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Abstract 

Specifications of the Federal Reserve target rate that have more realistic features mitigate 
in-sample over-fitting and are favored in the data. Imposing a positivity constraint and 
discrete increments significantly increases the accuracy of model out-of-sample forecasts 
for the level and volatility of the Federal Reserve target rates. In addition, imposing the 
constraints produces different estimates of the response coefficients. In particular, a new 
and simple specification, where the target rate is the maximum between zero and the 
prediction of an ordered-choice Probit model, is more accurate and has higher response 
coefficients to information about inflation and unemployment.                                               

Bank topics:  Financial markets; Interest rates  
JEL code: E43 

 
Résumé 

Les spécifications relatives au taux cible de la Réserve fédérale comportant des 
caractéristiques plus réalistes atténuent le risque de surajustement à l’intérieur de 
l’échantillon et sont privilégiées dans les données. L’imposition d’une contrainte de 
positivité et de changements discrets augmente considérablement l’exactitude des 
prévisions hors échantillon issues des modèles pour ce qui est du niveau et de la volatilité 
du taux cible de la Réserve fédérale. De plus, l’imposition de contraintes donne lieu à des 
estimations différentes des coefficients de réaction. En particulier, une nouvelle 
spécification simple où le taux cible correspond à la valeur la plus élevée entre zéro et la 
prévision d’un modèle probit ordonné présente une plus grande exactitude ainsi que des 
coefficients de réaction plus élevés à l’égard de l’information sur l’inflation et le chômage. 
 
Sujets : Marchés financiers; Taux d’intérêt 
Code JEL : E43  
 

 
 



Non-Technical Summary

The most commonly used models of central banks’ target rates are linear. That is,

the target rate set by the central bank in these models varies linearly with changes in

economic or financial determinants. Linear models offer a transparent and intuitive

interpretation of the relationships between the target rate and its determinants. Lin-

ear models are also tractable as a component of more general models of the economy.

This can explain why linear models are so widespread. Nonetheless, a linear rela-

tionship ignores two important non-linear features. First, the possibility of holding

interest-free cash limits how negative the target rate can be. This feature is perva-

sive across countries. Second, central banks in several countries tend to change the

short-term rate in discrete increments: ±0.25%,±0.50%, . . ..

In this paper, we evaluate realistic non-linear specifications that include one or

both of these features. The core of the paper embeds these models in a forecasting

environment designed as a rich but level playing field. The linear and non-linear

specifications use the same number of parameters, the same dynamic assumptions

and the same information to produce forecasts. We find that both features mitigate

in-sample over-fitting and improve forecasts of the level and volatility of future target

rates. A simple specification where the target rate is the maximum between zero and

the prediction of an ordered-choice Probit model is more accurate and has higher

response coefficients for inflation and unemployment. These results offer potential

improvements in our understanding of the non-linear relationships between policy

rates and their determinants.



Introduction

Linear specifications of the short-term nominal rate rt with the following form:

r∗t = ω + ρrt−1 + β>Yt + σrεt, (1)

are widespread and commonly used, where Yt typically contains macroeconomic infor-

mation about inflation and real activity. Linear models are transparent and intuitive.

Linear models are also tractable for the purpose of estimation or as a component of

more general models of the economy. This paper offers an empirical assessment of

the linear model relative to more realistic specifications matching well-known features

of target rates. We find that accounting for these realistic features (i) improves the

accuracy of forecasts relative to the linear models and (ii) generates higher estimated

responses to macroeconomic variables.

The motivations for looking beyond linear models are twofold. First, a linear

specification ignores the (non-linear) constraint around zero for nominal rates. The

possibility of holding interest-free cash limits how negative the yields of financial

assets can be. This possibility has been relevant for some time for most advanced

economies, and is likely to remain relevant in the foreseeable future. Second, using

a linear specification also overlooks the fact that central banks tend to change the

short-term rate in discrete increments: ± 25 basis points. We find that both features

help improve model accuracy and influence the estimated response to macroeconomic

variables in our sample.

The realistic specifications that we consider already exist in the literature, but

there is no comparison of their forecasting performance. First, we implement rt =

max(r∗t , 0) to account for the lower bound around zero for nominal interest rates
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(Black, 1995). This B-Linear specification is less tractable, but it remains intuitive.

In this case, r∗ is latent and it has the interpretation of a “shadow” interest rate.

Second, we implement the Probit ordered choice representation for rt, suggested by

Hamilton and Jordà (2002) to account for discrete 0.25% increments. The standard

ordered model does not embed the lower bound. Hence, we also implement a Black

version of the Ordered model, where the short-term interest rate is the maximum of

zero or the result of the Ordered model. Finally, we also implement the Square model

rt = (r∗t )
2. This gives us five models to assess: Linear, B-Linear, Ordered, B-Ordered

and Square.

