~ G. This proves everything in the proposition, except
v),vi) and vii). Note that vi) is an immediate consequence of ). Part v) and part vii)
will follow by the genus formula of Zeuthen-Hurwitz, see [16, p.52] or [11, p.301]. First we
prove that ¢ is separable. The morphism ¢ : X — X, factorizes into ¢ = ¢, o ¢;, where

it X — &

is purely inseparable and .
s 1 X; — Xy

is separable, see [11, p.303,Example 2.5.4]. The morphism ¢; induces an inclusion
¢; + Fy(Xi) = Fy(X),

and the image is equal to

{f7If € Fo(X)} = Fy(X)”
where p” =deg(y;), p is the charactaristic of F, and r is some nonnegative integer. The
curve &; is isomorphic with X', see [11, p.302,Prop.2.5]. Let

be the isomorphism (of curves) which induces the isomorphism (of function fields)
Y* R (X) — F (X)), fr— 7.

Put G; := ¢%(Go). Define the divisor Gj on X by *(G}) = G;. Then Gy = ¢*(Gp) =
Ol @i(Go)) = ¢i(G;) = p'GL. The map ¢! maps L(G;) injectively into L(Gp). The
morphism ¢, induces an inclusion

w5 Fq(')eo) - Fq(Xi>>

8



and ¢* maps L(Gy) injectively into L(G;). Thus ~l(CNJO) < U(G;) < I(Gp). But, as we saw
earlier in the proof of this proposition, I(Gy) = [(Gj), hence

[(Gy) = U(Go). (1)
Now suppose that deg(y;) > 1, that is to say r > 0. Let P €supp(G}). Then
G.<(p—1)G;, <p'G;,—P=Gy— P <G,
Hence
L(G}) € L(Go — P) C L(Go). (2)

On the other hand, ¥* restricts to an isomorphism L(G;) — L(G%), hence I(G;) = I(G}),
and by (1), {(Go) = {(G}). This implies that the inclusions in (2) are equalities, and hence
that P is a basepoint of Gg, a contradiction. Thus deg(p;) = 1, and ¢ is separable. So we
can apply the genus formula of Zeuthen-Hurwitz to ¢:

29(X) — 2 = (29(X) — 2)deg () + deg(R),

where R is the ramification divisor of ¢, which is effective. As shown in [11, p.303,Example
2.5.4], it follows that g(X) > g(AXp). Note that if deg(p) = 1, then R = 0. One easily

verifies that g(X) = g(Ap) if and only if
deg(p) = 1,

or

or
g(X) = 1 with ¢ unramified.

However, in our situation, the second and the third case are included in the first. Namely,
suppose that g(X) = g(AXp) =: g < 1. We have 2 < k <I(G) = l(Gy), hence deg(G) >0 >

2g — 2 and deg(Gy) > 0 > 2¢g — 2, and by Riemann-Roch
[(Go) = deg(G) +1—g,

[(Go) = deg(Go) +1—g.

Since 1(Gy) = I(Gy), we get deg(Go) =deg(Go) =deg(Gy)/deg(p), hence deg(p) = 1. This
proves v). Finally, if deg(G) > 2¢g(X’) — 2, then

_ deg(G) _ 29(X) —2 5y
deg(p) ~ deglyp) - 9\ =2

This proves vii) and completes the proof of the proposition.



Corollary 2 Suppose that (X, D,G) is a WAG representation of a projective code C' of
dimension at least two, with G base point free, and such that g(X) is minimal, that is to
say, for all WAG representations (X', D', G') of C we have g(X) < g(X'). Then (X, D,G)
is a minimal WAG representation of C'. This corollary is also true if ‘WAG’ is replaced by
‘AG’ everywhere, or by ‘SAG".

Proof: Let ()EO, D, @) be a minimal WAG representation of C' with the properties as in
Proposition 2. By the assumption on g(X), and by Prop. 2(v), we have g(Xy) = g(X),
and hence deg(pg) =deg(yp) = 1, by Prop. 2(ii). Since G is base point free, moreover,
(X, D,G) is minimal. The two assertions in the second part of the corollary are proved
similarly, using Prop. 2(vi) and 2(vii), respectively.

II1I. All linear codes are weakly algebraic-geometric

Remark 7 Hansen and Stichtenoth [10] considered the curve X in P? defined by the
homogeneous equation
wqo(wq +x2q—l) — Zqo(yq +yzq_1)7

where gy = 2" and ¢ = 2?""!. This curve is absolutely irreducible, has exactly one (singu-
lar) point P, at the line z = 0, and goes through all the rational points outside the line
z = 0. The linear system of hyperplane sections of this curve is complete. Inspired by
their result we consider the following series of curves.

Definition 7 Let p be a prime number and ¢ a power of p. Let X(l,q) be the closed
subscheme over F, in P! defined by the homogeneous ideal

I(l,q) = (m?“ — 1‘?1’871 + iz — v, i =1,...,1—1)

in Fplzo, ...,z

Proposition 3 The scheme X (l,q) is a projective, absolutely irreducible, reduced curve
over F,. It has exactly one point Py at the hyperplane H with equation xoy = 0, the curve
is nonsingular outside Ps and goes through all the ¢' rational points of P! outside the
hyperplane H.

Proof: The scheme X(l, q) is defined by [—1 equations, hence all the irreducible components
are at least one dimensional. P, = (0 : ... : 0 : 1) is the only point in the intersection
with H, which follows directly from the equations. Let

fi:ygﬂ—yf—i—yiﬂ—yfﬂ for i=1,...,1—1.
Then f; = ... = fi_1 = 0 are the equations of X'([,q) on the complement of H, which is
isomorphic with affine [-space with coordinates yi, . .., y;, where y; = x;/xo. For every fixed
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y; there are exactly ¢'~! solutions y = (y1,..., ) in Fé as well as in qu of the equations

fi,---, fiz1 = 0. Hence X(l,q) has dimension one and is a complete intersection. Let
f=(f1, .., fi1). Computing the derivative of f gives

yi —2y; 1 0
df = ) -
0 Z/qul — 2y 1

Hence df has maximal rank at all points not equal to P, of X (I, q) over Fq. Thus the curve
is nonsingular outside P,,. Thus X'(, ¢) is reduced outside P,, and a complete intersection,
and therefore it is reduced. Let

n:X(,q) — X(,q)

be the normalization of X'(l,q) and P, any point in n~'(Ps). Let v be the discrete
valuation at P.,. Let z; = y;on. Then z, ...,z are rational functions on X (I, ¢) and have
no poles outside n~!(P,). Furthermore

q+1_ 2

— 4
< 2 T Fip1 T Rl

Thus
(¢ + 1)voo(2i) = qVoo(2i41)

Now z; has a pole at Ps, hence Uso(21) is negative. Hence by induction one shows that
there exists a positive integer a such that

Uoo(2i) = —ag' (g + 1)

Consider the map ¢ : X(l,q) — Y, which is the projection with center the subspace
with equations zq = x; = 0, of the curve in P! onto the line ) defined by the equations
xg=...=x; =0. Thent = z(/x, is a local parameter of the point Qoo = (0:1:0:...:0)
in Y. Let the map ¢ : X(I,q) — Y be defined by ¢ = pon. Then Py, is a point of ¢ (Qs)
and v.,(t) = aq'™!, so the ramification index e p. of ¢ at P, is at least ¢'~'. For every
other point Q of Y(F,) not equal to Q.., the inverse image ¢~1(Q) consists of exactly ¢'~!
points over F,, all with ramification index one, since the map

dp : Ta(X (1, q) — oY)

between the tangent spaces, is surjective, as one sees from the derivative df of f. Thus
deg(p) = ¢~ < ep_. Therefore X (1, q) is absolutely irreducible and n~*(Ps) = {Px}, by
the following lemma, and thus X (I, ¢) is absolutely irreducible. This proves the proposition.

Lemma 3 Let X and ) be projective, nonsingular curves over an algebraically closed field.
Suppose Y is irreducible. Let ¢ : X — Y be a finite morphism. Suppose there exist points
Pyin X and Qu in Y such that ¢(Py) = Qo and the ramification indezx ep, of ¢ at Py
is at least deg(p). Then deg(p) = ep.. and X is irreducible and {Ps} = 0 Q).
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Proof: Suppose X, ..., X, are the irreducible components of X'. Let ¢; be the restriction
of ¢ to X;. Then

deglp) = Y de(e) = X en,

Pep=1(Q)

for every point @) of Y. Suppose Py, € &X;. Then

deg(p) > deg(p1) > ep,, > deg(y).

Thus deg(p) = deg(¢1) = €pso- S0 {Ps} = ¢ 1(Qs) and X is the only irreducible
component of X', that is to say X is irreducible. This proves the lemma.

