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Summary

Data Mining (DM) is a fundamental component of the Data Science process. Over recent years a huge library of
DM algorithms has been developed to tackle a variety of problems in fields such as medical imaging and traffic
analysis. Many DM techniques are far more flexible than more classical numerial simulation or statistical
modelling approaches. These could be usefully applied to data-rich environmental problems. Certain techniques
such as artificial neural networks, clustering, case-based reasoning or Bayesian networks have been applied in
environmental modelling, while other methods, like support vector machines among others, have yet to be taken
up on a wide scale. There is greater scope for many lesser known techniques to be applied in environmental
research, with the potential to contribute to addressing some of the current open environmental challenges.
However, selecting the best DM technique for a given environmental problem is not a simple decision, and there
is a lack of guidelines and criteria that helps the data scientist and environmental scientists to ensure effective
knowledge extraction from data. This paper provides a broad introduction to the use of DM in Data Science
processes for environmental researchers. Data Science contains three main steps (pre-processing, data mining and
post-processing). This paper provides a conceptualization of Environmental Systems and a conceptualization of
DM methods, which are in the core step of the Data Science process. These two elements define a conceptual
framework that is on the basis of a new methodology proposed for relating the characteristics of a given
environmental problem with a family of Data Mining methods. The paper provides a general overview and
guidelines of DM techniques to a non-expert user, who can decide with this support which is the more suitable
technique to solve their problem at hand. The decision is related to the bidimensional relationship between the
type of environmental system and the type of DM method. An illustrative two way table containing references for
each pair Environmental System-Data Mining method is presented and discussed. Some examples of how the
proposed methodology is used to support DM method selection are also presented, and challenges and future trends
are identified.

Keywords: Data Mining, Data Science, Method Selection, Multidisciplinarity, Environmental Systems.

1 Introduction

Environmental problems, including the degradation and depletion of natural resources, biodiversity loss and
climate change, among others, represent some of the most critical challenges of our world today. To effectively
address environmental problems, understanding how these system components affect one another is needed. Data
Science (DS) is an emergent research field that helps better understand the complex mechanisms behind
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environmental phenomena. In Gibert ef al. (2018) an overview of what can be called the field of Environmental
Data Science is provided. The paper describes the DS process, and the role of Data Mining (DM) methods, which
is identified as one of the most critical to transform data into added value and new knowledge for ESs. DM
describes the search for hidden patterns or associations in data to aid understanding of systems and/or their
processes. These patterns may help, for example, determine the strength of relationship between variables, or
predict future outcomes. DM methods include cluster analysis, factorial methods, decision trees, statistical
modelling, time series forecasting, Bayesian networks, among others. There has been increasing interest in
applying DM to environmental problems in recent years. However, its full potential in the environmental sciences
has yet to be realized.

In Gibert et al. (2018), the main challenges of Environmental Data Science are identified and discussed to promote
research in the area. One of these main challenges is the lack of guidance in choosing the right analytics method
for a given problem. In fact, selection of the proper methods for effective process is difficult, and not much work
has been done to establish consensus about which analytics methods are effective and appropriate for specific
applications (Gibert et al., 2010). This paper tries to move one step forward in this direction, providing an
innovative methodology to help non-expert data scientists identify DM methods suitable to properly analyze a
certain kind of data when addressing a specific type of environmental question. It has been observed how several
analyses of the same dataset can provide contradictory conclusions when analyzed by two independent data
scientists without a common set of guidelines for conducting the analysis in the proper way (Baeza-Yates, 2017,
Silberzahn et al., 2015).

This papercto contributes to generate greater awareness of the capabilities of DM in DS processes for a better
understanding of ESs, and to extract valuable information from data to support decision-making. Information on
the good practices required to ensure DM is correctly used in Environmental Data Science is also provided.
Additionally, the paper aims to make DS and DM more accessible to a wider audience, in particular researchers
and practitioners in the environmental sciences, and foster discussion of the ways in which DS could be used and
encouraged in these science fields.

The paper will briefly introduce the main concepts of DS and the role of DM in the whole process, and illustrate
how many DM methods can be valuable tools in the environmental and natural resource science fields. A major
conceptualization effort was carried out to organize both environmental systems and DM methods, and to analyze
the framework of the application and applicability of DM methods to solve environmental problems. A major
contribution of the paper is the proposal of a new methodological framework to guide data scientists or
practitioners in identifying the most suitable DM method for a given problem. The proposed methodology is based
on two steps each one using a tool presented in the paper. The first tool is the DM methods conceptual map
(DMMCM), which organizes main families of DM methods according the kind of to questions they can address.
A second tool is the DM methods templates (DMMTs), which provides detailed information on the specific
methods from a given branch of the DMMCM, and guide the selection of the most appropriate technique for the
particular case in hand. In the first step of the proposed methodology, target environmental questions lead the
decision. In the second step, specific implantation of results in the specific environmental situation adressed comes
into consideration, as seen in Section 6. Also, an additional effort has been done to identify which kind of questions
arises in each type of ES, and how the DMMCM and the DMMTs can be used to choose the DM technique that
best fits a given real-world environmental application. Specific examples from the literature are also provided to
illustrate the use of various DM methods for a variety of environmental problems, and a discussion regarding how
these two elements interact (DM methods and target ESs) is raised. Finally, a reduced set of illustrative case studies
show how the DMMCM and DMMTs can be used select a DM method for a specific problem. The paper ends
with some conclusions, future work, and open challenges for better DM method selection.

2 Types of environmental systems

ESs encompass the complex interaction of natural units (water, vegetation, animals, athmosphere, etc.), human
activities (agriculture, fishing, water treatment, etc.) and natural phenomena that occur within their boundaries.
Most of our activities are directly or indirectly related to natural resources (both biotic like forest, animals and
fossil fuels; and abiotic like water, air, atmosphere and land), of which their quality and availability are severely
affected by climate (including natural phenomena), and human activities (Figure 1). Human activities can also
influence the climate. Some of the largest critical problems now affecting the world are related to air pollution
(global warming, ozone depletion, acid rain, smog), water pollution (from both point and distributed sources),
hazardous waste, and rain forest destruction. There is no single way to face these environmental problems, which
require multidisciplinary approaches and strategies by governments, industry and citizens across the globe.
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Figure 1: Environmental Systems

ESs and their interdisciplinary processes are highly
intricate, with confounding complexities stemming
from various sources. ESs are often characterized as
ill-structured, non-linear, dynamic, and uncertain,
with multiple drivers and system feedbacks (Table
1). These features make the analyses required for
effective management natural resources especially
difficult.

These characteristics affect all levels of decision,
from planning environmental policies, to
agricultural-related  applications, water  and
wastewater treatment, storm management, landscape
analysis, cloud screening, etc. Large amounts of
data, with a high degree of uncertainty, are generated
from many sources. These data are not enough to
fully describe the ES, but will at least cover partially
the domain. Gathering data is often the most
difficult, time-consuming and resource-intensive
step in conducting measurement activities.
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Therefore, selecting the data collection tool or method that will provide the best information is critical (EPA 305-R-
07-001). Recently there have been major advances in environmental monitoring technologies — i.e., automated
sensors and remote sensing data (e.g. Elarab et al. 2015) — that have greatly reduced sampling costs for some data
(e.g. hydrological data), and in the provision of access to data (e.g. web-based data repositories).

Table 1. Some key characteristics of ESs

Characteristics Description

Interdisciplinarity A variety of biophysical, economic and social factors are at play. This requires data, knowledge
and analytical techniques from multiple disciplines to be integrated.

Heterogeneity of data ESs are characterized by a high level of heterogeneity in data, since it comes from numerous

source sources, with different formats, resolutions and qualities. Qualitative and subjective information
is often very relevant.

Multiple drivers ESs are affected by a web of multiple, and often diverse, drivers with both direct and indirect

pathways of effect. It is therefore very difficult to control these systems. Also, these drivers can
interact leading to cumulative or synergistic effects.

[lI-structured ESs are poor or ill structured. High order interactions between animal, vegetal, human and
climatic system components coexist and often involve processes which are not well known yet,
which adds complexity to the system, and makes it difficult to be clearly formulated with a
mathematical theory or deterministic model. This implies that solutions might be neither unique
nor permanent, nor transferable to other places.

Nonlinearity Environmental processes are often highly nonlinear, and can exhibit stochastic, dynamic, cyclic
or abrupt behaviour.

System feedbacks System components can interact reciprocally, forming feedback loops. Positive feedbacks can
accelerate/amplify effects of stressors, whereas negative feedbacks diminish effects.

Multi.objectives Typically managing ESs involves multiple and often conflicting objectives to be simultaneously
considered, and additional constraints that can disprove model solutions.

Spatio-temporal ESs are, in general, non-static, i.e. evolve both over time and space. The assumption of

dynamics stationarity cannot be justified since interactions among the various factors involved in ESs

change over space and time (Guariso and Werthner 1989), and also involve complex seasonal
auto-correlated behaviours.

Uncertainty A high number of causes of uncertainty play together in ES, producing incomplete, imprecise
and uncertain data (measurement errors, lack of precision of instruments used, defective
calibration of instruments, how the data are read, the frequency of measured data, and the
transmission and storage of data, among others (Alferes et al, 2016)).

Data generally does not fully capture the system behaviour across space and time, due to the
typically high cost of sampling and/or limited understanding of the spatial structure of variables.
Each sensor or sampling point is affected by numerous different factors, many of which are
unmeasured. Managing uncertainty in the proper way is critical in ESs (Brugnagh et al., 2008).
Multiple As dynamic systems under multiple stressors, environmental resources or assets are affected by
spatio-temporal scales processes taking place at multiple spatial and temporal scales. Cause and effect are not always
related in time and space (e.g. time lags, spatially disjoint processes) and harmonization of these
two dimensions is delicate and critical,

Even in cases where data describing ESs has become largely available, datasets are often not examined in depth
and much of their information content still remains unexplored (Hammond, 2007; Gibert, 2016b; Burns, 2017).
Reasons for this under-exploitation of data include: the effort required to manage large volumes of data, the
inability of traditional statistical approaches to handle the complexities of ESs in global models, the practitioner’s
lack of awareness of the capabilities of DM, and the combination of skills required for getting the capacity to
extract value from data (Gibert, 2018). DS can be efficient to deal with this complexity. In DS processes, DM is
in charge of detecting the patterns from environmental databases that will lead to useful information extraction, as
well as helping identify the key parameters managing and controlling these complex ESs. DS is an emerging field
that provides a wide opportunity to advance understanding of these systems.

However, inappropriate use and misunderstanding of the DM methods in DS processes should be avoided. Indeed,
incorrect application of a DM method or misinterpretation of its results can inhibit the advancement of a science
or lead to poor decision-making, which can potentially result in serious consequences for the environment. The
risk of misapplication and misinterpretation of multivariate statistical data analysis methods was described by
James and McCulloch (1990), and has been scaled to the wider and more complex DM field. In Baeza-Yates
(2017) it is seen that various DM analyses on the same data can lead to contradictory results, which makes it critical
to ensure that the proper DM method is selected to extract the right and not the wrong value from data. This paper
provides an overview of how DM methods can be used to contribute to a better understanding of environmental
systems, and how to correctly use them in real applications.
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DM has its roots in the fields of statistics and artificial intelligence (AI). Too often, descriptions of DM methods
found in the literature are highly technical, and use a language difficult for those without a strong statistical or
machine learning background to fully understand. The end-user or practitioner (e.g. environmental scientist) is
often more interested in understanding which types of problems can be solved with the method, what information
is required as input, and how to interpret outputs, rather than how the actual method or algorithm internally works.
One crucial issue for practitioners is how to select the right DM method for a particular problem. To serve this
need, this paper provides end-user oriented descriptions of the most popular DM methods, together with guidelines
on how to properly use them in DS processes, including advice on data representation, post-processing, and
validation, interpretation and future use of the DM results.

3 Data Science and Data Mining

In Gibert ef al. (2018) a discussion on the origins and nature of the DS field is presented. In that work, the authors
provided their own viewpoint on DS, and describe it as “the multidisciplinary field that combines data analysis
with data processing methods and domain expertise, transforming data into understandable and actionable
knowledge relevant for informed decision-making, thus contributing to bridge Hammond's Fact Gap (Hammond,
2007), related to the disconnection between data and decisions.