We compare the performance of these models in the following forecasting environ-

ment. First, every model has the same number of parameters, the same conditioning

information and the same sample period. Also, the variables in Yt are the survey

forecasts of inflation, unemployment and interest rates, providing a rich information

set for the purpose of forecasting. The mean and volatility dynamics for Yt are esti-

mated separately from the full sample, and kept constant across every specifications.

Finally, our sample is from 2003 to 2015, so that the short-term rate is away from

the lower bound in approximately half of our sample but at the lower bound in the

other half of the sample. This environment provides a fair comparison of linear and

non-linear models.

The key message from our benchmark results is that accounting for the realistic

features of the short-term interest rate improves the accuracy of forecasts relative to

the linear models. We focus on forecasts about the target rate at the next policy

meeting. This is the most frequently cited forecast. The Linear model provides

reasonable in-sample accuracy for the level and volatility of the interest rate. This

means that a Linear specification that uses a rich information set can replicate the

features of the interest rates. However, the differences in out-of-sample accuracy are
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stark. During the lower bound period, the forecasts of the interest rate produce

root mean squared errors (RMSEs) of 18 bps for the Linear model but 5 bps for

the B-Ordered model. The difference is statistically and economically significant.

Most of the gains are due to imposing the lower bound. In addition, the out-of-

sample forecasts of the volatility are very different. During the lower-bound period,

the RMSEs are 17 bps for the Linear model, but 12 bps and 8 bps for the B-Linear

and B-Ordered models, respectively. Again, the improvements are economically and

statistically significant. In this case, both the discrete increments and the positivity

are important to improve accuracy.

To understand the differences between models, we study the response coefficient

∂Et[rt+1]/∂rt and ∂Et[rt+1]/∂Yt. Unsurprisingly, imposing the lower bound allows for

the coefficients to collapse toward zero in the lower-bound period. Since the Linear

model neglects the lower bound, the estimates of the response coefficient are too high

when the target rate is zero as well as too low when it is not. In addition, impos-

ing discrete increments also has an important role. The B-Ordered model has lower

persistence coefficients but higher inflation and unemployment coefficients. This is

because the restriction of the discrete increment absorbs some of the partial adjust-

ments in periods when the target rate is unchanged (see e.g., English, Nelson, and

Sack 2003; Rudebusch 2006). Overall, imposing each of the realistic features of the

short-term interest rate improve the estimation of the response coefficients.

As robustness checks, we extend the forecasting environment in several directions.

First, we expand the set of state variables. Instead of using the lag of the short

rate, we also include in Yt the survey forecasts for the T-bill rate and the 5-year

bond yield. Second, we consider including option prices at estimation. The in-sample

accuracy of the Linear model improves in both cases, but the non-linear models also

benefit so that the main message remains. In fact, the out-of-sample results with
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a richer information set are much worse for the Linear model. Overall, the results

strongly suggest that imposing the realistic features of the short-term interest rate

yields efficiency gains, acts like parsimonious restrictions and substantially improves

the out-of-sample accuracy of the models.

One common sub-theme across all of our results is the poor performance of the

Square model. This disappointment is due to a well-known shortcoming discussed in

Kim and Singleton (2012). The Square model with a positivity constraint embeds a

tight constraint that limits its flexibility. In this model, the target rate rt can stays

at zero only if the latent target also stays zero. That is rt = (r∗t )
2 = 0 ⇔ r∗t = 0.

This forces ω + ρrt−1 + βYt = 0, which is a hard constraint on parameter estimates.

It is probably feasible to extend the model to alleviate this shortcoming, but this

would also increase the number of parameters and tilt the evaluation. We leave this

for future research.

The rest of paper is organized as follows. Section I details the parametric specifica-

tions that we consider for the target rate as well as the dynamics of the state variables.

Section II details the data and estimation methodology. Section III presents all the

results.

I Parametric Models for the Target Rate

A Target Rate

The state of the economy is summarized by the N × 1 vector of state variables Yt.

Every model M that we consider is characterized by the mapping gM between the

observed target rate rt and a latent unobserved factor r∗t . That is, model M is

characterized with the mapping rt = gM(r∗t ). The unobserved r∗t is often called the

“shadow rate,” but we reserve this interpretation for later. The specification of the
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unobserved rate is

r∗t = ωt−1 + β>Yt + σrεt, (2)

where εt is i.i.d. white noise. The state variables include contemporaneous variables

stacked in the vector Yt. The scalar constant ωt−1 can depend on pre-determined

information. This embeds cases where the lag of the target rate enters the specifica-

tion. Equation 2 that defines rt∗ is a maintained hypothesis for every model that we

consider. However, the estimates for ωt−1, β and σ will vary across specifications.