Proposition 4 The normalization of X(l,q) has genus g(l,q), where

-1

9(l,q) = ;{Z ¢ g+ )T =g+ 1) 41}

Proof: Tt follows from the proof of Proposition 3 that
veo(2) = =¢' (g + 1)

and n~!(Py,) consists of exactly one point Ps. Let
! ( l-_l >(1)l‘1‘i
1—1
i=1

Then u is a local parameter of P, since

-1
UOO(U) = Ll i—1 ( 1)171717]00(2@)
st () (g 1y

=[—q+(g+ 1))t =1

Differentiating the equation

1 .
Zign— 2l =2 =2 for 1<i<I—1,
with respect to z; gives

dzit1

= 221' — Zq.
dZi !
Hence we get by the chain rule and induction
de i1
— = 22 — z1).
i g( )

12



Let t = z;!. Then t is a local parameter of Q. in ). Thus

du _ 20
dt — tdz

by J 1—1 ! dz=
I
[—1 , dz;
_ 2 1)1y 1 EF
20 (101 ) Corer
Now .
dZ‘ - . = . . dz
- 1%y i 1)1 I—j 1]71> - -1 i+1
Voo (2; dzl) (g+1) ;qq (¢+1) Vo215 —)
Therefore g J
u _q1az;
Uoo(a) Uoo(ZfUZz ldle)
And we conclude
. L . _ _
Vool o) =20 T g+ 1) T 420 1= (g + 1)

i=1

The map ¢ is separable, has degree ¢~ and is only ramified at P.. Let g = g(I,q). Then

dt
29 — 2 = —2deg(@) + va( ),
g eg(#) + Vool )
by the theorem of Hurwitz-Zeuthen, see [16]. Thus

L i i _
g= 5{261”1 (g+1)"" = (g+ 1)+ 1}
=1

This proves the proposition.

Remark 8 Let P be a point on a nonsingular, absolutely irreducible curve X of genus g
over a field. Let N,, = dim(L(nP)) for n € N. Then 1 = Ny < Ny < ... < Np,y =g, 80
there are exactly g numbers 0 < n; < ... < n, < 2g, such that L(n,P) = L((n; — 1)P).
These n; are called Weierstrass gaps of P. Furthermore, if m € N then

N, = #{m € N|m < n and m is not a gap at P}.
See [4].
Definition 8 Let G(I,q) = {ni,na,...n,} be the set of all gaps of P, on the curve

13



X(1,q) of genus g = g(l,q).

Definition 9 Let

l
P(l,q) = {> kg7 (g + 1) | ki € Z and k; > 0}.

i=1
Proposition 5
G(l,q) =N\P(q)

To prove this proposition we need the following lemmas.
Lemma 4 For every m € Z, there are unique u,v € Z, such that

m=uq+v(g+1)"" and 0<v<q.
Moreover, m € P(l,q) if and only if u € P(l —1,q).
Proof: Since

-1/ .

1= _{; ( ) ) ¢+ (g +1)",

we have that

= —m{iZi < l p ! ) ¢ g +mlg+ 1)

for every m € N, furthermore there exist a,b € N such that m =ag+band 0 < b < g, so

m = {a(qg+ 1)~ —mZ(l_1>qi_l}q+b(q+1)l_1

Let
=a(g+1) —mz<l_1> 1 and v =0,

then m = uqg +v(g+ 1)""! and 0 < v < ¢. If there are another uy,v; € Z, such that
m = u1q + vi(q+ 1)1_1 and 0 < vy < ¢ then we can assume without loss of generality that
up > u, thus (v —u)g+ (vy —v)(¢+ 1)1 =0, so ¢ divides (v; —v), so vy = v, and u; = u
as well. Therefore such v and v are unique.

Now suppose m = uq + v(g+ 1)t and 0 < v < q.

If m € P(l,q), then m = Y!_ kig~(¢ + 1)""! where k; is a non negative integer for
1=1,...,0. But k; = aq + b,where a,b € N and 0 < b < ¢,s0

-1

m={> kg g+ 1) +alg+1)(g+ 1)} g+ blg+ 1),
=1

14



hence v = 3021 jig" ™" (¢ +1)""', by the uniqueness of u, where j; = k; fori =1,...,1 —2
and j;—1 = ki—1 +a(g+1). Thus u € P(I —1,q).
If u e P(l—1,q) then u = Y171 5:¢" ' 7*(¢+1)""! for some non negative integers 7y, ..., ji_1

SO
-1

m={>jid" " (q+1) g +u(g+ 1) e P q).

=1

This proves the lemma.

Lemma 5

#IN\P(l,q)) = g(l,q)

Proof: By induction on 1.
(i) We have that P(2,q) = {ig+ j(q¢+1) | i,j € N}, so
q—2
N\P2,q) = J{kq+ (k+1),kg+(k+1)+1,...,(k+1)g—1},

k=0

which is a union of mutually disjoint sets, hence

#HN\P)= (g~ 1)+ (g-2+..+2+1=qlg 1)

which satisfies the conclusion.
(ii) Assume the conlusion is true for [ — 1. By Lemma 4 we have that

N = {ug+v(g—1)""[u<0,0<v<glU{ug+vg+1)""|u>00<v<q},

where the two sets are disjoint . We denote the first set by N7, and the second one by Ns.
Then

NAP(q) = (N1 \P(l,q)) U (N2 \ P(l, q)).
1) For each ug + v(q — 1)~ € Ny \ P(l, q), we have u € N\ P(l — 1,q) by Lemma 4, so

1

#(N2\P(l,q)) = ¢#(N\P(—1,q)) = QQ{i ¢ g+ 1) = (g + 1)+ 1}

2) For each uq+v(qg—1)""1 € Ny \ P(l,q), we have u < 0 and 0 < v < ¢. Hence

uq + v(q + 1)l_1 >1e —ug<vig+ 1)l_1 —1

-1
[—1 4
<:>—uq§v{z< ; )q’}%—v—l
=1



since v — 1 < ¢ — 1. Hence

#(Nl\m,q)):qivi< 11 )q

v=1 =1 t

- ;q(q— Y < l_z-l >qi‘1 = ;{Q(Q‘F DT = (g+ 1) =g+ 1}

=1

Combining 1) and 2) gives

-2

#N\P(,q) = 3¢+ 1) ~ala + 1) + gt

i=1

talg+ 1) =g+ D) =g+ 1}
1 -1 y - B
=512 ¢ g+ D) = (g + 1)+ 1) = g(l q).
=1

This proves the lemma.

Proof of Proposition 5: If m € P(l,q) then m = ¥'_, ki¢""*(q + 1)’, where k; is a non
negative integer for : = 1,...,[. Now

!
Voo(2F1 282 . 2F) = — S kg (g + 1) = —m,
i=1
since vo(z;) = —¢' (g + 1)  for i = 1,...,1. So 2"25* ... 2" is an element of L(mPy)
and not of L((m — 1)Py), hence m is not a gap of Py, so G(I,q) € N\P(l,q). But by
Lemma 5 we have that #G(l,q) = g(l,q) = #(N\P(l,q)). Therefore G(I,q) = N\P(l,q).

This proves the proposition.

Proposition 6 The vector space L(mPsy) is generated by

l
(= Dk (a+ 1) < m.

i=1
Proof: This follows from Proposition 5 and Remark 8.
Corollary 3 If2¢"~' > ¢""H(q+1)"" then 1,z, ..., 2 is a basis of L(¢""* (g + 1) Px).

Proof: 1t follows from Proposition 6 and the assumption that 1, z,...,2; generate the
vector space we consider. The valuations at P, of these i + 1 elements are mutually
distinct, so they are independent.

Corollary 4 A g¢-ary first order Reed-Muller code of dimension 3 is AG.
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Proof: A g-ary first order Reed-Muller code of dimension 3 is represented by (X (2, q), D, G),
by Corollary 3, where Py, ..., P2 are the ¢* rational points of the complement in P? of the
line with equation zo = 0, and D = Zgil P and G = (q+ 1)1500. The divisor G has degree
q + 1 which is smaller than ¢?. This proves the corollary.

Proposition 7 If C' is a g-ary linear code which has a code word of weight equal to the
word length, then C is WAG.

Proof: Let C have dimension k. We may assume that the all one vector is a code word, by
Lemma 2. Choose a generator matrix of C' such that the all one vector is the first row. Let

Q1,...,Q, be the points of P*~! corresponding to the n columns of the generator matrix.
Define
s = max{t| there exist i; < ... < ; such that Q;, = ... = Q}.

Let [ = [k + log,s]. Then s < ¢'~**! and there are n distinct points P, ..., P,, rational
over F,, in P! such that 7(P) = Q;, where 7 : P'\ H — P*~! is defined by 7(zg : ... :
x;) = (xo:...:x_1) and H is the hyperplane with equation xy = 0, since the fibres of 7
are isomorphic with A%+, Choose a power qq of ¢ such that 2¢5~" > ¢} (qo +1)*~!. Let
X =X(,q)and G =¢5*(go+ 1) '"Pyand D= P, +...+ P,. Then C = C(X,D,G)
by Corollary 3 and C' is WAG. This proves the proposition.

Theorem 2 FEvery linear code is WAG.

Proof: Let C be a linear code. Then the dual of the extended code C of C, has word length
n + 1 and the all one vector is an element of (C)*. Thus (C)* is WAG by Proposition 7,
so C' is WAG by Corollary 1. But C can be obtained from C by puncturing at the last
coordinate. Therefore C'is WAG, by Lemma 1. This proves the theorem.

IV. Criteria for linear codes to be algebraic-geometric

We first mention a few well-known theorems (Theorems 3,4,5) and bounds on the genus of
a curve.

Definition 10 For any divisor D on a nonsingular, absolutely irreducible curve X over a
field we define [(D) = dimL(D) and (D) = dimQ(D).

Remark 9 If deg(D) < 0 then {(D) = 0. If deg(D) > 2g — 2 then i(D) = 0, where
g is the genus of the curve. The Riemann-Roch Theorem states that

I(D) = deg(D) + 1 — g +i(D).

So it gives a lower bound on (D) in terms of the degree of D. The following theorem gives
an upper bound.

17



Theorem 3 (Clifford) If (D) > 0 and i(D) > 0, then (D) < 5deg(D) + 1.