It is well accepted that DS processes follow the main steps of data gathering, pre-processing, data mining, post-
processing, and knowledge production, as original KDD, with a wider scope of embracing new information sources
as inputs, like data streams, texts, images, videos... and the evenctual use of bigdata technologies when required.
Currently, we are still far from having computational systems and software packages that follow this DS scheme
in its entirety. Most commercial systems provide collections of several preprocessing, DM and support-
interpretation tools, which have to be properly combined by the data scientist to build a correct DS process for
each application. In fact, there are many difficult, technical decisions that the data scientist has to face in order to
obtain the best outcome for a given dataset and objective. In fact, prior and posterior analysis require great effort
when dealing with real applications. Pre-processing (data cleaning), transformation, selection of DM techniques
and optimization of parameters (if required) are often time consuming and difficult steps, mainly because the
approaches taken should be tailored to each specific application, and require interaction with experts or other
stakeholders than the DM analyst. Once the data gathering (increasingly complex with new information sources
like images, web pages, satellite data, IoT or social networks) and the pre-processing tasks have been accomplished
(Gibert et al. (2016) propose a methodology that covers these steps), the application of DM methods can be
relatively trivial and can be automated. Provided the right method is properly chosen, the application of the DM
algorithm requires only a small proportion of the time devoted to the whole DS process. Interpretation of results
is also often time consuming and requires much human guidance. If any of the selection, preprocessing or
transformation steps are performed inadequately, the findings from the DM step may be erroneous or misleading.

There are several advantages of DS (including the application of DM techniques), which make it particularly
appealing for the environmental domain. For example, DS supports:

o Systematic and objective exploration and visualization of data. For this purpose, DM techniques are an
engaging alternative for several activities of the environmental scientist, when analytical/traditional
methods fail, are too slow, or simply do not exist.

o Improvement of data quality. Through the preprocessing step, data deficiencies emerge and can be
properly managed.

e [dentification of variables and characteristics of an ES that are important to the problem of concern.

o Modelling and system analysis activities. Discovery of meaningful patterns in data can improve
understanding of the system, and provide inputs to models for better simulation and prediction in ESs.
This will also contribute to building more reliable intelligent environmental decision support systems
(Poch et al., 2004).

e Discovery of patterns contained in large time series can provide insight into how environmental systems
have responded to changes through time, and may indicate how they may respond to future changes.

o [ntegration of various knowledge sources and expertise. DS paves the way to engage with domain experts
and stakeholders during the whole process, including goal setting, data identification, and interpretation
of results.
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e Production of new validated and transferrable knowledge that can be shared and rapidly re-used among
domain experts, due to the objective and formal nature of DS models for communication about the ES.
The output of DS can include graphs or plots that help convey information about the environment in a
clear and efficient manner to different audiences, from environmental experts or data scientists to the
general population.

These are some of the most important contributions where the DS approach can help environmental scientists or
managers understand or address real-world problems. Key reading material introducing the reader to essential
points of DS are in Han and Kamber (2011), Whitten e al. (2011), Hastie et al. (2001), Larose (2004) and Parr Rud
(2001).

4 A two-step methodology to determine an appropriate DM method for a given environmental problem

There is a considerable and increasing number of DM techniques available. However, not all of them are suitable
for a given real-world problem. As said before, one of the most critical parts of the DS process is the selection of
the appropriate DM technique.

Available commercial software packages provide researchers with access to a wide selection of techniques.
However, these software tools rarely include intelligent assistance for addressing the decision about the kind of
DM method to be used, or tend to do it in the form of rudimentary wizard-like interfaces, which make hard
assumptions on the level of technical background of the user. There are not many works in the literature addressing
these issues. Charest and Delisle (2006) have a first work in this direction. The authors are not aware of other
works trying to solve this task, although Serban, (2013) describes state of the art in and desirable characteristics
of “intelligent assistants” which help the user through the DS workflow. However, it is known that the end users
tend to use a reduced set of well-known tools, and that data exploitation could be significantly improved by making
a wider range of DM possibilities available to non-expert users (Hammond 2004; Cukier 2010). In this work, a
proposal is presented to contribute to this issue.

The mechanism for choosing a DM method for a given problem is related to good knowledge of method properties.
In fact, the output of the method must match the target question to be answered, the goals, whereas the inputs
required by the method must be well aligned with the structure and properties of the available data. Figure 2 shows
the idea that these two matches play a relevant role in the election of the DM technique. The proposed methodology
first introduces the DMMCM as a reference decision map to browse through big groups of methods answering
similar questions, and, at a second level, the DMMTs, with more specific information about those groups of
methods, helping to narrow down to a box of the DMMCM containing the suitable type of technique.

The selection of the DMMCM is guided as follows:

1) Determine the main branch of the DMMCM: The questions associated to the decision nodes in the
DMMCM will lead to one of the main branches of the map.

2) Identify the appropriate technique within the selected branch of the DMMCM: find the DMMT associated
with the selected branch and identify a particular box in the map as the best DM method for the target
environmental problem.
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Figure 2. Choosing a DM method given a problem: Input assumptions of the method must match data
structure, while output must match target goals and answer right questions.
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5 Step one: choosing one group of DM methods by browsing the DMMCM

In Gibert et al. (2008b) a high level description of a number of most popular DM techniques was presented. The
aim was to open black-boxes of DM methods to data miners and scientists to help them select the most suitable
DM method for a given problem. The techniques presented in Gibert et al. (2008b) were grouped by technical
proximity, as commonly done in the literature. In Gibert et al. (2010), a case-based reasoning (CBR) intelligent
recommender was introduced for choosing the right DM technique, given the kind of question to be answered from
the data. The CBR intelligent recommender re-used the past experiences in the GESCONDA tool (Sanchez-Marré
et al, 2010) to suggest the appropriate DM technique to apply.

However, through many years of experience on real KDD and DS applications, we have observed that both experts
and data scientists do not consider the technical origin of the DM when choose the DM technique to use. Rather,
we found that the final choice of technique primarily depends on the two following parameters:

e The main goal of the target problem;

e The structure of the available data set.

As a consequence, references providing long catalogues of DM methods organized by technical proximity among
methods are not the best support to make this decision.

Thus, in Gibert et al. (2010) the first version of the DMMCM was introduced as a tool providing an overview of
available DM techniques, organized according to the above criteria. The DMMCM intended to help non-expert
data scientists to select the more suitable techniques for a particular application. Indeed, not all DM methods have
been included in the DMMCM. Figure 3 shows a new version of the DMMCM, updated according to a detailed
review of the most popular DM methods used in real environmental applications (Gibert and Sanchez-Marre,
2012). The map organizes DM methods into four main branches that address four generic DM tasks. Each branch
is suitable for answering a different type of question. Lighter cyan boxes contain DM methods coming from the
Al field; cyan boxes contain methods from Statistics; and darker cyan boxes contain multidisciplinary methods.
As it can be seen, methods from the same field are spread across different branches of the map, and viceversa,
each branch includes methods from different fields. Thus, the DMMCM provides a new problem-oriented
organization of methods, based on the kind of problem addressed, instead of on technical proximity of DM
methods.
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Figure 3: Data Mining Methods Conceptual Map (DMMCM). Lighter cyan cells correspond to Artificial
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(*) means main use of the method; adapted from Gibert and Sanchez-Marre, (2012).

The DMMCM intends to guide the selection towards the most appropriate DM method for a real environmental
problem. In the first step, decision is focused on determining the main DM family of methods to be addressed.
This is mainly related with the two criteria mentioned before: the problem goals and the structure of the available
data. The identification of the proper DMMCM branch is done by answering two of the following three questions:

1. Is there any response variable?
Response variables are those variables of interest to be explained by the DM model. They are determined
through the environmental question to be answered, established in the project goals. Response variables are
also referred to as dependent variables or target variables. Their behavior has to be described in terms of
the other variables. This question determines the first split in the DMMCM and the next node inDMMCM
to visit. The possible answers are:
o NO: This means that a non-supervised scenario is faced, without response variable, where all the
variables in the dataset play a ‘symmetrical’ role; the main goal is better understanding (cognition)
of the target phenomenon, and getting a description of the global interactions is enough as a result.

DM methods suitable for exploring interactions in these scenarios are on the left of the DMMCM.
If the answer is NO, go to question 2.

o YES: This means a supervised scenario is faced, and the main goal is related to re-cognition of the
specific behavior of the response variable, which has to be explained by other variables. The result
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is a model expressing the response variable in terms of other variables (often named explanatory or
independent variables).

DM methods suitable for this modelling are on the right half of the DMMCM

If the answer is YES, go to question 3.

2. Is the interest in relationships among variables or in relationships among objects?

Objects, usually placed on the rows of the data matrix, are the units to be analyzed (also named instances
or cases). They might be samples, locations, individuals, timestamps, etc., depending on the application.
Variables, usually placed on the columns of the data matrix, represent the characteristics used to describe
the objects.

This question helps decide the second level of division of the left hand side of the DMMCM (node labelled
‘Models without response variable’). Again, the answer to this question regards to problem goals. Two
answers are possible:

o Variables: Choose the branch labeled as associative methods: this branch contains DM methods
describing global associations among variables.

o Objects: Choose the branch labeled as descriptive methods: this branch contains DM methods that
identify groups of related or similar objects, and provide the underlying concepts characterizing
these groups.

. Is the response variable numerical or qualitative?

Numerical variables are measures on objects that can be continuous or discrete, whereas qualitative
variables qualify the object and sometimes are referred as categorical. Nominal, ordinal or binary variables
are particular cases of qualitative variables. In the particular context where one or more response variables
exist, in this paper we will use the term example to refer to a row of the data matrix. An example is thus an
object plus the value of the response variable (a classified object when the response variable is qualitative,
an object plus some forecast when the response variable is quantitative).

This question helps decide the second level of division on the right hand side of the DMMCM (node labelled
as ‘Models with response variable’). The question relates to the nature of the response variable itself,
determined by the dataset inner structure. Two answers are possible:

o Numerical response variable: Choose the branch labelled predictive methods. This branch
contains methods that permit to predict the value of a numerical response variable under various
formalisms and conditions.

o Qualitative response variable: Choose the branch labelled discriminant methods. This branch
contains classifier methods that permit to classify new instances in a set of predefined groups
expressed in the qualitative response variable (often called class variable).

These three questions places the data scientist in one of the four main branches of the conceptual map. The next
step involves identifying a specific method inside the selected branch (Figure 4: Illustrate the process)

Knowledge Models

Question 1: Is there a response variable?

Nno T YES

gt

-

Models without response variable Models with response variable

Question 2: Focus on relationships

Question 2: Is the response variable
among variables or objects?

Numerical or Categorical?
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Predictive
Models

Discriminant
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Profiling Associative
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Figure 4: First Step of the methodology based on DMMCM map
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6. Describing DM methods in a systematic way to assess decisions

Once a big group of DM methods has been selected, the most suitable method in the branch has to be identified.
The methods in a given branch of the DMMCM provide different technical solutions to answer a single type of
question. In a previous work, authors realized that the selection of a particular method among those available in
the branch depends on the match between two aspects (Sanchez-Marre et al, 2010).

1.

The dataset structure and the technical requirements of specific DM methods. Input variables may be
numerical, variables with normal distributions, independent variables, etc. Among all the available
methods in the branch, select a method that does not include technical requirements violated by the
data;

The expected use of the obtained results and the characteristics of the output provided by the DM
method. Some methods generate outputs that are difficult to understand (e.g. complex equations),
whereas others generate more intuitive results (e.g. trees). Depending if one wants to prepare a public
report for general population, to support decision-making of a manager, to feed an automatic
recommender system, etc., one might have preferences for a certain form of output.

At this level of decision, the properties of the DM methods have to be taken into consideration. It is important to
know which kind of input is expected by each method and which kind of output is produced.

To help in this analysis, three categories of method requirements are proposed:

i) Technical requirements: These are critical requirements of the methods related to the intrinsic dataset
structure accepted as input. Some examples include the following requirements:

Only numerical explanatory variables are accepted;

Only ordinal (ordered qualitative) explanatory variables are accepted;
Only nominal (non-ordered qualitative) explanatory variables are accepted;
Only numerical/qualitative response variable is accepted.

If data violates some of the technical requirements, the method will provide wrong results and should not
be applied.

ii) Non-restrictive technical properties: These properties also refer to the data structure expected by the
method; however, they are non-critical. Some examples include:

Recommended data size

Variable’s independence required
Normal distribution of variable’s required
Linearity

Requirement of no outliers

If data violates some of the non-restrictive technical properties, the method loses performance rather than
providing incorrect results. This means, for example, that algorithms suitable for small data sets are less
suitable for very large datasets, but they still can be used. Similarly, algorithms that require independent
variables will perform worse with highly correlated datasets, but they still can be used as well.

iii) Non-restrictive preference properties: These are method properties related to user preferences or project
goals. Some examples include:

Speed of execution
Interpretability of results provided
Machine readable results provided

In this case, mismatch between these characteristics and the user preferences or project goals indicates loss
of usability of the discovered knowledge, but results provided by the method may be correct.