Table 1 lists the specifications that we consider for rt = gM(r∗t ). One feature of

these specifications is that they all have the same number of parameters, which keeps

the field leveled. These specifications are also well known. The Linear case is an

obvious benchmark. The model of Black (1995) follows from the observation that so

long as people can hold currency, nominal interest rates cannot fall very much below

zero. The Square model was introduced in the term structure explicitly to guarantee

positive interest rates (see e.g., Ahn, Dittmar, and Gallant 2002).

Table 1: Model Specifications

M Specification

Linear rt = r∗t

Black rt = max(0, r∗t )

Square rt = (r∗t )
2

Ordered Equation (3)

Ordered-Black Equation (4)

We also consider the Ordered specification for the target rate, which accounts

for the discreteness of target changes. The Ordered specification was introduced by

Dueker (1999), and it is also a key building block in Hamilton and Jordà (2002) to

forecast discrete-valued time series. Consider the integers n ∈ {n+1, . . . , n̄−1}, then
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the Ordered model for the target rate rt is given by:

rt+1 = rt + 0.25n if r∗t+1 ∈
(
rt + 0.25n, rt + 0.25(n+ 1)

]
. (3)

In this model, the observed target rate rt+1 will change to rt + 0.25n for any value of

the latent r∗t+1 that lies above rt + 0.25n but below rt + 0.25(n+ 1). In the following,

the choice of thresholds is consistent with our strategy to maintain the same number

of parameters for every model.1 Finally, we consider a new version of the Ordered

Probit specification that also accounts for the option to hold currency:

rt+1 = max(0, rt + 0.25n). (4)

B State Dynamics

We specify generic dynamics for the state variables Yt. Our approach allows for

flexible variations in the conditional mean µt ≡ Et[Yt+1] and conditional variance

ΣtΣ
>
t ≡ Vart[Yt+1]. Yet, our approach implies a tractable conditional distribution of

rt+1 as a function of µt and ΣtΣ
>
t . The conditional mean is given by VAR dynamics,

Yt = K0 +K1Yt−1 +
√

Σt−1εt, (5)

where εt is standard normal white noise. The conditional variance is determined by

Σt, which has dynamics combining standard EGARCH and DCC components. First,

the vector of diagonal elements σt = diag(Σt) follows auto-regressive dynamics in log:

log σ2
t = (I −B) log σ̄2 +B log σ2

t−1 + Aεt + γ
(
|Aεt| − E|Aεt|

)
, (6)

1For the boundary cases n and n̄ we have rt+1 = rt + 0.25n if r∗t+1 ∈ (−∞, rt + 0.25n] and
rt+1 = rt + 0.25n̄ if r∗t+1 ∈ (rt + 0.25n̄,∞], respectively.
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where γ is a scalar, B is a diagonal matrix and A is a full matrix. This is the standard

EGARCH component. Second, following Engle (2002) DCC model, the off-diagonal

elements Σt are driven by the dynamics of Qt,

Qt = (1− a− b)Q̄+ aεtε
>
t + bQt−1, (7)

where a and b are scalar with positive elements satisfying ai + bi < 1. The challenge

is to combine the matrix Qt with σ2
t to construct a valid covariance matrix. First

define qt = diag−1(Qt) a vector stacking the inverse of each diagonal elements from

Qt. Then the covariance matrix is give by

ΣtΣ
>
t = Qt ◦ (qt ⊗ qt) ◦ (σt ⊗ σt), (8)

where ⊗ is the Kronecker product and ◦ is the Hadamart product.2

C Forecasting

This section provides a closed form solution for the forecast Et[rt+1]. Forecasts of

variance and density are discussed in the Appendix, where closed-form solutions are

also provided. In the linear model, the forecast of rt+1 conditional on the current

state can be derived easily:

Et [rt+1] = ωt−1 + β>Et [Yt+1] , (9)

where Et[Yt+1] can be derived easily from Equation 5. Table 2 provides the solutions

of other models.