1
2

Proof: See [11].

Remark 10 A hyperelliptic curve is an absolutely irreducible, nonsingular curve of genus
at least two, which has a morphism of degree two to the projective line. The pull back
under this morphism of a point of degree one on the projective line is called a hyperelliptic
divisor. A hyperelliptic curve over F, has at most 2q+2 rational points. If g > 2, then
we have equality in Clifford’s theorem if and only if D is a principal or a canonical divisor
or the curve is hyperelliptic and the divisor D is linearly equivalent with a multiple of a
hyperelliptic divisor, see [11, p.343].

Definition 11 Let N,(g) be the maximal number of rational points on a nonsingular,
absolutely irreducible curve, over F, of genus g.

Theorem 4 (Serre’s bound)

Ny(9) <q+1+g[2\/q

Furthermore,
N»(g) < 0.83g + 5.35,

Proof: See [20].

Remark 11 Table I gives some exactly determined values of N,(g). See [16, p.34],[19]
and [20].

Table I. Some known values of N,(g).

| ¢ JO[1[2]3[4[5]6[7]8]915]19[21]39[50]
Ny(g) [[3]5 7 (8]9]10]10[11]12]1 [40 |
Ni(g) [4]7] 810
Ni(g) [5]9]10]14

Theorem 5 (Castelnuovo’s bound) . Letl > 1. If X is an absolutely irreducible curve,
over Fy, in P! and not contained in any hyperplane, then

9(X) < w(m,1).
Here m is the degree of X in P!, and w(m, 1) is defined by

w(m,1) =0,
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t(t—1)
2
where t is an integer such that m — 1 =t(l—1)+c and 0 <e <l — 1.

w(m,l) = (1 —1)+te, if I > 1,

Proof: See [1], where the proof is given for curves over the complex numbers. In [11] the
proof is given in arbitrary characteristic for [ = 3. One can easily make a proof for arbi-
trary [ and in any characteristic, by a combination of [1] and [11].

Remark 12 It is easily verified that 7(m, ) < w(m/,1), it m < m/’.

The following proposition is hidden in a remark of Katsman and Tsfasman, see [13].

Proposition 8 Let C be an [n, k] code. If C is AG, then 2k < n+d*+—1, where d*+ = d*+(C)

is the minimum distance of C+.

Proof: 1f C* is MDS then d*+ = k+1, hence 2k < n+d* —1. So we may assume that C* is
not MDS, that is to say d+ < k. If C'is an AG code, then C' = C(D, G) for some divisor
G of degree m < n and k = I(G). Now C*+ = Cqo(D, G), so there exist d* distinct indices
i1, ...,1q0 and a differential w € Q(G — D), such that resp, (w) # 0 for j =1...d*, and

resp,(w) =0 for i & {iy,...,iq1}. Put D; = Z;l; P;;. Then w is an element of Q(G — D)
and not of Q(G). But Q(G — D;) contains Q(G), so

i(G—Dy) >i(G)+1>0.

Hence
G —D)=m—d-+1—-g+i(G— D) >
>m4+1—g+i(G)—d-+1=k—d-+1>0,

using the Riemann-Roch Theorem twice. We have

_ gL

by Clifford’s Theorem. Therefore 2k < m+d+ < n+d*+ — 1, since m < n — 1. This proves
the proposition.

Remark 13 The g-ary first order Reed-Muller code C' of dimension 3 has length ¢* and
minimum distance ¢(q — 1), see [3]. By Corollary 4 this code is AG. If ¢ > 7, then C*
is not AG, by Proposition 8, since 2(¢*> — 3) > ¢* + q(q — 1) — 1 if ¢ > 7. Thus we have
examples of codes C such that C' is AG and C is not AG (see Remark 2).

Definition 12 let g,(n) be the minimal genus of a nonsingular, absolutely irreducible
curve X over F,, with at least n rational points.

Remark 14 Serre’s bound implies n < g + 1 + g4(n)[2,/q], for all n
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Proposition 9 Suppose (X, D, G) is an AG representation of a q-ary [n, k] code and let
m = deg(G) (< n).

a) If m < 2g —2, then k < [(n+1)/2].

b) If m > 2g — 2, then g4(n) < g <n—k.

Proof: a) If k = 0, then there is nothing to prove. So assume k > 0, hence I(G) = k > 0.
If g <n—k, then

E=UG)=m+1—-g+i(G)<g—14+iG)<n—k—-1+i(G),

hence 2k <n — 1 +i(G). It follows that i(G) > 0 or k < (n—1)/2.
If g >n—k, then

E=1(G)=m+1—g+i(G)<m+1-—n+k+i(G) <k+i(Q),

hence i(G) > 0.

If i(G) > 0, then k =1(G) <m/2+1 < (n+1)/2, by Clifford’s Theorem. Thus in every
case k < [(n+1)/2].

b)If m > 2g—2, then i(G) = 0. Hence k = m+1—g < n—g. This proves the proposition.

Corollary 5 There exists a q-ary [n, k] SAG code if and only if
9q(n) < min{k,n — k}

Proof: If a g-ary [n, k] code has a SAG representation, then g,(n) < n — k, by Proposition
9b. The dual of this code is a SAG [n,n — k] code, by Corollary 1. Hence, again by
Proposition 9b, g,(n) < k. Conversely, by definition, there exists a nonsingular, absolutely
irreducible curve X over F, of genus g = g,(n), having (at least) n distinct rational points,
Py,...,P, say. Put D = P + ...+ P,. There exists a divisor G of degree k + g — 1
and with disjoint support with D, by the theorem of independence of valuations. Now
2g—2<deg(G)=k+g—1<n,since g < kand g <n—k. Thus (X, D,G) represents a
SAG [n, k] code. This proves the corollary.

Corollary 6 If there exists a g-ary [n, k| AG code, then

n+1
2

k<[——] if go(n)>n—k

and (2va@ - Dn+q+1
2\/4]

Proof: Suppose (X, D,G) is an AG representation of a g-ary [n, k] code. Let m =deg(G).
If g,(n) > n—k, then m < 2¢g—2, by Proposition 9b. Thus k& < [(n+1)/2], by Proposition
9a. If g4(n) < n — k then

n<q+1+g,n)2yg <qg+1+(n—k)2yq,

k<]

] if gq(n) <n-—k.
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by Serre’s bound, so

(2va] = )n+q+ 1]
2vdl '

Remark 15 Here and in Section V we shall investigate which Hamming codes H(r, q)

are AG. The code H(r,q) is only determined up to isometries (see Definition 5), but this
question makes sense anyway, by Lemma 2.

k<]

Corollary 7 Ifr > 3 and the Hamming code H(r,q) is AG then (r,q) = (3,2).

Proof: Let r >3,n=(¢"—1)/(¢g— 1) and k = n —r. Then H(r,q) is an [n, k] code, see
Definition 5. The minimum distance of its dual is ¢"~*. If H(r,q) is AG then Proposition
8 implies that

q-—1 q-—1 1
2 —r) < -1
SO i 1
q;<2r.

qg—1
This is only possible in case the pair (r, q) is equal to (3,2), (4,2), (3,3) or (3,4). To exclude
the last three possibilities, observe that g2(15) > 4, g3(13) > 3 and g¢4(21) > 3, by Table
I, hence g,(n) > r = n — k in these three cases, and apply Corollary 6. Since in all three
cases k > [(n 4 1)/2], we get a contradiction. This proves the corollary.

Remark 16 In Section V we shall see that H(1,q) and H(2,q) are SAG, for every g,
and that H(3,2) is SAG.

Proposition 10 Let k > 2. Let (X, D,G) be a minimal representation of a projective
q-ary [n, k| code. Let | =1(G). Then

gq(n) < g(X) < 7(deg(G),l —1).
In particular, if (X, D,G) is AG, moreover, then
9q(n) < g(X) < m(deg(G), k — 1).

Proof: By assumption, the divisor G’ has no base points and the morphism g : X — P!
has degree one. Hence deg(Xy) =deg(G), where A} is the reduced image of X under ¢,
see Remark 6. Since X has (at least) n rational points, we have g,(n) < g(X). Since
deg(ve) = 1, we have g(&X') = g(&Xp). The result now follows from Castelnuovo’s bound,
applied to the curve &), which is absolutely irreducible and does not lie in any hyperplane.
The second part of the proposition follows from the fact that deg(G) < n implies | = k.

Corollary 8 Let k > 2. If there exists a g-ary projective AG [n, k] code then

gq(n) <m(n—1,k—1).
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Proof: 1f a g-ary projective AG [n, k| code exists, then there exists a minimal AG represen-
tation (Xp, D, G) of this code, by Proposition 2. The result now follows from Proposition

10, applied to this minimal representation, and Remark 12, using deg(G) < n — 1.

Proposition 11 If there exists a binary projective AG [n, k] code, then
a) If n > 14 orn =12 then k < [n/2],
b) If n =11 orn =13 then k < n/2.

Proof: 1t k < [n/2], then there is nothing to prove. Suppose k > [n/2]. If go(n) < n —k
then n
n < 0.83(n — [5]) +5.35,

by Serre’s bound, which implies n < 10. Suppose n > 10. Then g3(n) > n — k, by the
above. So by Corollary 6, we have

Fl<k<)

There are the following possibilities, a priori:

i) k>5and n =2k,

ii) k > 5 and n = 2k + 1,

iii) £ > 6 and n = 2k — 1.
In the first case m(n — 1,k — 1) = k + 2. Hence go(n) < k + 2, by Corollary 8. So
2k < 0.83(k + 2) + 5.35, by Serre’s bound. Thus k£ < 5, and n < 10, and there is nothing
to prove. Similarly we get £ < 6,n < 13 in the second case, but now k& < n/2. Finally, we
get k < 5,n <9 in the third case, which therefore cannot occur. Combining the above we
get the desired result.