In the following section, the DMMTs are introduced for the DM methods included in each branch of the DMMCM,
together with a discussion of the three types of method requirements introduced above, which will guide the reader
towards identification of the DM method(s) appropriate for his/her problem.
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7 Step two: identifying the appropriate technique within the selected DMMCM branch through the DMMTs

The descriptions presented are oriented towards the environmental scientist point of view. They intend to help a
non-DM-expert user to discriminate, among a set of possible available methods, which one is the most appropriate
to approach the target environmental problem. Thus, we present a set of structured templates, each one related to
a branch of the DMMCM.

The structure of the templates includes:
e the main goals of a family of methods;
a brief discussion of the main principles of the family;
clear information on the kind of input required;
technical assumptions to assess on data for data structure/method requirements match; and
the type of output expected from the method.

We intend to disseminate knowledge about a broad range of DM methods, so that environmental scientists can
better decide where to search for answers to their questions. Generally, there is a natural trend to use those methods
better known, even though forced and intricate procedures may be required to adapt to the intrinsic nature of the
problem. This research advocates the use of simpler and more appropriate alternatives when available.

Also, specific references are provided in each template where real applications of those methods are used to address
environmental problems. In this paper, the classical use of each technique is provided, despite other possible uses
in specific situations, which is out of the scope of this paper.

For every family of methods, a number of algorithms are available, each one with its own parameters. We do not
intend to be exhaustive, nor to detail all the algorithms, methods or parameter settings involved in any family. An
extensive review of DM tools for environmental science is given in Gibert et al. (2008b), and references to specific
papers are given throughout the text.

The following information intends to help the final user identify the families of methods useful for a certain
environmental problem. Once the DM technique that is suitable for the target problem is identified, specific search
in the literature might be oriented to get more details on available algorithms, or accessible software suites could
be inspected more in depth to search for proper options and parameter settings.

7.1 Profiling DM Methods: Clustering and Density Estimation

Response variable: No.

Main Goal: It covers the exploratory goal of finding distinct groups of homogeneous objects. These methods are
suitable for discovering the underlying structure of the target domain. Thus, they belong to the group of
unsupervised learners. They are very useful in the DM context, since the number of cases to be analyzed can be
huge. Clustering can also be viewed as a density estimation technique by assuming that data was generated by a
mixture of probability distributions, one for each cluster (e.g., Whitten ef al., 2011).

Principles: Clustering techniques are distance-based methods in which objects are compared among them and
clustered together if they are close enough. Algorithms have different combinations of the distance or dissimilarity
measure used for this comparison (see Gibert et al., 2005; Nufiez et al., 2004; Jain et al., 1999), and different
criteria to decide how to cluster objects. In hierarchical clustering (one of the statistical clustering methods), more
similar objects are clustered first. In partitional clustering, seeds of clusters are placed more or less randomly in
the space, and objects are clustered to the nearest seed. Self-organizing maps, also known as SOM (Kohonen and
Honkela, 2007) are a particular type of neural networks that build a 2D map where adjacency relationships among
objects is preserved, and clusters correspond to subsets of homogeneous neurons. Fuzzy clustering provides a
degree of belonging of objects to the clusters. Comparisons can be done directly, using distances or dissimilarities,
or using more sophisticated concepts related to the quantity of information added by an object to a certain class,
such as impact on the entropy of the class, and so on. Sometimes, prior expert knowledge can be introduced in the
form of rules (Gibert ef al., 2010b) or ontologies (Gibert et al., 2014) to introduce semantic information into the
process, and get classes easier to interpret. Graph theory (Herrera et al., 2015; di Nardo et al., 2018) and social
network theory (Campbell et al., 2016; Brentan et al., 2017a, 2018a) have also found applications in clustering.
Density-based methods, like DBScan (Ester et al, 1996) or OPTICS (Ankerst et al, 1999) are computation-based
methods detecting areas with higher concentration of objects and work well with non-globular clusters.
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Scalable methods combine several strategies to divide the process into smaller pieces and cluster bigger datasets
efficiently, like the CURE algorithm (Guha ef al., 2001), which hierarchically clusters an initial sample and uses
class representatives to assign classes to the remaining objects in a partition-like stage. Heat maps use permutations
of data matrix rows, and color coding of observations to visually find the classes (Wilkinson and Friendly, 2009).

Required Input: Data matrix with objects in rows

Standard Structure of output: Most algorithms produce a list of classes and the list of objects belonging to every
class. Density estimation algorithms provide the parameters of the probability law associated to each cluster.
Hierarchical algorithms can provide a dendrogram visualizing the sequence of aggregations performed.

Technical requirements:

e Variables: Traditional statistical clustering algorithms normally work with numerical variables. When the
clustering criteria can be parameterized (distance, dissimilarity, logics or mixtures), compatibility
measures open the door to cluster with heterogencous variables (Gibert et al., 2005). Clustering
algorithms coming from the Al field usually work with qualitative variables.

e Number of clusters: Many clustering algorithms (k-means and related) and all density estimation
algorithms require the number of clusters to be known a priori, and used as input parameter. Hierarchical
algorithms allow to discover the number of clusters a posteriori as a result of the analysis.

o A priori domain knowledge: Only required by clustering based on rules, when available. It can come in
the form of knowledge bases (Gibert, 1998), or in the form of ontologies (Gibert, 2014).

Non-restrictive requirements:

e Data size is prohibitive with quadratic algorithms like hierarchical clustering, but they are non-order
dependent. K-means or other linear algorithms can work with huge data sets. Scalable algorithms like
CURE (Guha et al., 2001) are the most efficient in time. Some of them are order dependent. Al clustering
methods usually work only with small datasets.

e Metrics: in hierarchical algorithms, dissimilarities perform worse than metrics because ultra-metric
properties of the dendrograms are lost.

e Independence is not required in general.

e Distributional requirements: only apply to density estimation algorithms. Most require normality inside
a class. Some algorithms can accept other probabilistic models. Most of them assume that all the clusters
follow the same probability distribution, even though with different parameters.

e Qutliers: Clustering methods that do not require the number of classes as an input are robust to outliers:
they produce singletons integrated in the final solution. In the other cases, it is important to detect and
properly treat them to avoid relevant deformations of the model, particularly in density estimation
methods.

e Missing values: Must be previously treated unless the comparison measure accepts missing values
(Gower, 1971). The alternative is to leave the incomplete data un-clustered.

Non-restrictive preference properties:

e Interpretability: Post-processing is often required to understand the meaning of the classes. Some software
packages like SPAD provide helpful information about the contribution of the variables to the classes.
KLASS (Gibert and Nonell, 2008; Gibert and Nonell, 2005) provides the class panel graph (Gibert et al.,
2008c), the traffic lights panels (Gibert, and Conti, 2012) and the conceptual characterization by
embedded conditioning (Gibert, 2014), which permit a visualization of the conditional distributions of
the variables regarding the classes at a distributional or symbolic level, or a propositional description of
the classes, and supports this understanding.

e  Time consumption: Choose a scalable or linear algorithm if you need running speed. Quadratic algorithms
can perform well for moderate datasets (with various thousands of objects and some hundreds of
variables).

Further uses: clustering algorithms are descriptive methods that do not have a further predictive task associated.
One of the most common uses is to associate a decision or an action to every class. Using these decisions or actions
requires a mechanism to identify the class of a new object. Sometimes, the same decision associated to the class
contains the conditions to be activated. In other cases, a discriminant problem has to be solved afterwards, using
the class variable created by the clustering as a response variable.

12|



709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

Validation: For algorithms requiring the number of classes as an input, validation must ensure that the proposed
classes are really distinct, and do not represent an artificial division of the domain. When a reference partition
exists, this can be done using some quality index like the misclassification tax, Dun or Davies-Bouldin indexes
(Brun et al, 2007)

However, being a non-supervised technique, there is no reference partition (otherwise clustering would be
unnecessary), and validation is still an open problem. In that case, structural validity (Calinski and Harabasz, 1974)
or the ratio of average distance within the clusters with respect to average distance between clusters may be useful
where a numerical distance measure exists (Chieppa et al., 2008), although it is redundant if the same criterion
was used to build the clusters themselves, as is the case of using Ward's method (Ward, 1963). If density estimation
has been used, the model goodness-of-fit can be objectively evaluated by computing the likelihood of a separate
test set based on the mixture model inferred from the training data.

Once the structure of the clusters has been validated, stability of results may assess robustness. This can be done
by performing multiple runs of the algorithm or other algorithms with slightly different parameters or initial values,
and see which packs of objects keep always together (Lukaci¢ et al., 2005), or how much the results change among
runs.

Finally, the decisive validation for assessing clustering usefulness is to validate understandability of results. This
is usually done manually under expert guidance, but some research is being carried out to automatically induce
concepts from classes which can support the detection of meanings of classes (Pérez-Bonilla and Gibert, 2007).

Applications and References: The use of clustering algorithms has been reported in various application fields for
dimensionality reduction in stream flow time series (Zoppou et al., 2002;), wastewater treatment plants (Gibert,
2010b and Zhao et al, 2012 use hierarchical clustering; Liukkonen, 2013 use SOM), cyclone paths identification
(Camargo et al., 2004), surface temperatures (Friedel, 2012), water quality in aquifers (Conti, Gibert, 2014), health
status of wind turbines (Blanco et al., 2018), and baseline air pollution levels (Gomez-Losada et al., 2018). A
hybrid combination SOM+k-Means Clustering was used to improve planning, operation and management of Water
Distribution Systems in Brentan et al. (2018b), which can be easily extended to other environmental problems,
etc. Graph theory (Herrera et al., 2015; di Nardo et al., 2018) and social network theory (Campbell ef al., 2016;
Brentan et al., 2017a,2018a) have been used to cluster a water distribution network into sectors so as to optimize
these infrastructures’ management. In Blanco et al. (2018) SCADA data is used to identify health profiles of wind
turbines. Clustering has also been used in land use identification (Letourneau et al., 2012), and finding cropping
patterns (Estel et al, 2016). Hybridation of case-based-reasoning and dynamic clustering was used to find
spatiotemporal patterns on air pollution in Orduiia et al. (2018). In Viaggi et al., 2013 clustering is combined with
ANOVA to evaluate sustainability in farm-households. Applications in ecology include identification of
behaviours in vegetation ecosystems (Tlidi et al, 2008), analyzing distribution of flora species like bromeliads
(Brandao et al, 2009), finding groups of wildlife populations, like polar bears (Taylor et al, 2001), and discerning
regions supporting similar assemblages of species (Hamilton et al. 2017).

7.2. Associative methods

Response variable: No
Main goal: Describe the relationships among the variables in a data set

Principles: Several families of methods respond to this aim. Association rule methods find out rules expressing
regular correlation patterns among several variables hidden within the data set. The process of finding association
rules could be computationally hard, especially if brute-force methods are used to obtain all the rules for all the
possible combinations of variables and values on the right hand side of the rule. Mining algorithms seek more
frequent combinations of variable-value pairs (item sets), overcoming a specified minimum coverage (or support).
From the rules generated from an item set, those overcoming the specified minimum accuracy are kept. One of the
most known methods is the Apriori algorithm (Agrawal and Srikant, 1994), which follows a generate-and-test
methodology for finding frequent item sets, generating successively longer candidate item sets from selected
shorter ones. Each different size of candidate items set requires a scan to the dataset and those under the minimum
support are eliminated. Other methods try to decrease the number of scans to the dataset, like FP-Growth algorithm
(Han et al., 2004), which uses a frequent pattern tree to store a compressed version of the dataset in the main
memory. Then, only two scans are needed to map the dataset into the FP-tree and, then, the tree is processed
recursively to grow large item sets directly. Bayesian and Belief networks (Koller and Friedman, 2009) use
conditional probability distributions and properties of chaining probabilities (or belief functions) to build a graph
where nodes represent variables and links are annotated with the intensity of the association between nodes. They
can be induced from a dataset. Most of the learning algorithms induce the skeleton of the underlying graph, and
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orient the rows on the basis of the conditional independences estimated over data (Needham and Bullpitt, 2007).
They provide a powerful graphical model to represent very complex and highly dimensional probability
distributions. Other graphical models from the same family are the Markov random fields or the Hidden Markov
models. The latter are able to model dynamics from a statistical point of view. Factorial methods offer a completely
different approach to analyze relationships among variables. They provide a low number of factors (linear
combinations of the original variables) and project the original data set by keeping the main information and
original object adjacency relationships. Factors represent a base conversion of the original variables. Variables can
be projected over the factorial space themselves. Associated variables will place close in the projection, and this
permits analysis of the packs of variables positively or negatively associated, or those behaving orthogonally.
Principal Component Analysis (PCA) or multiple correspondence analysis (MCA) are the most popular factorial
methods (Lebart et al., 1984; Dillon and Goldstein, 1984).