2The Hadamard product yields another matrix where each element ij is the product of the
elements ij of the two matrices in the product.
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Table 2: Forecasts

M Et [rt+1]

Linear ωt−1 + β>Et [Yt+1]

B-Linear ωt−1+β>Et[Yt+1]
2

+ 1
π

∫∞
0

Im
(
ωt−1 + β>Et [Yt+1] +

(
σ2
r + β>ΣtΣ

>
t β
)
iv
)
ψt (iv) 1

v
dv

Square σ2
r + β>ΣtΣ

>
t β +

(
ωt−1 + β>Et [Yt+1]

)2

Ordered
∑

n(rt + 0.25n)Pt(n)

B-Ordered
∑

n max(0, rt + 0.25n)Pt(n)

The solution for the Ordered and Ordered-Black models involves the probability

Pt(n),

Pt(n) ≡ Pt

(
rt + 0.25n < r∗t+1 ≤ rt + 0.25(n+ 1)

)
, (10)

which is essentially a function of µt ≡ Et[yt+1] and ΣtΣ
>
t .3 In fact, the forecast from

every non-linear models that we consider is expreased in terms of the conditional mean

µt and the conditional variance ΣtΣ
>
t of the state Yt+1, which is given by Equation 8.

II Data and Estimation

We focus on the ability of each model to forecast the level and distribution of the

target rate. This motivates the following empirical strategy. First, we set the sam-

pling frequency to match scheduled FOMC meetings. In every case, we perform the

forecasting exercise immediately following one FOMC meeting and looking forward

to the next meeting. The sample starts at the beginning of 1994 when the Federal

Reserve first used discrete 0.25 percent increments explicitly. We use the target rate

available from the Federal Reserve Board of Governors website. When using option

3See Appendix A.1 for ψt(·) and Appendix E.4 for solution of Pt(·). The solution in the B-Linear
model involves a straightforward numerical integration, where ψt(·) is the conditional moment-
generating function of r∗t+1.
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data, the timing of data is crucial. When a meeting spans multiple days, we use the

date of the last day of the meeting. Second, we embed each model in a rich forecasting

environment. The information set includes survey forecasts of macro variables and of

interest rates. In addition, estimation includes option data in measurement equations

to incorporate market information about future target rates. Overall this empirical

strategy gives each model fair ground in the forecasting exercises that follow.

A Survey Forecasts

We use data from the Blue Chip survey of forecasters. Surveys provide competitive

forecasts for most key macro and financial variables (see e.g., Ang, Bekaert, and

Wei 2007 for the case of inflation). Using this rich forecasting information set is

natural in a forecasting exercise, and it could favor in-sample performance of the

Linear model. Specifically, the state vector includes 3-month forecasts of inflation

and unemployment, as well as 3-month forecasts for the yields of US Treasuries with

three months and five years to maturity. Forward looking information about inflation

and the unemployment rate are common candidates in the specification of monetary

policy rules and should help forecast the future target rates. Similarly, 3-month and 5-

year interest rates should also contain information about future target rates. Figure 1

shows the survey forecast data. The sample of survey data starts in 1994 and ends in

2016. We are careful to match each FOMC meeting date with the most recent survey

data that is collected and published before this meeting.

B Option Prices

We use data for options written on Fed funds futures trading at the Chicago Mercan-

tile Exchange. Options contain unique information about the distribution of outcomes

(see the survey in Christoffersen et al. 2012). Carlson et al. (2005) show how to use
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options on Fed funds futures to extract information about the distribution of future

target rates. Option data range from 2003 until 2016. We select end-of-day options

available immediately following each FOMC meeting. Option prices are available for

a range of strike prices and calendar month maturities. We select options maturing

at the end of the calendar month including the next FOMC meeting. Following Carl-

son et al. (2005), these options provide a mapping to the distribution for the target

rate following the next FOMC meeting.4 Following their approach, we estimate the

option-implied volatility of target rates to assess the accuracy of model forecasts.

We use option-implied volatility for this purpose, since there is probably no better

estimate of the conditional volatility of target rates.

In some cases, we also use option prices at estimation. The prices of call and put

options based on Fed funds future are given by:

C(t, x) = Et [exp(−rt∆t) max (Ft+1 − x, 0)]

P(t, x) = Et [exp(−rt∆t) max (x− Ft+1, 0)] ,

For the Ordered and B-Ordered models, the computation of these prices presents no

difficulty, since computing the conditional expectations boils down to simple sums

weighted by the probabilities Pt(n). The other models require more algebra. For

simplicity, define the one-period discount price Dt ≡ exp(−rt∆t) and specialize to

the case of call prices C(t, x). The case for put prices is symmetric. Note that

C(t, x) = DtEt
[
(rt+1 − x) 1[rt+1≥x]

]
(11)

= Dt

(
Et
[
rt+11[rt+1≥x]

]
− x(1− Pt [rt+1 ≤ x])

)
. (12)

4Carlson et al. (2005) use the following assumptions that we maintain throughout the paper: (i)
the American option premium is negligible and (ii) the risk premium for short-maturity option is
negligible.
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Then, option price can be computed in closed-form given a solution for Et
[
rt+11[rt+1≥x]

]
and for Pt [rt+1 ≤ x]. These solutions are provided in Appendix F.