Corollary 9 The binary Golay code and its extension are not AG.

Proof: As we know, the minimal distances of the dual codes of the binary Golay code and
its extension are greater than 3, see [17]. The binary Golay code is a [23,12] code and its
extension a [24,12] code, so they are not AG, by Proposition 11.

Remark 17 Our results do not yield a similar result concerning the ternary Golay code
and its extension. The question whether these codes are AG is still unanswered.

Corollary 10 For everyt > 2, r >t and ¢ € {0,1}, the r-th order binary Reed-Muller
code RM (r,2t + €) of length 2% is not AG.

Proof: Let r > 1 and m = 2t +¢, where t > 2 and ¢ € {0,1}. The code RM (m —r —1,m)
is the dual code of RM (r,m). The length of the codewords of RM (r,m) is n = 2™, the

dimension of RM (r,m) is 1+ ( T > +...+ ( T ) , and the minimum distance of RM (r,m)

22



is 2™ see [3] and [17]. So d-(RM(r,m)) = 2"t > 3. If RM(r,m) is AG then, since
n > 16,

dim RM (r,m) < [g] —1=om1lo,

by Proposition 11. However, if m = 2t or m = 2t + 1, and r > ¢, then

) ++<T) > gm=l 5 om=1 _

which gives a contradiction. This proves the proposition.

m

dim RM (r,m) :1+< !

Lemma 6 . Suppose (X, D,G) is an AG representation of an [n, k] code. Then deg(G) <
k+g—1. If k#0 and deg(G) < k+ g — 1, then deg(G) > 2k — 2.

Proof: By the Riemann-Roch Theorem, k = I(G) > deg(G) —g+1, so deg(G) < k+g—1.
If deg(G) # k + g — 1, then by Clifford’s Theorem k < 3deg(G) + 1, since I(G) =k > 0
and i(G) = k — deg(G) + g —1 > 0. Thus deg(G) > 2k — 2.

Corollary 11 . If (X, D, G) is an AG representation of an [n, k| code, and g < n—k and
k > [n/2], then deg(G) =k + g — 1.

Proof: 1f deg(G) # k+ g — 1 then 2k — 2 < deg(G) < k+¢g—1<n—1, by Lemma 6, so
k < [n/2]. This contradicts the assumption on k.

Proposition 12 (See Table II). Let C' be a binary [n, k| code with 4 < n < 10. Let ko and
k' be given by Table I1.

a) If k > ko, then C is not AG.

b) Suppose that C is AG and projective, and that k = k'. Let (X, D,G) be a minimal AG
representation of C'. Let g be the genus of X and let m =deg(G). Then (g,m) = (¢’,m’)
for one of the pairs (¢',m’) given in the last column.

Table II. Restrictions on binary AG [n, k] codes,
see Proposition 12.

L [k [¥] (g, m') |
10]5]5 (6,9) (7,9)
9155 (5,8)
S[4]4 46) 4,7) (57 (6,7)
7144 (3,6) (4,6)
6|44 (2,5)

3124 (3.4) (3,5) (4,5) (5.5) (6,5)
5044 (1,4)

3 1.3) (2.4) (3.4
11373 (1,3)
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Proof: a) For every n, the proof goes as follows. If k > kg, then k > [(n + 1)/2], while
n—k<n—ky<gy(n), by Table I. By Corollary 6, C' cannot be AG.

b) We shall only give the proof for the case n = 6, k = 3. The proofs in the other cases
are analogous, and sometimes simpler. So let n = 6 and k£ = 3. By Table I, ¢g5(6) = 2,
hence g > 2. We have m <n = 6. If m =5, then 2 < g < 7(5,2) = 6, by Proposition 10.
The case (g,m) = (2,5) is excluded by Lemma 6. If m = 4, then 2 < g < 7(4,2) = 3, by
Proposition 10. Since 7(3,2) = 1 < 2 < g, it is not possible that m < 3, by Proposition
10 and Remark 12.

Remark 18 In Proposition 12b we do not claim that for every pair (¢’,m’) given in the
table a minimal AG representation with (g,m) = (¢, m') actually exists. As a matter of
fact, in the next section we shall prove that for n = 7, k" = 4, the case (¢’,m’) = (4,6) is
impossible!

Proposition 13 There exists a binary SAG code of length n if and only if n <8

Proof: By Proposition 11, SAG codes of length n > 11 do not exist, since a SAG code
is AG and its dual is too, but they cannot both have dimension < n/2. The cases with
n < 10 are dealt with by Corollary 5 and Table I: only for n < 8 there exists a k such that
g2(n) <min{k,n — k}.

Remark 19 (See Remark 3) There exists a binary SAG [5, 4] code, by Corollary 5, since
g2(5) = 1, by Table I. This code is a fortiori AG. Puncturing this code gives a binary [4, 4]
code, which is not AG (and not SAG), by Proposition 12.

V. Explicit representations

In part A of this section we shall give a complete answer to the question: for which r
and ¢ is the Hamming code H(r,q) AG? In the affirmative case we shall give an explicit
AG representation, and discuss uniqueness. In part B of this section we shall discuss an
example of a code which was mentioned in a different paper, and prove that it is SAG.

A. Hamming codes

Remark 20 Suppose that C' is a linear code and that (X, D, G) is a representation of C,
where D = (P, ..., P,). Now let G’ be a divisor on & which is linearly equivalent with G,
and which has disjoint support with D too. Let ¢ = C(X,D,G"). Let f be a rational
function on X such that G = G’ 4 (f). Then f is defined at P; and f(F;) # 0, for all i.
In the special case (which is the only possible case if C' is binary), that f(F;) = f(F;) for
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all 7 and j, we have C' = C’. This is a sufficient, but, in general, not a necessary condi-
tion, by the way. By the theorem of independence of valuations, see [2, p.11], there are
infinitely many rational functions f on X with f(F;) = 1 for all i. Hence C has infinitely
many representations Cp (X, D,G’). Now return to the general case, where G’ and f are
arbitrary. Then C" = AC, where A = (A\y,...,\,) and \; = f(P) € F,\ {0}. If o is a
permutation of {1,...,n}, then C(X,0D,G) = oC. For the definition of A\C', ¢C and
oD, see Definition 4 and the proof of Lemma 2. We have C(X,0D,G) = C' if and only
if o €Aut(C). Here Aut(C) is the automorphism group of C, see [17, p.229]. We see that
the triple (X, 0D, G") represents a code that is isometric with C'. The proof of Lemma 2
shows that every code isometric with C' can be represented this way, that is to say, by a
triple (X,0D,G") for a suitable permutation ¢ and a divisor G’ linearly equivalent with
G. If X' is a curve and ¢ : X’ — X is an isomorphism, then Cp(X’, *(D), ¢*(G)) is also
a representation of C. Here ¢*(D) and ¢*(G) denote the pull backs of D and G to X’
under ¢, respectively. When discussing uniqueness of representations of codes, one doesn’t
wish to distinguish between isomorphic curves, nor between linearly equivalent divisors G,
nor between divisors D which can be obtained from each other by a permutation of the
rational points in their support. By the above reasoning, it is therefore more convenient
and more useful to think of a representation as a representation of the whole collection
of codes isometric to a particular code, rather than to consider it as a representation of a
single code. For given X’ and D it is actually sufficient only to specify the linear equivalence
class of (G, since in the linear equivalence class of any divisor there is a divisor which has
disjoint support with D, by the independence of valuations.

Therefore, we introduce the following concepts.

Definition 13 a) If two linear codes C' and C’ are isometric, we denote this by C' ~ C".
We define the isometry class of a linear code C' to be the set of all codes which are isometric
with C, and we denote this class by [C].

b) Let (X, D,G) and (X', D', G') be representations (not necessarily of the same code).
Let D = (P,...,P,) and D' = (Q1,...,Q,). We call these representations isometric,
denoted by (X, D,G) ~ (X', D', G"), if there exists an isomorphism ¢ : X’ — X and a
permutation o of {1,...,n}, such that ¢(Qs@;)) = B, for all 4, and such that the pull back
©*(G) of G is linearly equivalent with G'. We define the isometry class of a representation
(X, D, G) to be the set of all representations isometric with this representation, and denote
it by [(X, D, G)].

¢) We call an isometry class [(X, D, G)] of representations a representation class of an
isometry class [C] of codes if CfL(X, D, G) is isometric with C.

Remark 21 a) Isometry of codes and isometry of representations are equivalence rela-
tions in the sets of codes and representations, respectively. The isometry classes defined in
Definition 13a) and b) are the equivalence classes under these equivalence relations.

b) We call a representation class (WAG), AG, SAG or minimal according to whether
there is a representation in this class which is (WAG), AG, SAG or minimal, respectively.
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This definition is obviously independent from the choice of the representation. Besides,
deg(G) and ¢g(X) do not depend on this choice either. Similarly, we can speak about a
WAG, AG or SAG isometry class of codes, by Lemma 2.

c) As pointed out in Remark 20, isometric representations represent isometric codes,
and if a code C' is represented by (X, D, G), then for every code in [C] there is a represen-
tation of this code in [(X, D, G)].

d) To specify a representation class it is of course sufficient only to give one of the
representations in this class.

e) We shall not be too careful with the language we use to express that a (class of)
code(s) is represented by a (class of) representation(s). But by Remark 20 there will never
be misunderstandings about the right interpretation.