Required Input: The data matrix with objects by rows

Standard structure of the output: The sef of association rules mined, which have the minimum coverage/support
rate and accuracy/confidence rate specified by the user. An association rule provides a set of values for some
variables that appear together, and the variables on the left and right hand sides of the rules are exchangeable;
every rule can be used to predict any of the variables. Each rule is shown with its coverage/support and
accuracy/confidence values. Normally, rules are ordered from higher to lower coverage rules. Bayesian networks
provide the visualization of the directed graph with some numerical annotation on the strength of the arrows. For
factorial methods, the output is the set of factors, with the equations to build them upon original variables, as well
as the graphical plane representation of pairs of factors, with the variable projections.

Technical requirements:
e Variables: The variables must be qualitative for association rules or simple/multiple correspondence
analyses, Bayesian networks and MCA, and numerical for PCA.

Non-restrictive requirements:
e Qutliers: Association rule mining algorithms are quite robust to the presence of outliers, because outlier
values will not pass the minimum coverage cut in the generation of the association rules.
o Missing values: Missing values must be treated before building the models. Some software tools provide
specific options to handle them, but it is better to know what the system precisely does.

Non-restrictive properties:

o [nterpretability: The set of association rules are highly interpretable, and their meaning could be assessed
by the user/expert. Bayesian networks are very intuitive and easy to understand by end-users, providing
a powerful graphical model to understand the complex relationships among big sets of variables. The
factors resulting from a factorial analysis are fictitious variables. The set of factors must be carefully
interpreted on the basis of the original variables mainly contributing to the formation of the axes.
Sometimes the interpretation becomes hard. However, visual inspection of the original variables
projection over the factorial planes is very intuitive and permits to identify the associated variables very
easily.

o Time-Consumption: Depending on the number of variables and/or the number of objects in the dataset,
association-rule mining algorithms and Bayesian networks learning algorithms could show high
computational times.

Further uses: associative methods are descriptive methods that are not linked to further predictive tasks.
Commonly the results are used to identify packs of variables associated, and identify which variables to act to
reduce (or increase) values of other variables of interest. Quantification of the impact of these decisions is called
the what-if analysis and requires either further simulation or predictive models.

Validation: In association rule methods, the validation of the mined rules regarding interpretability could be done
through the assessment of the meaningfulness of the mined associations by the user/expert. The reliability and
generalization abilities of the association rules discovered can be evaluated with a new fest set of objects. Bayesian
networks are validated with experts. The goodness of the factorial methods is evaluated with the total inertia
accumulated in the selected factors (directly related with the information quantity conserved), and with the
contributions of the original variables to the axes.
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Applications and References: Association rules have been widely used to find relationships in environmental
domains. Formerly, Su et al. (2004; 2002) used association rules to extract relationships between environmental
factors and fish distribution or fishing grounds. In geoscience and remote sensing, some works use association
rules for geographic data (Rodman et al., 2006), for landscape analysis (Ferrarini and Tomaselli, 2010), for finding
relations between biophysical/social parameters and urban land surface temperature (Rajasekar and Weng, 2009)
or adaptations to climate change (Lynam, 2016), and for image processing for urban environmental analysis (Du
et al., 2007). Regarding water topics there are some works that used association rules for coastal water
classification (Pereira and Ebecken, 2009), lake sediments analysis (Annoni and Briiggemann, 2008), water
resource management (Castelletti et al., 2007), biofilm development in water supply systems (Ramos-Martinez et
al., 2014), and fault detection in WWTP (Ruiz et al., 2011). Cloud screening for meteorological purposes was also
investigated with Markov Random Fields in Cadez and Smyth (1999). In Robertson et al. (2003), hidden Markov
models were used to model rainfall patterns over Brazil, producing interesting results. Air quality is analyzed in
Zhu et al. (2012) with association rules mining, and with factorial methods in Sim-Siam et al. (2000). Bayesian
networks are used to detect gas anomaly in coal mines (Wang et al, 2008) and risks of CO; storage in soil in Sousa
et al. (2011). Soil quality is analysed in Khaledia et al. (2017) by combining PCA with clustering and PLS. Also,
ecological applications include studies aim at better understanding vegetation (Ghosh et al., 2014; Nassr et al,
2018), nutrients (Gudimov et al., 2012) and bacteria (Liang et al., 2005).

Other uses: In this section it is worth noting that factorial methods are sometimes also used as a preprocessing
step, where dimensionality reduction is intended. The original variables are reduced to a smaller set of factors
preserving much of the information of the original dataset into a low dimension data matrix. In this situation, the
interpretation of the axes becomes crucial, since DM is performed on the transformed (and reduced) matrix, and
the interpretability of the final results depends on the interpretability of the factors used. Also, Bayesian networks
are often used as predictive methods.

7.3. Discriminant methods

Response variable: A qualitative variable (class variable). The values or labels of this variable indicate the class
of each example.
Main goal: To predict the class of a new object according to the values of the explanatory variables

Principles: A discriminant instrument, often known as classifier, must be induced from training data that shows
the relationship between cases and the corresponding class. The nature of this discriminant instrument is quite
variable, and the principles to build it vary accordingly. Most classifiers find combinations of variables with certain
values that describe the main composition of a certain class. Decision Tree methods find the explanatory variables
with higher discriminant power regarding the response variable and iteratively subdivide the training sample by
building a tree where the internal nodes are associated with the variables, and its corresponding branches are the
possible values of the variable. Every leaf contains one class identifier. Various criteria are used to select the
discriminant variable at every iteration depending on the algorithm: the ID3 (Quinlan, 1986) algorithm and its
subsequent version C4.5 (Quinlan, 1996), select the variable that produces a split with minimal entropy; the CART
method (Breiman, 2017) uses the GINI rule. Rule-based classifiers try to build sets of classification rules with the
conditions for belonging to the class. A classification rule is composed by the left-hand side, which is normally a
conjunction of constraints on the values of some explanatory variables, and a class label as a right-hand side. Most
algorithms, PRISM (Cendrowska, 1988), RULES (Pham and Aksoy, 1995), etc., are based on the idea of finding
the variable and value that maximizes the quality (non-error rate, for instance) of the rule for a certain class, and
specializing the rule with more conditions to gain precision. Others work by generalizing individual rules to
sequentially cover more examples, e.g. RISE (Domingos 1996). The Bayesian classifier (Aguilera, 2011) uses the
class probabilities estimated at the learning stage as a priori probabilities, and uses the Bayes formula to estimate
the a posteriori probability, given the observed data. It finally assigns the most probable class. Naive Bayes
classifier is the most used Bayesian classifier, because it simplifies the computations involved by assuming some
independence hypothesis among the explanatory variables.

Specific methods can combine numerical and categorical explanatory variables (e.g. CN2; Clark and Niblett,
1989), and a time component can also be introduced into the rule format. The boxplot-based induction rule method
(Perez-Bonilla and Gibert, 2007) uses empirical conditional probability distributions to find the areas where ranges
of variables do not overlap among classes, and combine several low coverage specific rules to provide a rule for
the whole class. Bayesian classifiers use a frequentist analysis to estimate the empirical probabilities of the classes.
Other methods find the algebraic equations (also a combination of variables) to identify the frontiers among the
classes. This is the case of Linear Discriminant Analysis (LDA) methods (Lebart et al., 1984), or Support Vector
Machines (SVMs) methods (Boser et al., 1992; Vapnik, 1995). In the former, minimum least squares criteria are
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minimized to find the expression of the line(s) separating the classes. For SVMs (Christianini et al. 2000), criteria
are based on transforming the original data matrix into a space in which classes can be linearly separable (or quasi-
separable). In the transformed space, the line that better divides the space in regions (generally two) containing
basically objects of a single class (generally two classes) is found. Various transformations are available in the
form of kernel functions, and the user must specify which must be used in the training process. The discriminant
is always a linear function of the transformed variables and the class (expressed as 1 or -1).

Required input in training phase: The data matrix containing all the examples in the training set. The examples
show their explanatory variable values as well as their corresponding class label for the response variable
(supervised methods).

Standard structure of the output in the training phase: The discriminant instrument (or the induced model) to
be used for further predictions. These instruments could be barely different depending on the method used:
decision trees produce discriminant trees, rule-based classifiers or boxplot-based induction rule methods produce
a set of classification rules (probabilistic or not, depending on the algorithm). Bayesian classifiers produce a set of
class probabilities. Statistical discriminant methods produce the discriminant equation and some threshold to
decide the class accordingly. SVMs produce the discriminant equations or equivalently, as once the kernel
functions are specified the form of the discriminant is fixed, some software tools only provide the coefficients of
the linear combination constituting the discriminant equation. All those discriminants are oriented to provide a
prediction for the class of a new object under different forms.

Validation: The validation of the discovered discriminant instrument or model is assessed through the goodness
of the discrimination process (performance parameters), and some other parameters (size/time efficiency
parameters). For a decision tree the size of the tree and the classification accuracy in the discrimination process
are the two main validation parameters. In rule-based classifiers the three main parameters are size of the rule set,
classification accuracy of the rules, and coverage of the rules. Coverage is the percentage of the number of
examples which are classified by the rules. In Bayesian classifiers, the main validation parameter is the
classification accuracy. In addition to the global classification accuracy, it is very common to assess the accuracy
of each class label separately (accuracy by modalities). This way, it can be seen where errors are occurring. All
the accuracy rates are computed and visualized in what is commonly known as a confusion matrix. For binary
classifiers, as SVMs, ROC curves may be used (Hanley et al, 1982). The distribution of input data should also
receive consideration, as many classification algorithms tend towards predicting the majority class (the one with
more objects). An in-depth discussion of this topic can be found in Weiss and Provost (2001).

All the performance parameters are estimated using some unseen examples. These set of examples are known as
the validation set or the test set, depending on different terminology and/or scientists. This validation scheme is
known as simple validation. N-fold cross-validation if the most frequently used.

Required input in the predictive phase: A new object to be classified, where the response variable is unknown

Structure of the output in predictive phase: The output is the predicted class for the target-object, which is
obtained by applying the induced discriminant model. For decision trees, the object must go through the tree,
following the branches indicated by its values in each variable, till a leaf is reached, and the class label found. For
rule-based classifiers, classification rules must be evaluated with object values, and the object is classified
according to the right hand side of the first satisfied rule of the rule set. For boxplot-based induction rules, various
criteria are applied (like maximizing coverage and/or confidence, or voting) to decide which of the satisfied rules
will be used to determine the final class. Algebraic equations provided by LDA must be computed with the object
values and the result compared with some thresholds to find the class. For SVMs the equation representing the
linear discriminant must also be computed with the object values. The sign of the result indicates which of the two
classes is predicted.

Technical requirements:

e Variables: the explanatory variables must be qualitative for decision trees, for most of the rule-based
classifiers and for the Bayesian classifiers or discriminant correspondence analysis. They must be all
quantitative for discriminant equations. Box-plot-based-induction rules can deal with both numerical and
continuous variables, as well as SVMs, provided that the proper algorithm is used in this case.

e Response variable: Only binary for SVMs and discriminant methods.

Non-restrictive requirements:
o Variables distributions: LDA assumes normality of explanatory variables.
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e Homocedasticity: LDA requires equal variances.

e Independence: The Naive Bayes classifier assumes that the variables are conditionally independent given
the class label values.

e Qutliers: In general, these methods are quite robust to the presence of outliers, especially decision trees
and rule-based classifiers. Outliers are managed as specific objects, which will generate specific
classification rules or specific tree branches.

e Missing values: Missing values must be treated before building the models. Some software tools provide
specific options to handle them, but it is better to know what the system precisely does. Classification
cannot be provided if the new example contains missing values.

Non-restrictive properties:

o [nterpretability: A decision tree model is highly interpretable and meaningful for a user. A set of rules
could also be interpretable by an expert. Bayesian classifier models (i.e. probabilities) are not easily
interpretable at all, as well as algebraic discriminant equations.

e Time consumption: Depending on the number of variables and/or the number of objects in the dataset
some models could have a high computational cost in the training step, like rule-based classifiers or
decision trees.

Applications and References: Classification techniques are be very popular. For example, in Spate ef al. (2003)
rainfall intensity information was extracted from daily climate data; Troncoso et al (2018) predicts monsoon;
Ekasingh et al. (2005) discusses the classification of farmers' cropping choices using decision trees; in Sweeney
et al. (2007) mosquito population sites are categorized, while in Stadler et al. (2006) decision trees are applied in
a European plant life-history trait database. Agriculture-related applications include Holmes ef al. (1998) for apple
bruising, Yeates and Thomson (1996) for bull castration and venison analysis, and the Michalski and Chilausky's
soybean disease diagnosis work (Michalski and Chilausky 1980), which is a classic benchmark problem in
machine learning. Considerable efforts are recorded in the water-related fields, using rule-based reasoning (Zhu
and Simpson, 1996; Dzeroski et al., 1997; Comas et al., 2003; Spate, 2005; Ramos-Martinez et al., 2014), decision-
trees (Kokotos et al., 2011), regression-trees (Dseroski et al., 2003), Support Vector Machines (SVM) (Kanevski
et al., 2002), case-based reasoning (Martinez et al. 2006 ; Wong et al., 2007), regression trees (Dzeroski and
Drumm, 2003) or hybrid techniques (Cortés et al., 2002, Yang et al. 2012). In the study of air quality, classification
has been used for air quality data assurance issues (Athanasiadis and Mitkas, 2004) and the operational estimation
of pollutant concentrations (Athanasiadis et al., 2003; Stebel et al, 2013; Yeganeh et al, 2012). Land use has been
used with decision trees (Schenider et al, 2012), logistic regression (Li et al, 2009). Regression forest have been
used to detect pesticides in fruits (Holmes et al, 2012). Bayesian networks for predicting coral bleaching (Krug et
al, 2013) or fish recruitment (Fernandes et al, 2013). Rule based classifiers to predict rockburst in longwal or coal
(Sikora, 2010).

Classification has also found spatial applications. For example, fish distribution (Su ef al., 2004) and soil erosion
patterns (Ellis, 1996) have both been modelled with classification methods, as was soil erosion in Ramesh and
Ramar (2011), and other soil properties in McKenzie and Ryan (1999), which also used regression trees and other
techniques to obtaining system information.

Comas et al. (2001) discusses the performance of several DM techniques (decision tree creation, two types of rule
induction, and instance-based learning) to identify patterns from environmental data; the potential of DM
techniques has been shown in (Athanasiadis et al., 2005) where statistical and classification algorithms in air
quality forecasting are compared; sudden death of oak trees was modelled with SVMs in Guo et al. (2005).

7.3.1. Case-Based Reasoning (CBR)

Response variable: A very common use of case-based reasoning (CBR) is for discriminant purposes, with one
qualitative response variable (class variable), although the model accepts one or several response variables, and
each one could be either quantitative or qualitative. When a single qualitative response variable is used, CBR acts
as a case-based classifier, commonly known as nearest neighbor classifier (NN). When one or more numerical
response is/are used, CBR acts as a (multi-response-)predictive method, to forecast (case-based predictor).

Main goal: To recommend a solution (or a list of the best solutions) for a new problem on the basis of past
experiences. It is important to highlight that CBR is much more than a simple data mining method. CBR is a
general problem-solving, reasoning and learning paradigm (Kolodner, 1993) within the Al field.
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Principles: The general assumption of this model is that “similar problems have similar solutions”. CBR solves a
new problem (new case or experience) by adapting the solution of one or several previous similar problem(s) (past
experience or case), which are in the memory (case library or case base) of the system. This way, solutions are not
built up from scratch, but taking advantage of what has been done in the past, decreasing the time of problem
solving. In addition, CBR systems learn from each new experience (enlarging the case library), and its performance
increases along time. The assumption is that similar cases should have similar values of the response variable(s):
given a new case (query-case) with unknown values for some variables, similar cases are selected from the case
library, and the response variable(s) of the new case is estimated according to the values of its neighbors.
Additional use of domain knowledge can be used to combine the solutions of the neighbors in a new solution for
the query-case. A great advantage of this paradigm is that it is robust to model changes or trend changes, since the
case library updates over time and accumulates experiences on new behaviors, which can be retrieved in the future.

Required input in training phase: The training phase consists of entering into the case base a sufficiently
representative set of cases, or past experiences. A data matrix with this collection of cases is required. The structure
of the case library can be indexed. In this case, the structure of the index must be provided.

Standard output in training phase: CBR does not produce an explicit model describing the system behavior. In
fact, it is known as a lazy learning technique. The model is implicitly composed by all the cases or experiences
stored in its case library. The output of the training phase is a case library properly structured.

Validation: The system competence must be validated. It depends on the quality of the case library. Cross
validation techniques can be used, but some evaluation of proposed solutions is required. For that, expert
evaluation about solution quality is often required. If the proposed solution can be applied and the system can
provide feedback on the goodness of the solution, automatic validation can be performed, even though this is not
the common situation.

Required input in the predictive phase: Using the model means to obtain solutions for a new problem or
predictions for unknown variables in a new case. The input must be the query-case, for which response variables
are unknown. It is flexible enough to change the response variables from one query to another provided that the
description of the case and solution variables can be modified dynamically, and the similarity works with non-
solution variables.

Structure of output in the predictive phase: The system provides a proposal for the unknown variables, together
with a list of more similar cases in the case base, from which the final solution is built. A relevance coefficient for
the neighbor cases is also provided.

Technical requirements:
e Variables: Both qualitative and quantitative variables are allowed, provided that the correct similarity is
used to compare cases.
e Case library structure: The case library structure must be good enough to allow fast retrieval processes.

Non-restrictive requirements:

e Data size: a flat case library must be small for good performance; for large case libraries, an indexed/
hierarchical structure is needed for reasonable computational time. Otherwise, time could be prohibitive.
Performance depends more on the representativeness of cases in the case library rather than on its size.
Big case libraries do not perform well if they contain lots of redundant cases.

e Metrics: it must consider the various types of variables used in case description. A metric structure is not
strictly required, and the process can also perform well with similarity measures.

e Distributional requirements: irrelevant

e [ndependence: this paradigm is particularly powerful with general situations including complex
interactions among variables, which are difficult to model explicitly.

e Qutliers: robust to the presence of outliers in the case library. However, when the query-case is very
different from information contained in the case library, the proposed solution must be invalid.

e Missing values: Missing values can be a problem for retrieval tasks, for similarity assessment (unless the
similarity measure used can deal with them), and for adaptation tasks. Missing values management
techniques must be applied to run properly.

Non-restrictive properties:
e [nterpretability: There is no explicit output model. Depending on the case library structure, the implicit
case library model (hierarchical structure) can be easily interpreted. Additionally, in the
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discrimination/prediction step, the set of similar cases is normally given as a partial output, which can
give a very good interpretation of how the proposed solutions are derived.
o Time consumption: good for small case libraries or large/huge case libraries with an indexed case library.
e Robustness to model changes: CBR shows robustness to model changes as new cases implicitly introduce
new behaviors into the case library, and permits adaptation of the solutions to the new behavior.

Application and references: In environmental sciences, CBR has been applied in various areas with different
goals, because of its general applicability. CBR has been widely used in environmental domains such as
meteorology (Riordan and Hansen, 2002; Koo et al, 2013), forest fire fighting (Avesani et al., 2000), agroforestry
management (Tourigny et al, 1998), rangeland pest management (Hastings et al., 2002), land use (Li et al, 2009),
quality air prediction (Kalapanidas and Avouris, 2001), mapping species an habitat (Remm, 2004), solution of
local environmental problems (Kaster ef al., 2005), drilling in fossil fuels (Shokouhi et al, 2014), supervisory
systems for waste water treatment plant (WWTP) management (Rodriguez-Roda et al., 2002), and water
management in general (Popa et al, 2011, de Araujo et al, 2004).

Cautions: The main assumption of CBR models that “similar problems have similar solutions” must hold in the
domain. Otherwise, the accuracy and quality of the proposed solutions cannot be guaranteed. Also, the quality and
the scope of the case library is critical, as well as the choice of an appropriate similarity measure and adaptation
technique/s (see Nuilez et al., 2004).

7.4 Predictive models

Response variable: Numerical
Main goal: To find an algebraic equation relating the response variable with a set of explanatory variables,
accepting a probabilistic error fitting some probabilistic distribution.

Principles: These methods try to minimize the mean square error (MSE) or some related loss function that
compares fitted and observed values. They provide the coefficients of the optimal equation. The underlying
algebraic structure depends on the nature of the explanatory variables and the nature of the model. Numerical
variables correspond to axes in some linear space. Qualitative variables are previously decomposed into dummies
to be entered into the models. Linear Models search for hyperplanes. The General Linear Model (Christensen,
2002) is a general formulation including most known cases as Multiple Linear Regression, ANOVA or ANCOVA
being particular cases. The Generalized Linear Model (GLM) uses an internal link function that can have multiple
forms and produce, as particular cases, Poisson regression or logistic regression, among others (Myers et al.,
2002). For Time Series Analysis, the optimized function relates a single response variable with itself in the past;
this means with previous observations of the same variable. Time series models use various functional
relationships among observations (Hamilton, 1994; Lerner, 2004). Some classical machine learning algorithms
from the discriminant family, extend to models that also predict numerical variables. This is the case of
Classification and Regression trees (Breiman, 2017) or Support Vector Regression (Basak, 2007).

Required input in training phase: the model is built by means of finding best estimates for the coefficients of
the target equation. The required input parameters are in the training data matrix, which must contain a set of
examples and the parameters of the model. In basic regression models, there is a coefficient to be estimated for
every variable. More complex models include interactions between terms. Stepwise-like techniques can help
decide which interactions must be considered in the model, thus avoiding the combinatorial problem of using a
complete model, and having more parameters to estimate than examples in the data matrix.

Standard output in training phase: An algebraic equation (normally a linear combination of the explanatory
variables or their dummies, if original variables were qualitative) relating explanatory variables with the response
variable. This equation contains only the significant variables, those proved to be relevant for the response variable.

Validation: First of all, significance of the coefficients of the model are assessed by means of the corresponding
statistical tests. Once the effective terms of the final equation are clear, goodness of fit indicators, like the
determination coefficient (R?), or the F statistic in the ANOVA, or deviance in the general linear model, can assess
the technical global performance of the model. Graphical analysis of the residuals (Moore and McCabe, 2012)
must complement this analysis by identifying violations of the technical assumptions of the models, like normality,
linearity, independence, or the ones required for the different models, as well as other situations that can determine
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abnormal estimation of the model parameters, like outliers or influential observations. This part is rather difficult
and poorly explored for some models like logistic regression. Validation of technical assumptions of the models
is critical for correct interpretation of goodness of fit indicators, which are calculated under these assumptions.
Wrong models can provide extremely wrong predictions and have unexpected dramatic consequences, even with
high values for the determination coefficient. It is important to take care on using the right indicator for every
method and type of data.

Required input of the predictive phase: Using the model involves applying the estimated equation for predicting
the value of the response variable in new query-objects. The input is a query-object with unknown response
variables.

Standard structure of output in predictive phase: The predicted value for the response variable. It is obtained
by simply applying the equation to the values of the explanatory variables in the query-object.

Technical requirements:

e Variables: Various configurations are allowed depending on the model. All forms of regression work
with numerical explanatory and response variables. ANOVA relates a numerical response variable with
a set of qualitative variables, converted to dummy variables (Wooldridge, 2009), that is, to a set of binary
variables, indicating presence or absence of a modality, one per modality. ANCOVA generalizes
ANOVA to include also quantitative explanatory variables. Logistic regression relates a probability as a
response with a set of numerical regressors, and is useful to predict qualitative variables, provided that
the method permits to estimate the probability to belong to every modality. The GLM subsumes many
particular cases like ANOVA, ANCOVA or linear regression. Users must take care to apply the correct
model according to the types of variables used.

Non-restrictive requirements:

e Data size: These methods perform well even with a big number of objects in the dataset.

e Dimensionality: Some models are not feasible for a large number of variables, particularly if they are
qualitative with many modalities, because running times exceed reasonable ranges.

e Metrics: They are not distance-based methods.

e Distributional requirements: Regression methods, ANOVA, and ANCOVA require conditional
normality. If it does not hold, inference in the model is invalidated and significance of terms in the final
equation cannot be properly assessed. Poisson regression requires Poisson conditional distribution. Every
model has its own distributional requirements, and the final user must be sure that data holds these
assumptions for a valid model.

o [ndependence: Most of these methods assume uncorrelated data. Multi-collinearity can be a problem in
some contexts. In more general models, interaction terms can be introduced to model these correlations,
but this diminishes quite a lot the interpretability of the model.

e Linearity: it is a condition for all linear regression models. Quadratic or polynomic models will have
other technical requirements that must be satisfied by the data. Otherwise, the model can be built, but the
quality of the predictions is not guaranteed at all. As an example, it makes no sense to find the best linear
approximation for a quadratic model.

e QOutliers: In general, these methods are far from being robust to the presence of outliers, which can trigger
significant perturbations in the final coefficients. Outliers must be previously identified, properly
diagnosed, and properly treated before building the model. Treating outliers is not synonym of eliminating
them from the analysis. Proper treatment can mean enlarging the sample with more data in the area.
Prediction can fail if it is asked for an object very far from the model.

o Missing values: Missing values must be treated before building the model. Some software packages
provide specific options to handle them, but it is better to know what the system does precisely.
Predictions cannot be provided if the query-object contains missing values.