Remark 22 Recall from Section II (Definition 5 and Remark 4) that H(r,q) denotes
any g-ary linear code with parameters [n = (¢" — 1)/(q — 1),n — r, 3] (codes of the same
length and dimension, but with minimum distance greater than 3 do not exist). All such
codes are isometric. From now on, we shall use the notation H(r,q) also to denote the
isometry class consisting of all the g-ary linear codes with these parameters. It is well-
known and easily deduced from Definition 5 and Remark 4 that a g-ary linear code is a
Simplex code S(r, q) if and only if it has parameters [n = (¢" —1)/(q¢ — 1), 7,¢"']. Similar
to the case of the Hamming codes, we shall also use the notation S(r,q) to denote the
isometry class consisting of all the g-ary linear codes with these parameters.

In Section IV (Corollary 7) we already saw that the only Hamming codes that can
possibly be AG are those with r =1, r = 2, or (r,q) = (3,2). The cases r = 1 and r = 2
are dealt with by the following proposition.

Proposition 14 For every q, H(1,q) and H(2,q) are SAG.

Proof: Let X = P!, the projective line over F,. Let P,..., P41 be the F,rational
points on X. We have H(1,q) = {0} = Cp(X,D,QG) if we choose D = P, G = —Ps.
In this case 2g —2 = =2 < —1 = deg(G) < 1 = n. Hence H(1,q) is SAG. To prove
that H(2,q) is SAG, take the same curve X', but now take D = P, + --- 4+ P4y, and
let G be any divisor of degree ¢ — 2, with support disjoint from the support of D. Since
g=0,CrL(X,D,Qq) is an MDS code with parameters [n =q+ 1, k=q—2+1=q— 1,
d=q+1—(q—2)=3|, by Theorem 1, i.e. C(X,D,G) is a Hamming code H(2,q). We
have 2g — 2= -2 < q¢—2 =deg(G) < ¢+ 1 =n. Hence H(2,q) is SAG.

Remark 23 a) The number of SAG representation classes of a given code is always finite,
because the genus g is upper bounded by 29 — 2 < m < n, hence g < n/2, and because
there are only finitely many nonisomorphic curves of a given genus, and the number h of
linear equivalence classes of divisors of degree m is finite for each curve.

b) The number of minimal AG representation classes of a given projective code of di-
mension at least two is finite, since the genus ¢ is upper bounded by g < w(n — 1,k — 1),
by Proposition 10 and Remark 12.
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Remark 24 o) The SAG representation class of H(1,q) given in the proof of Proposi-
tion 14 is unique, that is to say, H(1, ¢) has no other SAG representation classes. Namely,
suppose that (X, D,G) is a SAG representation of H(1,q) and let m =deg(G). Then
2g—2<m < n=11implies g = 0 and m € {-1,0}. If m = 0, then the dimension of
Cp(X,D,G) is one. Hence m = —1. All divisors of degree —1 on X are linearly equivalent.

b) There are infinitely many AG representation classes of H(1,q). Namely, choose any
curve X over F, having at least one rational point, P, say. Put D = P;. Let G be any
divisor on X with P; ¢supp(G) and deg(G) < 0. Then L(G) = {0} and C(X, D, G) is an
H(1,q). We could also let G be a divisor of degree 0 on X which is not principal (such a
G exists if and only if A > 1).

c¢) For example in the case ¢ = 2 we find infinitely many AG representation classes
of H(2,q) as follows. Choose any curve X over Fy having at least three rational points,
Py,P, and P3, say, and put D = P, + P, + P3. Take G = 0. Then L(G) = {0,1}, hence
Cp(X,D,G) ={000,111}, which is an H(2,2). If there is a fourth rational point on X, P,
say, then we could also take G = P, (and the same D). Namely, it follows that g > 0, and
by Riemann-Roch and Clifford’s theorem (see also [11, p.138,Example 6.10.1]), I(G) = 1,
hence again L(G) = {0,1}. If we choose for X an elliptic curve with at least four rational
points, this latter example gives a representation which is not only AG, but even SAG,
which shows that the SAG representation class of H(2,q) given in the proof of Proposition
14 is not unique (at least for g = 2).

Let us now concentrate on H(3,2). We shall prove that H(3,2) is indeed AG (we shall
even prove that it is SAG), and, moreover, that it has a unique minimal AG representation
class. The latter statement is not true if we replace AG by WAG, as we shall see. To do so,
let us first try to find a triple (X, D, G) such that the code CL(X, D,G) is a binary code
with parameters [7,4, 3], hence is equal to an H(3,2). First of all, we need a nonsingular,
absolutely irreducible projective curve defined over F5, having at least seven rational points.
Such a curve cannot be hyperelliptic (since then it would have at most six rational points),
and it has genus at least three (see Table I). If it has genus equal to three, such a curve,
since not hyperelliptic, is isomorphic to a nonsingular and absolutely irreducible plane
projective curve of degree four. Let S be the set consisting of all the (not necessarily
nonsingular or absolutely irreducible, a priori) plane projective curves X of degree four,
which have the following property: X goes through all the seven F-rational points of P2,
and none of these seven points is a singularity of X'. The set S is easily computed. It has
24 elements.

One of the curves in S is the following one, which we call &, defined by

zy(r +y) (v + 2) + 222 (2 + 2) + y*2(y + 2) = 0. (3)

This curve was mentioned earlier by Serre [20]. We have checked that X; is nonsingular.
By Bézout’s theorem it is also absolutely irreducible. Let L be one of the seven lines
defined over Fy in P2. By Bézout’s theorem, the degree of the intersection divisor L - X; is
4. There are three rational points on L, which are also on Xj. It follows that X} intersects
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L with multiplicity 2 at exactly one of them, and that the intersection is transversal at
the two remaining points. In other words, the tangents to X at the seven rational points
are precisely the seven lines defined over Fy. We have named these points and lines, and
computed the intersection divisors with the curve in Table ITI. We shall denote by L; the
tangent line to &} at P, and by L;; the line through P; and P;.

Table III. The Fs-rational points P; on the curve Xj, the tangents L; to &)
at these points, and the intersection divisors L; - A].

| P, L L X

Pl—(O()l) =0 2P1 + P2 + P3
P,=(0:1:0) z2=0 2P, + P, + Py
P4:(100) y:O P1 + 2P4 + P5
P5:(101) ZE+Z:0 P2 + 2P5 —f- P7
P6:(110) ZL’—Fy‘f‘Z:O P3 + P5 + 2P6
P7*(111) x—l—y:O P1 + P6 + 2P7

The group PGL(2,Fy) of Fy-automorphisms of P? acts on the set S, and has order 168.
It also acts on the set {P,..., P;} of Fo-rational points, and on the set {L;,..., L7} of
lines over Fy. Put H := {7 € PGL(2,Fy)|r(P;) = P1}. This is a subgroup of PGL(2,F5)
of order 24.

Lemma 7 'H acts transitively on S.

Proof: Suppose 7 € H is such that 7A; = X;. Evidently, H acts on the group Div(A}) of
divisors on A&7, and for every ¢ we have

T(Li'Xl):TLi'TXl:TLi'XlzLj'Xl,

for some j. Since there is only one line L; with vp, (L; - X1) = 2, L; namely, we must have
TL1 :Ll. Hence either Z)T(Pg) :P2 and T(Pg) :Pg, or ZZ)T(PQ) :Pg and T(Pg) :PQ.
For similar reasons, in case i), 7Ly = Ly and 7Ls = L3, and in case ii) 7Ly = L3 and
TL3 = Ly. In both cases we get {7(Py)} = {7(LaN L3)} = 7LoN 7Ly = Ly N Ly = {Py}.
In case i) we now have three non-collinear points Pj, P, P, fixed by 7, which implies that
7 is the identity. Case i) cannot occur, because in this case it follows that 7(Fs) = P;
and 7(P;) = Py, and we get 7(L7 - X)) = 7(P, + Ps + 2P;) = P, + 2P + P;, which is not
an intersection divisor L; - &}, a contradiction. This proves that the H-stabilizer of X is
trivial, and hence that the H-orbit of &} has order 24. This proves the lemma.

By this lemma, all the 24 curves in the set S are isomorphic (even stronger: they only
differ by a projective change of coordinates), and they are all nonsingular and absolutely
irreducible, since X; is. By the preceding discussion we have the following result.
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Lemma 8 Any absolutely irreducible nonsingular curve defined over ¥y, of genus three,
having at least seven rational points, is isomorphic to the curve X.

So now we already have a curve AX; and a divisor Dy := P, + P, + -+ + P;. The
remaining problem is to find a suitable divisor G on &}, provided it exists.

Remark 25 The following lemma, does not only apply to our situation, but it is true
for a general triple (X, D, G). It is an analogue of Lemma 6.

Lemma 9 If (X, D,G) is a representation of a q-ary [n, k] code and m :=deg(G) > n,
then k=n ork > (m+n)/2—g.

Proof: (See Definition 1). We have k£ = I(G)—dim(kernel ar)= I(G) — (G — D) < n,
by the Riemann-Roch theorem. If inequality holds, then necessarily dim Q(G — D) > 0,
and by Clifford’s theorem, I[(G — D) < 1+ (m —n)/2. Hence k = l[(G) — (G — D) >
m+l—g—1—(m—n)/2=(m+n)/2 —g.

Returning to the specific curve Xy, let C' := Cp (X, D1, G) have dimension k. If k = 4,
then necessarily deg(G) = 6 or deg(G) = 7, by Lemmas 6 and 9. If deg(G) = 6, then
indeed k = [(G) = 6 + 1 — 3 = 4, by the Riemann-Roch theorem. If deg(G) = 7, then
I(G)=7+1—-3=5, and we have k = [(G) — [(G — D), while deg(G — D;) = 0. Hence
k = 4 in this case if and only if G — D, is a principal divisor, i.e. G ~ D;. We have proved
the following lemma.

Lemma 10 The dimension of C = CL(Xy, D1, G) equals 4 if and only if deg(G) = 6 or
G ~ D (provided supp(G)Nsupp(Dy) =10).

The thing left to do is to settle the problem that C' might have the wrong minimum
distance. Any binary [7,4] code has minimum distance at most 3, hence d(C) < 3.
The following lemma applies to the curve Aj.

Lemma 11 Let X be a non-hyperelliptic curve of genus g > 3. If B is an effective divisor
on X of degree at most two, then I[(B) = 1. Hence, if two effective divisors on X of degree
at most two are equivalent, then they are equal.

Proof: The case B = 0 is trivial. Suppose that deg(B) > 0. Since B is effective, we have
1 < I(B) =deg(B) + 1 — g +i(B), by the Riemann-Roch Theorem. Since deg(B) < 2
and g > 3, it follows that i(B) > 0. Since 0 <deg(B) < 4 < 2g — 2, B is not principal
or canonical, hence [(B) < 14+deg(B)/2 < 2, by Clifford’s Theorem, Remark 10, and the
assumption that X is not hyperelliptic. This proves the lemma.

Proposition 15 If G ~ Dy (and supp(G)Nsupp(Dy1) = B), then C = C(X1, D1,G) is a
binary [7,4,3] code.
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Proof: The only thing left to prove is that d(C') > 3. Let G = Dy + (fo), with fy a nonzero
rational function on X;. Since supp(G)Nsupp(D;) =0, vp(fo) = —1fori=1,2,...,7. A
nonzero codeword of weight < 2 exists if and only if an f € L(G)\L(G — D;) exists such
that (f) > -G+ P,+ P, + P.+ P;+ P., for some distinct a, b, ¢, d, e. Since G = D + (fy),
this is equivalent to (f) > —(fo) — Ps — P;, for some distinct s and ¢, that is to say,
ffo € L(P; + P,). But this cannot happen, since we would have ff; = 1, by Lemma 11,
and hence vp,(f) = —vp,(fo) =1 fori=1,2,...,7, contradicting f ¢ L(G — D).

Remark 26 As already pointed out in Remark 20, divisors G € [D;] with supp(G)Nsupp(D;)
= () exist, by the theorem of independence of valuations. To give the representation ex-
plicitly, we need an explicit example of such a divisor. Let fy, be the rational function on
X defined as follows:

_ HyHj

- HLiLg’

fo

where
Hy =232+ 227 + 2222 + 2y + °2 + y2°,

Hy = 2 + oy + 222 + 222 + %2 + y2° + 2yz,
Hs = 2° +y* + 2%y + oy® + 22 + y2® + 2y,

The equations of the lines L, and Lg are x = 0 and = + y + z = 0, respectively, see Table
ITI. For convenience, we use the same notation for a form and its zero set. Let () be the
place of degree 3 on X that corresponds to the orbit {(a?: a: 1), (a: a?: 1), (a:a: 1)}
of the Fg-rational point {(a? : a : 1)} on X;, where Gal(Fg/F5) is the group acting, and
Fs = Fy(a) with a®+a+1 = 0. Let T and R be the places of degree 8 on X corresponding
to the orbits of the Fos¢-rational points (3% : 37 : 1) and (32! : 37 : 1) on Xy, respectively,
where Gal(Fa56/F3) is the group acting, and Foss = Fo(3) with 32 + 34+ 82+ 32 +1 = 0.
For the intersection divisors with the curve X, we have

Hy, - X, = D; + 3Q,

Hy - Xy =P+ P+ P+ F+T,
Hy- X =P+ P+ P+ Ps + R,
Li- X, =2P + P, + Ps,
Ls- X, = Ps+ Ps + 2P,
The curve H; is one of the curves in the set S. Put Gy := Dy + (fp). Then

Gi =T+ R - 30Q.

We have G ~ D; and supp(Gp)Nsupp(D;) = (). Consequently, (X1, D1, G1) is a WAG

representation of an H (3, 2).

30



This settles the case G ~ D;. We shall now investigate the case deg(G) = 6. This case
requires more work. For r := 1,2, ..., let N, be the number of points (of degree one) on X;
over Fyr. Let D; denote the set of all effective divisors on X of degree ¢, and let a; := #D;.
One computes that Ny =7, Ny = 7 and N3 = 10. Hence there are no places of degree 2,
and there is exactly one place of degree 3 on X;. This is the place () mentioned in Remark
26. From N;, Ny and Nj the zeta-function of X} can be computed. The function Z (X}, 1),
a rational function of ¢, is defined by

oo . [e.e] NT
Z(Xi,t) => a;t’ =exp (Z tT> :
i=0 r=1 T
One computes that the polynomial
P(t) = 1+ 4t + 9t* + 15¢> + 18¢* + 16t° + 8t°
satisfies

P(t)
1—t)(1—20)

Z(Xl,t) —

It follows that

and that
Cl():l, a1:7, CLQIQS, CL3:85.

For the underlying theory of zeta functions, see [16, p.66 a.f.], for instance.

Lemma 12 Let B be a diwvisor of degree 3 on X; .

a) If B ~ P,+ P+ P, for three distinct collinear rational points P,, Py, P., thenl(B) = 2.
Otherwise, I(B) = 1.

b) Suppose B is effective, moreover. If B < L;-X; for some i, then l(B) = 2. Otherwise
I(B) =1.

Proof: a) Consider the map ¢ : D3 — Pics(X}), defined by ¢(B) = [B], where [B] is the
linear equivalence class of B. Let B be a divisor on X; of degree 3. By the Riemann-Roch
theorem, [(B) > 1, and by Clifford’s theorem, [(B) < 2. The number of inverse images
of [B] under ¢ equals #|B| = #P(L(B)) = 2/®) — 1, which is 1 or 3. In particular, ¢
is surjective. Here |B] is the complete linear system associated to B, that is the set of
effective divisors linearly equivalent to B. Now suppose that a,b, ¢ are distinct numbers
such that P,, P, and P, are collinear. Without loss of generality we may assume that
the line through these three points is the line L,. We can choose d,e, f,g such that
{a,b,c,d,e, f,g} ={1,2,...,7} and

L,-x = 2FP, + B + P,
Ly-Xy = P, + 2B + Pea
L;-X = P, + 2P, + P,



Now 0,1, Lq/L,, Ly/L, are four distinct functions in L(P, + P, + P.). Hence L(P, + P, +
P.) ={0,1,La/La, Ly/La}, I(Pa+ Py + P.) = 2, and #|P, + P, + P.| = 3. We have

L
(1) =2Pi+ P~ P= R~ P.

(?) =2P+FP,— P, — B, —PF..

Hence ¢~ ([P, + B, + P.]) = |P.+ P+ P.| = {P, + P, + P.,2P; + P.,2P; + P,}. Since
there are seven lines over Fy in P2, there are seven possibilities for P, + P, + P,. These
seven divisors represent seven distinct elements of Pics(A;) (this follows from the above),
each having three inverse images under ¢. All the other h — 7 = 71 — 7 = 64 elements of
Pic3(X)) must have exactly one inverse image, since a3 = 85 =7-3 4 64 - 1. So, for every
divisor B not equivalent to one of the seven divisors P, + P, + P., we have #|B| = 1, hence
[(B) = 1. This proves a).

b) This follows immediately from the proof of a).

Lemma 13 The group PGL(2,F3) has an element T of order 7 such that 7(X,) = Xj.
For any such T, the subgroup < T > of PGL(2,Fy) generated by T acts transitively on the
set {Py, Py, ..., P} of rational points.

Proof: The automorphism 7: (z :y:2)+— (r+y+z:x+y:y+ z) has order 7. One
easily verifies that 7(&}) = X}. Let 7 be an automorphism, not necessarily this one, of
order 7 with 7(X;) = X;. Then the < 7 >-orbit of P, has order 1 or 7. But, as we saw
in the proof of Lemma 7, from 7(X;) = X; and 7(P;) = Py, it would follow that 7 is the
identity, a contradiction. Hence the < 7 >-orbit of P, has order 7. This proves the lemma.

Proposition 16 Suppose deg(G) = 6 (and supp(G)Nsupp(D1) =0). Then C = Cr(Xy, D1, G)
is a binary [7,4,3] code if and only if G ~ 2Q).

Proof: A nonzero codeword of weight < 2 corresponds to a go € L(G)\{0} with (go) >
—G+ P,+ Py,+ P.+ P;+ P, for some distinct a, b, ¢, d, e. Since deg(—G+P,+---+P.) = —1,
there is a rational point Py such that (go) = —G + P, + - -- + P. + Pj. Define the set of
divisors A by

AN={P,+P,+P.+ P+ P. + Pfla,b,c,d, e distinct }
It follows that d(C') = 3 if and only if
G Efor all E € A. (4)

The set A has 112 elements. Let us determine the number ¢ of equivalence classes in A
under the (induced) linear equivalence relation. For £ € A we denote by F its equivalence
class. Write

A=ANUANU...UA;,
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(disjoint union), where
N ={P,+ P +P.+ P, + P. + Pfla,b,c,d,e, f distinct},
and

A ={P,+P,+ P.+ P+ P. + Pfla,b,c,d,e distinct and f € {a,b,c,d,e}}.