Non-restrictive properties:

o [nterpretability: The regression equation is provided. Specialists may be able to interpret the meaning of
the coefficients in these equations, but this is not easy for the general user. These models are more
interpretable than neural networks or genetic algorithms, but less interpretable than decision trees or
induction-rules.

e Time consumption: Prohibitive for complex models with many coefficients and many interactions. For
basic models, efficient performance in both estimation phase and predictive phase is obtained.
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Applications and references: A variety of regression models have been used for environmental problems, for
example to predict concentrations of pollutants in WasteWater Treatment Plants (WWTP) (Diirrenmatt et al.,
2012), and to predict stormwater quality (Sun et al, 2012) or heatwaves (Herrera et al, 2016) or macroinvertebrate
abundance in rivers (Forio et al, 2018). Spatiotemporal models based on regression were used to predict rainfall
(Kamarianakis et al, 2008), bioremediation time in soil or water after petroleum contamination (Norris, 2018), and
opal occurrence (Landgraebe et al, 2013). Fuzzy time series have been used for analyzing air quality (Domanska
et al, 2012). Support vector regression was used to predict sediment concentration in rivers (Jain et al, 2012) and
classical mechanistic models were used by Cazarez et al. (2005) for temporal prediction of flow parameters in oil
wells. Classification and Regression Trees have been used to predict species habitat (Fukuda et al, 2013).

7.4.1. Artificial Neural Networks (ANNs)

Response variable: the most popular use of ANNs is for a numerical response variable. However, there are ANNs
prepared to work with qualitative response variables.

Main Goal: To predict a response variable. The ANN is a black-box implicit model which works as a universal
function aproximator that can fit any kind of function to relate explanatory variables with the response variable,
even if it is a complex non-linear combination of explanatory variables. ANNs are often used in non-linear
regression and classification.

Principles: ANNSs are a metaphor of brain functioning, where a network of neurons strengthens or diminishes their
interconnection on the basis of new input signals provided by various biological sensors. Thus, an ANN is
conceived as a graph of neurons that can be grouped into layers and adjust their weights incrementally depending
on the signals received from other neurons and their own reactivity (represented by their activation function). They
need to be trained with incremental inputs to converge to a stable structure usable in the long-term for predictive
purposes. The architecture of an ANN determines its behavior and the kind of functions it can fit. The simplest
ANN is the Perceptron, a feedforward neural network with a single neuron, which, in fact, simulates a logistic
regression (Rosenblatt, 1956). Widrow and Hoff (1960) introduced the single layer neural network. Non-linear
functions can be fitted with hidden layers (Bello, 1992) and non-linear activation functions (multi-layer
perceptrons) or radial functions (radial basis function network). Recurrent ANNs permit dynamic prediction
(Hochreiter and Schmidhuber, 1997).

Required input in training phase: The training dataset is the input for training the network. It contains a set of
examples (an object with the values of the explanatory variables plus the value of the response variable). The
various algorithms correspond to combinations of the architecture of the network (number of hidden layers,
number of neurons per layers, a layer being a group of non-connected neurons that share input), connectivity of
neurons (unidirectional (feedforward) or bidirectional (recurrent)), the activation function of the neurons (lineal,
threshold, sigmoidal, cosine, Gaussian, etc.), the training algorithm itself (backpropagation algorithms, with or
without optimization of neuron weights: descending gradient, based on conjugated gradients, quasi-Newton
methods, Levenberg-Marquardt method, etc.), or the static or dynamic structure of the network, which determines
whether structure can change over time and how new neurons or connections are added. Fuzzy neural networks
proposed by Jang (1992) use fuzzy logic in the training algorithm, and there are multiple variants in this field.

Standard output in training phase: Once the network is properly trained, the weights of the connections become
determined. The result of the training phase is the definite topology of the network.

Validation: As other supervised models, the validation can be done through the misclassification tax, or the
number of examples wrongly classified by the method, preferably over a test dataset, independent of the training
dataset. Cross-validation techniques are preferred to simple validation. Supervised neural networks that use an
MSE cost function can use formal statistical methods to determine the confidence of the trained model. This model
tends to overfit the training sample, and to provide models difficult to be generalized to other samples. Validation
must ensure that the overfitting phenomenon is under control.

Required input in predictive phase: A new object with the values of the explanatory variables for which the
response variable value has to be predicted.

Standard structure of output in predictive phase: the predicted value for the response variable. It will be a
numerical value for numerical responses, or a binary value for binary responses. In this last case, a final threshold
function is used to binarize the result. When the response is categorical with more than two modalities, arbitrary
thresholds are used to discriminating among categories.

Technical requirements:
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e Variables: ANNs usually handle numerical input data, but it is possible to find approaches that handle
binary input data. Categorical variables with multiple categories are tedious to handle.

Non-restrictive requirements:

e Data size: The dataset used for training should be big enough to be representative to avoid biases in
training. However, not too big to generate overfitting (a too specialized fitting of the observed cases that
would not be generalizable).

Independence: Not required in general

Distributional requirements: Not necessary

Metrics: ANNs are not distance-based methods.

Outliers: ANNs are considered robust models able to handle outliers or noisy data.

Non-restrictive properties:

o [nterpretability: ANNs are not interpretable. In the literature they are known as black-boxes since they
are implicit models. This means that they can be used to obtain reliable predictions, but the genesis of the
model, as well as the reasons for a certain prediction, remain unknown by the end user. Although it is
possible to extract the mathematical equation implicitly used in an ANN to compute the predicted value,
it is related with the topology of the network, and do not help too much to interpret the result.

o Time consumption: ANNs training time depends, among other things, on the architecture of the network.
Time consumption increases with the number of hidden layers the ANN contains and the number of
connections. Moreover, the training time depends on the training data set time. For a very large amount
of data or a big network, some methods become impractical. In general, it has been found that theoretical
results regarding convergence are an unreliable guide to practical application. The prediction time is very
quick, even for big and complex ANNS.

Applications and References: Numerous applications have been developed for ANN; as an indication we mention
the works by Kralisch ef al. (2001) and Almasri and Kaluarachchi (2005) on nitrogen loading; Mas et al. (2004)
on deforestation; Tasadduq et al (2002) on surface temperature in desert; Tirelli et al, (2011) on flora abundance,
Carvalho et al, (2008) on biological diversity in coastal water; Bartoletti et al, (2018) on rainfall; Babovic (2005)
on hydrology; Izquierdo ef al. (2006) on detection of anomalies in water supply systems; Brentan et al. (2017a)
on water demand forecast; Kusiak et al, (2013) on pumping in WWTP; those of Belanche et al. (2001), Gibbs et
al. (2003) and Gatts et al. (2005) on water quality; Kurt et al (2010) on air quality; and Pacifici et al, (2009) and
Taghavifar et al, (2013) on land use and soil. The discussion on nonlinear ordination and visualization of ecological
data by Kohonen networks; ecological time-series modelling by recurrent networks Recknagel et al. (2002); along
with the application of Dixon et al. (2007) in anaerobic wastewater treatment processes. Almasri et al (2005) on
nitrate distribution, Recknagel et al (2002) on algal bloom. In Huang et al, (2001) permeability in petroleum
reservoirs is predicted. From multilayer perceptron, to recurrent ANN, sometimes using neurofuzzy approach, and
in most of the cases combining with PCA or decision trees, or some genetic algorithm, or GIS.

7.4.2. Evolutionary computation

Response variable: The most common use of Evolutionary Computation (EC) (Holland, 1992) is for predicting
a single quantitative response variable by means of quantitative explanatory variables. However, this model can
also be used with several response variables, even qualitative and of mixed nature

Main goal: To find the optimal value of the response variable(s) together with the values of the explanatory
variables producing it. In the case of multi-objective problems, the so-called Pareto front is sought.

Principles: During the last two decades, some algorithms that imitate certain natural principles have been used in
various aspects of Environmental Sciences. These algorithms perform a type of search that evolves through
successive generations, improving the characteristics of the potential solutions by means of mechanisms inspired
by biology. EC is a bio-inspired approach mimicking natural selection or behavioral processes in biological
populations.

The most popular examples are Genetic Algorithms (GAs), including Genetic Programming (GP), and Swarm
Intelligence. A GA (Goldberg, 1989) is a biologic random search technique. It begins with a set of randomly
generated individuals, called the population. Each individual is coded as a string over a finite alphabet (commonly
a binary code). The next generation of the population is produced after some genetic operators (selection,
crossover, mutation, etc.) have been applied to some probabilistically-selected individuals. Each individual is rated
according to an evaluation function, named the fitness function which is correlated to their associated probabilities.
Selected individuals for reproduction are combined using a randomly crossover point among the positions in the
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string. The offspring are created by crossing over the parent strings at the crossover point. Finally, each new
individual is subject to random mutation of some positions with small probabilities. Since best individuals are
selected and reproduced, convergence to the best individual (the optimal) is expected. GP (Michalewicz, 1996;
Koza, 1992) is a subclass of evolutionary search methods, where the population is composed by individuals who
are computer programs or fragments. The evolution of such a population can produce a new computer program to
perform a user-defined task.

Swarm Intelligence imitates the collective behavior of a group (swarm) of individuals. Individuals are endowed
with personal intelligence. In addition, some kind of collective intelligence emerges from grouping and
communication among individuals, resulting in more successful performance of the whole group. There are two
popular swarm-inspired methods in computational intelligence: ACO (ant colony optimization) (Dorigo et al.,
1996), inspired by the foraging behavior of ants, and PSO (particle swarm optimization) (Kennedy and Eberhart,
1995), inspired by the social behavior of flocks of birds or schools of fish.

Hybrid platforms that use several metaheuristics (Montalvo et al., 2014), with self-adaptive abilities (Izquierdo et
al., 2016a) and able to exploit knowledge injected to the model (Izquierdo et al., 2016b) both from the expert
know-how in the field and from mining tasks performed during the evolution process itself, have also shown great
interest, because of their improved search abilities.

Required Input: Data required in EC applications consists in a clear mathematical setting of the problem,
including a neat distinction between targeted objectives and constraints to meet. To meet this purpose, the
sometimes bulky data describing the material elements of the problem is indispensable, and may be suitably stored
in appropriate databases. Sometimes, mainly to avoid frequently arbitrary constraint penalties, constraints are
transformed into objectives to meet, what necessarily develops into multi-objective optimization (Montalvo et al.,
2014).

Structure of output: EC does not produce an explicit model describing the system behavior. The model is
implicitly composed by the set of individuals (population) at each step of their evolution and their fitness function.
However, frequently, only the individual of the last generation, those embodying optimal solution(s) are of interest.
In the case of multi-objective optimization, those non-dominated individuals constitute the Pareto front. Reasons,
frequently of non-technical character, must be a posteriori used to select one (or various) of those non-dominated
solutions as the final solution to be implemented. Since this permits a certain trade-off between objectives of varied
nature, commonly political, entrepreneurial economic, etc., reasons are used to make the last decision. However,
some recent proposals suggest using multi-criteria decision-methods to select the final solution(s) (Reynoso-Meza
etal.,2017,2018; Carpitella et al., 2018).

Validation: Conditions under which EC algorithms perform well are not easily identified. Typically, evolutionary
algorithms (including swarm intelligence) find suboptimal solutions; there is no guarantee of finding the global
solution of the problem in hand. As a result, validation is performed based on either benchmarking problem
available in the literature on specific repositories, or based on sound knowledge and experience regarding the
problem in hand, that lead to consider acceptable a solution from a technical point of view.

Technical requirements:
e  Variables: Both qualitative and quantitative variables are allowed. However some quantitative variables
are better to thoroughly explore the search space. Instances where various types of variables coexist are
frequent (Izquierdo, 2007b, 2012).

Non-restrictive requirements:

e Data size: For large/huge data size, the computation time could be prohibitive. This drawback may be
somehow indirectly alleviated through various methods, such as the use of warm solutions (Brentan et
al., 2018), or by orienting the search through the injection of knowledge, as said before.

e Missing values: Missing values can be a problem both for the evolution of the population, for the fitness
function assessment and for the operators’ implementation. Missing values management techniques must
be applied to run properly.