Then #A* =7 and, for every f, #A; = < Z > = 15.

For every E € A* we have #F = 1. Namely, if £ = P, + P, + --- + Py ~ E for
an B = Py + Py +---+ Pp € A, with &', V,c,d, € distinct, then #({a,b,c,d,e, f} N
{a b, d e'}) > 4. Without loss of generality a = o/, b =V, ¢ = ¢/, d = d'. Hence
P.+ Py ~ P. + Pp. By Lemma 11, P, + Py = P, + Py, and hence £ = E'.

For f:=1,...,7 and any 1, define

wilf) = #{E € M#E = i},

We shall determine these numbers. By Lemma 13, w;(f) = w;(1) =: w;, for all ¢ and f,
hence it suffices to consider the case f = 1. Suppose that £ = P, + P,+--- P, + P, € Ay,
E' e N\, E#FE and E~ E'. Then E' € Ay for some f'. Write £ = Py + Py + -+ - + Pp.
Then #({a,b,c,d,e} N {d, b, ,d e}) > 3. Without loss of generality ¢ = ¢, d =
e = ¢. Hence P, + P, + P, ~ Py + Py + Pp. These two divisors are unequal, because
E and E’ are unequal. Hence I(P, + P, + P;) > 1. Using Lemma 12 and Table III, one
readily finds out that there are five possibilities for the divisor P, + P, + P;. They are
listed in the second column of Table IV. For each of them, following the proof of Lemma
12, one easily determines all the possible divisors P, + Py + Pp. Except in the two cases
(P, + Py + PPy + Py + Pp)=2P, + P, Py + Py + P;) and (P, + P, + PPy + Py +
Pp)=(2P, + Ps, P, + P, + Fs), there is only one choice of f" and {c,d, e}, such that both
a,b,c,d,e and a',V,c,d, e are five distinct numbers. In each of the two exceptional cases,
there are three such choices.

Table IV. This table is used in the proof of Proposition 16.
All £ € Ay with #F > 1 are listed.
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{a,b} | B,+ P+ P | Py + Py + Py | f' | {d, 0} | {c.d e} E =
P,+P+P.+FP,+P.+P
2,3 P1—|—P2+P3 2P4+P5 4 4,5 1,6,7 2P1+P2+P3+P6+P7
Py + 2P, 71 6,7 1,4,5 2P+ P, +P;+ P, + P;
4,5 | P+ P, + P; 2P, + P 21 2,6 1,3,7 2P, + Py + P, + P, + P;
2P, + P, 3 3,7 1,2,6 2P, + P, + P, + P; + P
6,7 | P+ Ps+ Pr 2P; + P, 3| 3.4 1,2,5 2P, + P, + P, + P; + P,
P, +2P; 51 2,5 1,3,4 2P, + P+ P, + P; + P;
1,2 2P, + P, P +Pi+ P | 3] 4,7 3,5,6 2P, + P, + Py + P + P
41 37 45,6 2P, + P, + P, + P, + P
71 3,4 5,6,7 2P+ P, + P+ P+ P,
P; + 2P 6| 5,6 3,4,7 2P+ P, + P, + P, + P,
1,3 2P, + P P,+P+Ps | 2] 4,6 2,5,7 2P+ P, + P+ P+ P,
41 2,6 4,57 2P+ P, + P, + P+ P,
6| 2,4 5,6,7 2P, + P+ P + Py + P;
2P, + P, 5| 5,7 2,4.6 2P, + P, + Py + P, + P

Of the fifteen elements of Ay, there are four which do not appear in the last column of
Table IV, eight which appear once, and three which appear twice. Taking also the column
with the values of f’ into consideration, we see that w; = 4, ws = 8, and w3 = 3, and that
w; = 0 for ¢ > 3. Let t; be the number of equivalence classes in A which have exactly 7
elements. We have

7
b =#AN+D wi(f) =#N +Tw =7+ 7-4 =35,
f=1

1 7
f=1

1 7
f=1

t; = 0 for ¢ > 3.

Hence t = Y ;t; = 35+ 28+ 7 = 70. But h = #Pics(X,) = 71. Hence there is a unique
divisor G of degree 6 (up to linear equivalence) which satisfies (4). We claim that 2@Q) is
such a divisor. To prove this, let 7 be the automorphism mentioned at the beginning of the
proof of Lemma 13. The group < 7 > acts on the set Div(X}) of divisors on X;. Observe
that 7¢Q) = @, and that for any £ € A, the < 7 >-orbit of E is contained in A and has
order 7. Now suppose that 2QQ ~ E, for some £ € A. Then 2Q = 7°2Q ~ 7°FE, for all i.
Hence the seven divisors in the < 7 >-orbit of E are equivalent elements in A. But we have
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just seen that all equivalence classes in A have less than seven elements, a contradiction.
This completes the proof of Proposition 16.

Remark 27 We find a basis of L(2Q)) and a generator matrix of Cy(X;, D1, 2Q) as follows.
Define the forms
Hy =2 +y* + 2% + ay,

Hy =y*+ 22+ 2y +x2+yz

Then
Hy - X1 =P+ P+ 3P+ Q.

H5'X1:P4+3P5+P6+Q,

Define the following rational functions on Xj:

HsLy Ly

fl = H )
1

LyLsL2

fQ = 2
4

L.I2Lg

f3 = H2
5

The form H; was already defined in Remark 26. The lines L3, L5, L7 and Ly, Ls, Lg are the
three lines through P; and Pj, respectively, see Table III. Now {1, fi, fo, f3} is a basis of
L(2Q). Indeed, we have

(1) =0,
(fi) =P +2P3+ Py + 2P — 20,
(f2) =2P1+ Py + Py + 2P — 20,
(f3) = Pr+2P + P3+ 2P — 20Q.

Hence 1, f1, fa2, f3 are in L(2Q)). It is easily verified that they are linearly independent.
This basis of L(2Q) gives the generator matrix

1111111
01 00O0T11
0010101
0001110

of Cp (X1, D1,2Q). This should be a generator matrix of a [7,4, 3] code, and indeed it is.

Remark 29 In Proposition 16 we gave a SAG representation of an H(3,2): Cp(X7, D1,2Q)
is an H(3,2). As pointed out in Remark 1, we can also give this code as a Cq(&X7, Dy, G)
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code, equivalently. Following (an adjusted version of) the proof of [4, Ch.8,Prop.8,p.207],
we find that the differential

it (2)
Wy = -
! Y z4+ a3+ %z \z
has divisor
(W1>ZL2'X1:2P2+P4+P6.
Note that y?z + 2 + 22z is the partial derivative to y of the left-hand side of (3). Define
the forms
Hg = y* +y2* + vz + 22 + ayz,
H; =y + 22 + 2%2 + y*2 + ayz.
Then
He- Xy =P+ P +Q+U,
Hy - X =P+ B+,
where U is the place of degree 7 on X; corresponding to the orbit of the Fiss-rational point
(790 : 4?3 1 1), with Gal(F28/F3) acting, and where V is the place of degree 10 on X;
corresponding to the orbit of the Fygyy-rational point (61017 : 6159 : 1), with Gal(F1g24/F2)
acting. Here Fiog = Fo(7y) with 77 + 42 + 1 = 0, and Fygoy = F5(0) with §1° + 6% +1 = 0.

Put
HgH7

w = H1L2L4L¢J1.
Then (w) = U+ V —2Q — Dy. Hence w has a simple pole at P, and resp,(w) = 1 for
i=1,...,7. Define G} by 2Q) = (w) — G} + D;. Then

G\ =U+V —4Q.
By Remark 1, Cq(&1, D1, G) = Cr(X, Dy, 2Q).

Remark 29 In the above we have proved that H(3,2) has exactly two (WAG) represen-
tation classes with g = 3. These are [(&}, D1, G1)] and [(&}, Dy, 2Q)], the latter of which
is SAG, moreover. This shows that H(3,2) has more than one WAG representation class.

Lemma 14 The (SAG) representation (X, D1,2Q) is minimal.

Proof: As noted already at the beginning, after Remark 24, the genus ¢g(X;) = 3 is minimal.
The divisor 2@Q) is base point free, since its degree is 6 > 2g, see [11, p.308,Cor.3.2]. The
result follows by Corollary 2.

If (X, D,G)] is a minimal AG representation class of H(3,2), then (g,m) = (3,6) or
(4,6), by Proposition 12 and Table II. By Lemma 8, Lemma 10 and Proposition 16, there is
exactly one AG representation class of H(3,2) with (g,m) = (3,6), [(X1, D1, 2Q)] namely,
and this representation class is minimal by Lemma 14. From the next proposition it follows
that there exists no AG representation class of H(3,2) with (¢, m) = (4,6) (minimal or
not). To avoid any misunderstandings: the definitions of P;, @, etc... that we used until
now do not apply to Proposition 17 and Lemma 15 and their proofs.

36



Proposition 17 If (X, D,G) is an AG representation of an H(3,2), then g(X) # 4.