Non-restrictive Properties:
[ ]
o Time consumption: Computation time could be highly reduced because EC is able to use parallel
processing.
e Optimization accuracy: EC could explore the whole search space and escape from local optimal to which
other optimization techniques cannot.
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Applications and References: Haupt and Haupt (2002) contains an overview of some application of GAs in
Environmental Sciences. One example of fitting a model to observed data using a GA is reported by Mulligan and
Brown (1998). They use a GA to estimate parameters to calibrate a water quality model. Some other works related
to water quality include using GAs to determine flow routing parameters (Mohan and Loucks, 1995), solving
ground water management problems (McKinney and Lin, 1994), sizing distribution networks (Simpson et al.,
1994), and calibrating parameters for an activated sludge system (Kim et al., 2002). Aly and Peralta (1999) used
GAs to fit parameters of a model to optimize pumping locations and schedules for groundwater treatment. Fayad
(2001) together with Peralta used a Pareto GA to sort optimal solutions for managing surface and groundwater
supplies. Another example is the use of a GA for classification and prediction of rainy days versus non-rainy days
occurrences by Sen and Oztopal (2001). They used the GA to estimate the parameters in a third order Markov
model. GAs are also used in Geophysics to determine the type of underground rock layers (Boschetti ef al., 1997).
Minister ef al. (1995) find that EP is useful for locating the hypocenter of an earthquake, especially when combined
with simulated annealing. Cartwright and Harris (1993) suggest that a GA may be a significant advance over other
types of optimization models for determining the source of air pollutants given what is known about monitored
pollutants, when there are many sources and many receptors. Barth (1992) showed that a GA is faster than
simulated annealing and more accurate than a problem specific method for optimizing the design of an
oceanographic experiment. Porto ef al. (1995) found that an EP strategy was more robust than traditional methods
for locating an array of sensors in the ocean after they have drifted from their initial deployment location.
Charbonneau (1995) gives three examples of uses of a GA in Astrophysics: modelling the rotation curves of
galaxies, extracting pulsation periods of Doppler velocities in spectral lines, and optimizing a model of
hydrodynamic wind. PSO has also shown great potential for the solution of various optimization problems
(Izquierdo et al., 2007b, 2008a, 2012; Montalvo et al., 2007, 2008, 2010a, 2010b; Liao et al., 2007, Jin et al.,
2007; Janson et al., 2008). Specific environmental applications include cluster analysis in environmental
databases, as in Herrera et al. (2009) and Diaz et al. (2008); short term scheduling for a biomass supply chain
(Izquierdo et al., 2008a); parameter estimation in Hydrology (Gill ef al., 2006); stage prediction for rivers (Chau,
2006); calibration of hydrological models (Zhang et al., 2011); run-off modeling in a basin (Kuok ef al., 2010);
assimilation of root zone soil water predictions (Lii ef al., 2011); design and calibration of large and complex
urban storm water management models (Muleta et al., 2006); multipurpose reservoir operation (Kumar and Reddy,
2007); storm water network design (Afshar, 2008); optimization in water resources management (Baltar and
Fontane, 2008); among many others. In Herrera et al. (2018), a book devoted to hydroinformatics in water
distribution systems, several chapters deal specifically with various of the previous techniques to tackle quality,
energy optimization, leak reduction, etc. in those systems.

8. Identifying the proper Data Mining method for a real environmental application

In this section real environmental data mining applications are analyzed from the point of view of the kind of
environmental system involved, the type of data mining method used and the environmental question responded.
This will elicit a set of typical environmental problems suitable to be analyzed with some data mining methods.

On the basis of Figure 1 and the methods identified in the DMMCM, Table 2 shows a collection of real applications
in the environmental field. Colors of the cells letters regards to different global environmental topics like human
activity, sustainability or ecology. Shadowed cells regards to hybridation of several DM methods required to deal
with the intrinsic complexity of the targeted ES.

<TABLE 2 arround HERE>

Table 2: Applications of DM methods to ES (DIN-A3 landscape page). Red cells regards to
environmental applications related to human activity; green cells refer sustainability; orange cells
refer ecology. Shadowed cells refer to hybrid applications where several DM methods are
combined.
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It can be seen that all kinds of DM methods can be used in all kinds of ES. The key is to properly match the
environmental question that requires answer with the kind of data processing performed by the DM method and
to find the method that provides an output relevant for the question.

As an example, regarding vegetation, one of the biotic natural resources identified in Figure 1, we can distinguish
basically four kinds of questions:

1. Geographic or temporal distributional issues: when the focus is on discovering which geographical areas
support certain plants, understanding the differences between several species of a certain family, or
identifying patterns of behaviors along time, clustering methods are appropriated.

2. Characteristics relationships: when the interest is to understand how different characteristics of the
context, the plants or plant communities themselves, or occurrences of certain events relate, then
associative methods are appropriate. This includes questions such as: how environmental conditions
relate to occurrences of species or communities, how certain parameters of a plant (chlorophyll, nutrient
load, height of trees associated with environmental factors, fertilizers, etc.) can affect plant development,
etc.

3. Recognizing qualitative events: When the interest is to discriminate among a well-known set of events or
situations based on some measureable characteristics, then discriminant methods are useful. In this case,
the following type of questions can be answered: which are the conditions that produce (or prevent)
eutrophication, bleaching, the occurrence of diseases or pathogens, population declines or die offs,
overpopulation, etc.

4. Predictive quantitative parameters: When the interest is to predict numerical characteristics of vegetation
then predictive methods are appropriate. The methods in this branch can answer questions like quantifying
abundance of a certain species, deforestation taxes, ratios of growing, reproduction of a species, heights
or volumes of a certain plant, etc.

Similar analyses could be done for other natural resource fields. The interesting thing that Table 2 visualizes is
that whenever a numerical variable (like abundance) has to be predicted, predictive methods from the DMMCM
map will help independently of the natural resource targeted. This means, for example, that ANN methods are
useful for predicting abundance of bromeliads, but also abundance of polar bears or abundance of fish in a river,
or macroinvertebrates, or air pollutants in urban areas, or organic matter in water, etc., just because all of them are
numerical variables that do not behave under normal distribution and, in these cases, suitable predictive models
are ANNSs rather than traditional statistical modelling.

So, the idea is that the selection of the DM method is the result of contrasting the target question and the kind of
data available with the input and output characteristics of the candidate DM method itself.

This requires some knowledge about the DM methods properties and the environmental system to be analyzed as
well. The templates given in section 7 provide the minimum information about DM methods to be able to perform
this matching analysis, and to choose the right method in a real application. In the next section, we present a few
case studies to illustrate how the DMMCM helps in this matter.

9. Case studies using the DMMCM and the DMMTs to identify the proper DM method for a real
environmental application

In this section, the proposed methodology based on the use of the DMMCM to identify the best DM technique to

solve a certain environmental problem is illustrated by means of some real-world environmental applications, with
the aim to show the usefulness of the proposal to environmental scientists.

Case 1:

Case description and goal: A WWTP manager wants to identify typical scenarios to design action protocols.

Available data: Data about water quality of the influent, the effluent and the middle of the process is available for
a certain period based on daily means of pollutant concentrations (organic matter, suspended solids, etc.) and some
qualitative observations important in WWTP management, like the color of the bioreactor water or the existence
of foam or algae.

Browsing in the DMMCM map: only 2 questions must be answered in step 1 of the proposed methodology:
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First question to be answered: Is there a response variable? In this case the interest is to identify states of
operation of the plant. So, the answer is no response variable

Thus, the DMMCM guides the practitioner to the left side of the first level split in the map. This determines
the second question.

Second question to be answered: are we interested in characterizing relationships between variables or
individuals? In our case, the rows of the available data matrix provide measurements on different dates and
we are interested in identifying groups of days where the quality of water is similar in all the different areas
of the WWTP. So, the answer is: we are interested in characterize relationships between rows. And this
leads the practitioner to the branch of profiling models.

The recommended methods provided by the DMMCM map at step 1 of the proposed methodology are
different clustering families of algorithms (SOM, Statistical Clustering, Clustering based on rules).

Step 2 of the proposed methodology guides the practitioner to the selection of one of these families based on the
use of template 7.1. According to the template, as a mixture of relevant decisional variables numerical and
qualitative are available, compatibility measures, like Gibert's mixed metrics or Gower similarity coefficient will
be suitable. This focuses to methods that permit the use of these kind of distances. As there is no a priori
information about the number of scenarios to be discovered, a method that does not require the number of clusters
as an input parameter is preferred. Hierarchical clustering is suitable. It is applicable because the data size is not
prohibitive. Among all hierarchical methods available, clustering based on rules is preferred since additional a
priori domain knowledge is available and interpretability of results makes the understanding of the head of the
plant easier.

Example: The work Gibert et al. (2010b) shows a real application where the clustering based on rules is used with
the Gibert’s mixed metrics, and the traffic lights panels are used to describe the clusters prototypically in a
symbolic visual way to the head of the plant. Thus, the DMMCM map and the DMMTs permit to identify a
concrete DM method that provide an answer to a certain environmental problem.

Case 2:

Case description and goal: A researcher wants to understand how vegetation is influenced by climate through
time in a certain area.

Available data: georeferenced data on vegetation and climate changing (precipitation, air temperature) along time
Browsing in the DMMOCM map: only 2 questions must be answered in step 1 of the proposed methodology:

First question to be answered: s there a response variable? In this case we are mainly interested in the
relationships between the several variables describing vegetation and weather at a certain timestamp in a
certain location. So, the answer is no response variable

The DMMCM guides the practitioner to the left hand side of the first level split in the map. This determines
the second question.

Second question to be answered: are we interested in characterizing relationships between variables or
individuals. In our case, the rows of the available data matrix provide measurements on different dates and
locations and we are interested in analyzing the relationships between status of vegetation and climatic
conditions, along space and time, i.e. between precipitation and vegetation levels and so on. So, the answer
is: we are interested in characterizing relationships between variables. And this leads the practitioner to
the branch of associative models.

The recommended methods provided by the DMMCM map at step 1 of the proposed methodology are:
association rules, factorial methods, Bayesian networks, and the like.

Step 2 of the proposed methodology guides the practitioner to the selection of one of these families based on the
use of template 7.2. Associative methods. Looking at the brief descriptions of these methods in the template, one
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can see that association-rule mining is suitable to establish relationships between qualitative variables. Even
though original data is numeric, the qualitative relationships provided by association rules are more suitable for
communicating patterns to environmental decision makers. Thus, some preprocessing is applied and association-
rule is selected.

Example: The work Sli et al. (2013) uses environmental change monitoring to detect possible trends related to
vegetation and climate data correlated with geographical spatio-temporal data from north-eastern China. Detailed
preprocessing is required like interpolation of weather observation data, precipitation and air temperature. Then,
the geographical reference system, WGS84, was selected for registration of weather observation data and
vegetation data. For the consistency of time periods, weather observation data was temporally truncated into seven
years to match seven years of vegetation data. Moreover, weather observation data and vegetation data were
resampled with the same resolution of 16 days in time and 500m in space. At the second stage of data
conceptualization, weather observation data and vegetation data were separately clustered by the fuzzy c-means
clustering (FCM) algorithm. At the third stage of the data mining process, conceptualized data were flexibly
organized into transactions for extracting association rules by the algorithm APriori (Agrawal and Srikant, 1994).
Massive raw data were transformed into more meaningful understandable knowledge for human decisions. The
mined association rules were used to monitor and detect geographical spatio-temporal structural information
(relationships) in climate and vegetation data for the detection of environmental changes in climate or vegetation.

CASE 3:

Case description and goal: A WWTP manager needs to verify the effectiveness of new treatment procedures over
chemical oxygen demand (COD), Phosphorus and Nitrogen reductions and wants to conduct a what-if analysis.

Available data: Data about water quality of the influent, the effluent and the middle of the process is available for
a certain period, including procedure characteristics.

Browsing in the DMMCM map: only 2 questions must be answered in step 1 of the proposed methodology:

First question to be answered: Is there a response variable? In this case we are mainly interested in the
relationships between the several variables describing quality of inflow water and actions performed in the
treatment process. So, the answer is no response variable.

The DMMCM guides the practitioner to the left hand side of the first level split in the map. This determines
the second question.

Second question to be answered: are we interested in characterizing relationships between variables or
individuals? In our case, the rows of the available data matrix provide measurements on different dates and
we are interested in analyzing the relationships between effluent COD, effluent total Phosphorus (TP)
concentration and effluent total Nitrogen (TN) concentration, and other parameters of the plant and inflow
quality. So, the answer is: we are interested in characterizing relationships between variables. And this
leads the practitioner to the branch of associative models.

The recommended methods provided by the DMMCM map at step 1 of the proposed methodology are:
association rules, Multivariate Analysis, Bayesian Networks, etc.

Step 2 of the proposed methodology guides the practitioner to the selection of one of these families based on the
use of template 7.2. Associative methods. Looking at the brief descriptions of these methods in the template, one
can see that Bayesian networks is suitable for what-it analysis.

Example: The work Li (2013) shows a real application where the input variables of the Bayesian network are:
influent COD, influent TP concentration and influent TN concentration. There were also control variables (cycle
time of sequencing batch reactor process, anoxic mixing time, aerobic aeration time) and environmental variables
(pH, DO and water temperature), and output variables are effluent COD, effluent total phosphorus (TP)
concentration and effluent total nitrogen (TN) concentration.

CASE 4:

Case description and goal: A farmer wants to determine the best crop to grow in the next season
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Available data: The available data contains the responses to a survey to other farmers in the area regarding
household characteristics: farm and household size, land type, tenure and land utilization; crop: production costs
for annual crops and perennial crops including fertilizers, materials, machinery and labor use; output: product sold
and income for annual or perennial crops; income for other sources and capital availability, environmental
problems, past use of land, competition of annual crops, farmers’ attitude, use and management of irrigation water,
description of farmers’ crop choice decision making. Each response is properly georeferenced with the location of
the corresponding soil.

Browsing in the DMMCM map: only 2 questions must be answered in step 1 of the proposed methodology:

First question to be answered: Is there a response variable? In this case we are mainly interested in
explaining the decision of the final crop choice in terms of the other variables. So, the answer is yes, multiple
response variable is the type of crop.

The DMMCM guides the practitioner to the right hand side of the first level split in the map. This
determines the second question.

Second question to be answered: are the response variables numerical or qualitative? In our case, the
response variable is type of crop chosen. So, the answer is: we are interested in getting values for a
qualitative response variable. And this leads the practitioner to the branch of discriminant models.

The recommended methods provided by the DMMCM map at step 1 of the proposed methodology are:
rule-based classifiers, decision trees, support vector machines, etc.

Step 2 of the proposed methodology guides the practitioner to the selection of one of these families based on the
use of template 7.4. Discriminant methods. Looking at the brief descriptions of these methods in the template, one
can see that decision trees are good at providing results that can explain the decision, which is an interesting
characteristic for the farmer.

Example: The work Ekhasingh (2005) shows a real application where a survey on crop choices is conducted in
Thailand and a decision tree is used to learn a predictive model that is included in a decision support system.

CASE §:

Case description and goal: A city government wants to predict the air pollution levels for the next day, based on
as set of relevant atmospheric parameters, to activate or not traffic restrictions for sustainability and public health
purposes.

Available data: The available data contain the concentrations of SO,, NO,, O; and particulate matters of diameters
up to 10 pm (PM10), the daily average value of the temperature, wind speed and direction, humidity, pressure and
insolation, maximum and minimum values of temperature and pressure, maximum level of pollution for the target
day and previous day.

Browsing in the DMMCM map: only 2 questions must be answered in step 1 of the proposed methodology:

First question to be answered: Is there a response variable? In this case we are mainly interested in
getting values for the concentration of air pollutants. So, the answer is yes, multiple response variables
(SO,, NO,, O3, PM10).

The DMMCM guides the practitioner to the right hand side of the first level split in the map. This
determines the second question.

Second question to be answered: are the response variables numerical or qualitative? In our case, the
response variable are concentrations of pollutants in atmosphere. So, the answer is: we are interested in
getting values for a set of numerical response variables. And this leads the practitioner to the branch of
predictive models.

The recommended methods provided by the DMMCM map at step 1 of the proposed methodology are:

statistical modelling (regression, time series...), ANNs, support vector regression (SVR), evolutionary
computation, etc.
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Step 2 of the proposed methodology guides the practitioner to the selection of one of these families based on the
use of template 7.5. Predictive methods. Looking at the brief descriptions of these methods in the template, one
can see that statistical methods are not suitable since most of the assumptions required by the methods fail in
available data. Assuming the need of a predictive method able to learn about non-linearities and complex
relationships, random forests on regression trees, SVR and ANNs are suitable. Whenever the interpretability of
final model becomes important SVR and ANNs should be less interesting.

Example: The work Siwek and Osowski (2016) shows a real application where the available data contain the
concentration of SO,, NO,, O; and particulate matters of diameters up to 10 um (PM10), the daily average value
of the temperature, wind speed and direction, humidity, pressure and insolation and same information for the past
day, including the average, maximum and minimum values of temperature and pressure, the average and maximum
pollution corresponding to the previous day, the linear trend of hourly pollution, the linear prediction of the
pollution made on the basis of this trend, the season of the year (winter, spring, summer and autumn) and the type
of day (weekdays and weekends). Selected hourly values of pollution of the previous day were also available.

They use a previous step for feature selection based on a genetic algorithm and alternatively on stepwise
techniques. Then, they use two predictive models: In the first one, random forest (RF) of decision trees. In the
second approach, ANNs: the MLP, the RBF network and the SVR with Gaussian kernel, which is a version of
SVM to learn continuous functions instead of classes. The results of the air pollution predictions were used for
monitoring the air quality to satisfy the European air quality directive EC/2008/50, which defines restrictions for
yearly and 24h average PM 10 concentrations and to diminish dangerous concentration levels, emission abatement
actions have to be planned at least one day in advance. Moreover, according to EU directives, public information
on the air quality status and on the predictable trend for the next days should also be provided.

Thus, the DMMCM map and the DMMTs can help identify a suitable DM method that provides answers to a
certain environmental problem.

10 Conclusions

Environmental processes exhibit several intrinsic complexities that make data analysis difficult, and in these cases
classical data analysis methods often do not perform well. DS is a promising approach to analyze environmental
data. DS defines a new paradigm where, apart from the DM step itself, raw data preprocessing and outcome post-
processing are included in the methodology. Additionally, prior expert knowledge may be used to boost the
discovery of new useful results. In Gibert (2016b) a survey on preprocessing is provided. In this paper, DM is fully
considered. Post-processing, which is method-specific, tries to bridge the gap between DM results and effective
knowledge production. Post-processing remains an area for future research.

The main contributions of this paper include the following. First, a conceptualization of DM for environmental
systems is approached. This conceptualization is intended to provide a general overview of the DM techniques
regarding its use in environmental problems.

A second contribution focusses on the difficulty of choosing the right DM technique to perform genuine DS over
real-world datasets. We identify the main decision elements that a data scientist has to face to make that choice,
and organize them in a simple set of questions that can orient the decision from the environmental scientist point
of view. This does not necessarily mean that DS must be performed autonomously by the own environmental
scientist, but can enormously help him or her to find the proper expert to analyze his or her data. The guidelines
are formalized under an easy-to-read conceptual map, and provides a decision support tool for the non-expert user,
with a global overview of possible useful methods. This tool intends to contribute to correctly exploit data by using
DM while considering the problem goals and the structure of the available data, while reducing the use of
inappropriate tools in real applications. Our overview does not attempt to be exhaustive. Also, the proposal is
currently limited to methods analyzing classical data matrices. When sensor data or images are the original source
of information, feature extraction or signal processing operations are required to obtain descriptors of the images
or signals that can be used as ordinary variables in the data matrix. Current work is in progress to explore the
extension of the DMMCM to wider scenarios including other types of input data.

A third contribution includes generic synthetic templates describing the main families of DM methods trying to
provide the relevant information from the point of view of the environmental scientist. Regarding this third
contribution, a structured and synthetic description of the main families of methods presented in the conceptual
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map is provided. A major effort has been done to present the methods from the point of view of the kind of problem
to be solved, and not from the classical methodological point of view, certainly interesting for data scientists and
researchers, but less interesting from a practical real use of the methods point of view. The structure of the template
has been carefully designed to be useful for environmental scientists who want to exploit their available data in
front of a specific problem. The templates try to offer decision elements on: how to use methods correctly, which
is the structure of the data that every method can properly analyze and, most importantly, how to validate and
interpret the results. A specific section in the template, named Principles, tries to offer a high level idea of the
technical principles guiding the various algorithms. These principles need not be used, but can help provide a
coherent context for interested readers. Technical details on specific DM techniques are out of the scope of this
paper, although a rich set of references for in-depth coverage is provided. Again, we do not attempt to be
exhaustive, but to provide a global insight for the non-expert user to better select what to do in real applications.

A powerfull contribution of the paper is also the proposal of a methodology to help a non-expert data scientist or
an environmental practitioner to choose the most suitable DM method for getting appropriate answers to a certain
environmental problem. The proposal is based on a two-step use of the DMMCM map and DMMTs presented
along the paper.

On top of this, illustration, through several case studies about the use of the proposed methodology to choose the
DM technique, will certainly ease the understanding of the paper, and must be considered a valuable contribution.

This work responds to one of the main research challenge announced in the paper Gibert ef al. (2018). The
DMMCM and the DMMTs also provide background knowledge to input in an intelligent data mining technique
recommender (InDaMiTe-R), contributing to the construction of integral DS systems, as stated in Gibert et al.
(2012).

11 Challenges for Environmental Data Mining

Finally, as a last contribution of the paper, the enormous effort in building technical data mining templates, looking
at the kind of things done or not in pre and post processing, permitted to identify the hot issues and challenging
aspects in and of the interdisciplinary field of environmental DM in coming years. Achievement of the following
aims would increase utility and applicability of DM methods. We summarize this in terms of specific guidelines
for users and challenges for researchers.

Guidelines for users:

e  Get acquainted with available methods and technical assumptions of those methods, even before data
collection, if possible.

e Try to clarify the relevant question to be answered by the DS process to orient own DM. Do not lose
perspective of final usefulness.

e  Meta-data must be collected and clearly understood for a proper analysis and interpretation.

e Devote the required time to data pre-processing, and perform it carefully enough to guarantee the quality of
the results.

e  Choose the right DM method according to your goals and your available data. The conceptual map and the
technical templates presented in this paper are our proposal to fulfill this step.

e Try resampling to check stability of results and to process big data sets when a particular limited method is
required. Use the classical statistical sampling principles, traditionally used to get samples from real
populations, to sample over a big dataset.

e  Be sure to validate your results with the proper validation processes, which will depend on the DM method
used. Take care of spurious results when classical statistical testing is performed over massive data sets.

e  Prioritize understandability of results. Devote all required time to carefully analyze the results. Select the
relevant information from the output and try to present it in an understandable way, useful for decision
support.

Challenges for researchers:

e Provide support to metadata management into the DM system.

e Elaborate protocols to facilitate data sharing and data reuse.

e Need for developing methods for data fusion, dealing with situations in which data comes from different
sources, with different natures, scales, granularities and formats.

e Need for developing powerful hybrid DM methods, combining technical principles for improving Data
Science processess performance in highly complex domains.
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e Need for improving DM techniques for on-line and heterogeneous databases.

e  More research is still required to better understand the complexity of post-processing tasks in the context of
Data Science processes.

e Need for formulation of tools for explicit representation and handling of discovered knowledge for greater
understandability. Development of tools to bridge the gap between modelling and effective decision-making
(Gibert ef al., 2018) can be enormously useful.

e Build MetaData Models to describe DM methods in such a way that main hypothesis and characteristics of
required inputs and outputs are easy to match with real applications. Authors are working in this particular
as a continuation of the proposed methodology

e  Provide technical templates for new families of methods, as presented in this work.

e  Develop special synthetic templates for specific methods, with particular guidelines on the use of the
parameters, and standardize those templates to be used for user manuals in DS packages.

e  Great need for developing DM methodologies particularly oriented to extract knowledge and models from
temporal/spatial environmental phenomena, probably requiring data fusion and hybrid approaches.

e As many DM packages provide GUIs to design the workflow for a complete Data Science process, collect
Data Science experiences in a workflow library and develop DM strategies to mine the workflows themselves
to improve preprocessing, DM and post-processing recommenders under an evidence-based approach.

e Involvement of end-user (domain expert) criteria in algorithm design and result interpretation.

e Development of standard procedures (benchmarks) for experimental testing and validation of DM tools.

e Need to move towards the development of integral Data Science systems, with the intelligence to pursue
integral approaches, covering the whole Data Science process, from problem formulation to interpretation of
results, including data fusion and harmonization, metadata management, data cleaning and other
preprocessing techniques, taking into account prior expert knowledge, DM method recommendation, and
post-processing, and involving the expert in problem formulation, preferences on kinds of results, and
interpretation of final results.

Various software packages have been analyzed from the perspective of the support they provide to the whole Data
Science process. Although there are some available tools to develop Data Science in a semiautomatic way analysis,
and some of them, such as KLASS, evolve towards providing intelligent support to post-processing, we believe
that current packages are still far from being complete intelligent systems that could support integral Data Science,
as stated above. Main limitations in current systems are the lack of support in the DM problem to be solved, and
they rarely include tools to recommend the appropriate DM technique in an automatic way. The complete Data
Science process is normally designed from scratch for every application and only unconnected catalogues for data
selection, pre and post-processing and DM tools are provided. We strongly believe that future efforts should be
given in this direction.

As a final conclusion, we could say that the Data Science approach is not always linked to massive data sets, but
sometimes it is suitable to analyze non-massive datasets of high complexity where classical pure data analysis
techniques do not perform well. In this cases, the integral and global approach of Data Science provides a good
framework to find complex models through the combination of techniques in a global hybrid Data Science
methodology.
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