Proof: Suppose that (X, D,G) is an AG representation of a binary [7,4,3] code, D =
P, +---+ P; and g = 4. The curve X is not hyperelliptic, since it has more than 2¢+2 = 6
Fo-rational points. If m =deg(G) < 6, then 4 = [(G) = m+1—4+i(G), hence i(G) > 0, by
the Riemann-Roch theorem. But then [(G) < 1+ m/2 < 4, by Clifford’s theorem. Hence
m > 6, and because m < n =7, m = 6. So G is a divisor of degree 2g—2 with i(G) = 1. In
other words, G is a canonical divisor, that is to say, G = (wp) for a differential wy. Because
Cp(X,D,G)isan H(3,2), Cqo(X,D,G)is an S(3,2), see Proposition 1 and Definition 5. By
Remark 1, there is a divisor G’ on X such that G’ ~ D and C(X,D,G") = Co(X, D,G).
So CL(X,D,G") is a [7,3,4] code.

We claim that

I(P,+ P+ P.)=1forall a,b,c € {1,...,7} with a # b,a # ¢,b # c.

The proof of this claim is actually more or less the reverse of the proof of Proposition 15.
Namely, write G' = D + (fy). Suppose that I[(P, + P, + P.) > 1 for some distinct a, b, c.
Let f; € L(P, + B, + P.) with f; #0,1. Put f:= fi/fo. Then f & L(G' — D) = L((fy)),
since otherwise (f) = —(fo), and consequently f; = ffy = 1, which gives a contradiction
by the choice of f;. On the other hand, ffy = fi € L(P, + P, + P.) implies that (f) >
—(fo)—P,—P—P.=—-G'+P.+ P,+ P,+P,, where P,+ P+ P,+P,=D—P,— P,— P..
From the above it follows that f € L(G')\ L(G'— D), and that o (f) is a nonzero codeword
in Cp(X,D,G") of weight at most three, see Definition 1. This contradicts the fact that
CL(X,D,G") is a [7,3,4] code.

We proceed with the proof of the proposition. Suppose that there exists an effective divisor
E of degree three on X with [(E) > 1. Then E is obviously base point free, see Lemma
11. The morphism

op: X — P!

has degree three, see Remark 6, and we have pgp(P;) € P! (Fy) for i = 1,...,7. Since
#P'(F,) = 3, there exists a Q € P*(F;) with at least three points in 9" (Q)N{ P, ..., Pr},
P,, B, P. say. Since deg(¢g) = 3, the pull back ¢5(Q) of @ under ¢ is equal to P,+Py,+P,,
see [11, p.138,Prop.6.9]. This implies that £ ~ P,+ P,+ P., and hence that I(P,+P,+P.) =
[(F) > 1. But this contradicts the previous claim. We conclude that I(E) = 1 for all
E > 0 with deg(FE) = 3. By the following lemma, however, this is not true, and hence the
assumption that (X, D,G) is an AG representation of an H(3,2) is wrong. This proves
the proposition.

Lemma 15 If X is a nonsingular, absolutely irreducible curve over Fy of genus 4 with at
least seven Fy-rational points, then there ezists an effective divisor E on X with deg(E) = 3
and [(E) = 2.

Proof: Let K be a canonical divisor and let F, be a rational point on X. We have
I(K) =6+4+1—4+1 =4, by Riemann-Roch. Put G := K — Fy. Then deg(G) = 5. Since X
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is not hyperelliptic, K is very ample, see [11, p.341,Prop.5.2]. Hence I[(G) =(K)—1=3
and G is base point free. Let A be the reduced image of X under the morphism

v X — P

see Remark 6. We have
5 = deg(pg) - deg(Ap).

As pointed out in Remark 6, Xj is not a line, hence deg(Ap) # 1. It follows that deg(Xp) =
5, and that deg(¢g) = 1, i.e. g is a birational morphism. We have

1= g(X) = g(X) = 55— 1)(5-2) — 3 dodea(P), (5)

PeXy

where 0p is the delta invariant at P, see [18]. We have dp > mp(mp — 1)/2, where mp is
the multiplicity of Xy at P. From (5) it follows that

> dpdeg(P) =2. (6)

PEXO

Hence A, has two rational singular points, each with delta invariant 1, or one rational point
with delta invariant 2, or one singular point of degree two with delta invariant 1. In every
case, the singular point(s) have multiplicity 2 (since if mp > 3, then 6p > 3(3 —1)/2 = 3,
contradicting (6)).

We claim that Ay has a rational singular point. To prove this, suppose A, has no such
point. Then Xy has a singular point () of degree 2. There is exactly one line through @
in P2, defined over Fy. We call this line L;. By Bézout’s theorem, L; intersects X, at 5
points, counted with multiplicities. The intersection multiplicity at @) is even and at least
4, hence equal to 4, and there is exactly one rational point P, in Ly N Ay. Let Ly and L3
be the other two lines through P; in P?, defined over Fy. Then g maps every rational
point of X' to a rational point in (L; N Ap) U (L2 N Xy) U (L3 N Ap). But Ly N A, contains
exactly one rational point, P, namely, and L, N Xy and L3z N Xy each contain at most two
rational points not equal to P;. Hence pg maps (at least) 7 rational points of X to at
most 5 rational points of A). Thus there are two rational points Q)1,Q2 on X such that
va(@1) = pa(Q2), and pe(Qq) is a rational singular point of Aj, a contradiction. This
proves the claim.

Thus A&} is a plane model of degree 5 of X', with at least one rational singular point, which
we call QQy. As noted earlier in the proof, the multiplicity of & at () is 2. Hence there is
an effective divisor B of degree 2 such that

Xo-M>B

for every line M through )y, defined over F5. Besides )y, there is at least one other
rational point on Xjp, since otherwise p¢ would map (at least) 7 rational points of X’ to
Qo, and mg, > 7 > 2, a contradiction. Let ), be such another rational point on Xj. Let
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M, be the line through @y and @, and let M; be one of the other two lines through Qg
defined over Fy. Then Qf € M. Put

RlzXoMZ—B

for i = 1,2. Then R; > 0 and deg(R;) = 3 for both i. Put f := My/M,;. Then f € L(R,),
(f) = Ry — Ry, and f is not a constant, since it has a pole at Q. Hence [(R;) > 2. In
fact, we have equality, by Riemann-Roch and Clifford’s theorem. To prove the proposition,
choose E := ¢ (R;y), the pull back of Ry under .

We summarize our main results concerning the Hamming codes in the following theo-
rem.

Theorem 6 a) H(1,q) and H(2,q) are SAG, for every q.

b) H(3,2) is SAG.

c) H(r,q) is not AG if r > 3 and (r,q) # (3,2).

d) (X1, D1,2Q)] is a minimal SAG representation class of H(3,2).

e) [(X1, D1,2Q)] is the only minimal AG representation class of H(3,2).

Here X, is defined by (3), Dy is defined after Lemma 8, and Q is defined in Remark 26.

B. Another example

Let C be the binary [6,4,2]-code with generator matrix

110000
01 100O0
000110
0000171

This code was mentioned by Katsman and Tsfasman in [13], where they more or less
raised the question whether this code is algebraic-geometric. We shall give the answer to
this question here.

Proposition 18 The code C is SAG.
Proof: Let &5 be the plane projective curve of degree four defined over Fy by the equation
vyz? + (2° + 2%y + y*)z + 2Py + 2y’ = 0.

As is easily verified, this curve has exactly one singularity: the point P := (0:0:1) is an
ordinary double point. The tangents to X, at P are x = 0 and y = 0. It follows, by Bézout’s
theorem, that X, is absolutely irreducible. The curve is a hypereliptic curve, of genus 2.
Besides the singular point P, there are four other rational points on Xo: Py := (1:0:0),
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Py,:=(1:1:0), Ps:=(0:1:0), and Py, := (1:1:1). The singular point P gives two
rational points on the nonsingular model of X;. Or, to put it differently, it corresponds to
two places (=discrete valuation rings) of degree one in the function field of X over Fy. We
call these places P5 and Fs. Let L and M be the lines 2z = 0 and x +y+ 2z = 0, respectively.
The line L is the tangent to A5 at P,. We have

L-X=P +2P+ Ps.

The only rational point in M N &5 is P, and the intersection at this point is transversal.
Define the divisor Gy by
M - Xg = P2 + Gg.

Then Gy > 0, deg(G2) = 3 and supp(Gs)Nsupp(Dy) = (). Here we have put Dy :=
Py + Py + -+ Ps. (Although we do not need this, it follows that G5 is a place of degree
three. This place turns out to be {(1: a: 1+ a),(1:a?:1+a?),(1:a*:1+a')}, where
Fs = Fy(a) with o® + a +1 = 0).

By the Riemann-Roch theorem, [(Gs) = 3+ 1 — 2 = 2. The rational functions 1 and
L/M (= z/(x +y + z)) are in L(Gy), and they (obviously) form a basis. This basis of

L(Gs) gives
111111
000111
as a generator matrix of the binary [6,2,3] code CL(&Xa, Do, G2). Since 2 = 2g — 2 <

3 :deg(G2> < 6= n, CL(XQ,DQ,GQ) is SAG. Since OL(XQ,DQ,GQ)J_ = C, C is SAG tOO,
by Corollary 1. This completes the proof of the proposition.
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LIST OF TABLE CAPTIONS

Table 1. Some known values of N,(g).
Table II. Restrictions on binary AG [n, k] codes, see Proposition 12.

Table III. The F,-rational points P; on the curve Xj, the tangents L; to A} at these
points, and the intersection divisors L; - X.

Table IV. This table is used in the proof of Proposition 16. All £ € A, with #E > 1
are listed.
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