C Estimation

Parameters of the state dynamics ΘY = {K0, K1, A,B, γ, a, b} are estimated based

on the log-likelihood of Yt,

Θ̂Y = argmaxΘY

∑
t

(
− log det(2πΣtΣ

>
t )− ε>t (ΣtΣ

>
t )−1εt

)
, (13)

where εt = Yt − Et−1[Yt] from Equation 5. We fix parameter estimates Θ̂Y across all

models for every forecast exercise below. This ensures that the relative performance

of different models can be attributed to differences in the specification of gM(r∗t ). For

each modelM, estimation of the parameter ΘM,r = {ωt−1, β, σ} is based on the time

series of the target rate as well as additional measurement equations for observed

option prices. We allow for measurement or model errors between the observed and

fitted option prices,

C(t, x) = C(t, x) + ut(c, x) (14)

P(t, x) = P(t, x) + ut(p, x), (15)

with independent errors ut(c, x) ∼ N(0, ν2(c, x)) and ut(p, x) ∼ N(0, ν2(p, x)) for

call and put options, respectively. Then, the parameters ΘM,r are estimated based

on

Θ̂r = argmaxΘr

(
LM,r + LM,o

)
,

where LM,r and LM,o are the log-likelihood of the target rate and of option prices,

respectively. This estimator should be interpreted as a quasi maximum likelihood
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(QML) estimator, since potentially all of the models gM(r∗t ) are misspecified. For the

Linear, B-Linear and Square models, the log-likelihood of the target is given by:

LM,r =
T−1∑
t=0

log fM,t(rt+1), (16)

where fM,t(rt+1) = fM(rt+1

∣∣ Yt) is the conditional probability density, since the

support for rt+1 is continuous. For the Ordered and B-Ordered models, LM,r is given

by:

LM,r =
T−1∑
t=0

logPM,t(n), (17)

where PM,t(n) is the probability distribution, since the support for rt+1 is discrete in

these cases. The densities fM and probability distributions PM,t are given in closed-

form in Appendix B. Finally, the log-likelihood LM,o for option prices is simply given

by:

LM,o =
∑
o,t,x

(
− log 2πν2(o, x)− u2

t (o, x)

ν2(o, x)

)
, (18)

where the summation is taken over dates t, strike prices x, as well call and put options

o = c, p.

III Results

A Benchmark Results

The benchmark results are based on a common specification where the state variables

include the lag of the target rate as well as macro economic information about inflation

and unemployment:

r∗t = ω + ρrt−1 + β>Yt + σrεt. (19)

In the notation of Equation 2, we have ωt−1 = ω + ρrt−1.
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A.1 Target Rate Forecasts

Table 3 reports the accuracy of target rate forecasts from each model, as measured

by the forecast RMSE. The forecast horizon is one meeting ahead. The information

set includes information up to and including the most recent meeting. We report

RMSEs for the full sample, for the sub-sample before the target for the overnight

rate reaches zero (2003-2008) and for the sub-sample after the target reaches zero

(2009-2015).

Panel (a) reports in-sample results in the case with constant volatility. Overall, one

key pattern emerges. The Linear, Ordered and the B-Linear models outperform the

Square model, and the B-Ordered models seem to outperform every other model. This

ranking is a robust feature in the remainder of the paper. Panel (b) reports results

when allowing for rich volatility dynamics. In principle, forecasts from the non-linear

models could improve when accounting for volatility. Empirically, accounting for the

volatility of macro variables yields very little difference. The B-Ordered model still

outperforms the other models.

Panels (a)-(b) suggest model forecasts can be accurate even without imposing

positivity. For instance, compare results for the Linear and B-Linear models. These

are separated by only a few basis points. The result is puzzling, since the number of

parameters is the same and we expect that imposing positivity should improve fore-

casts. Presumably, this puzzle must be due to over-fitting. To check this, we perform

the following out-of-sample exercise. First, we keep parameters of the state dynamics

in Equations 5-7 fixed to the full-sample estimates, including time-varying volatility.

Second, the policy rule parameters are then re-estimated every year between 2003

and 2015 to forecast the target rate during the following year.
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Panel (c) reports out-of-sample forecast RMSEs. As expected, out-of-sample fore-

cast RMSEs deteriorate relative to in-sample forecast RMSEs. Setting the Square

model aside, the RMSEs are close to 16 basis points (bps) in-sample but range be-

tween 17 and 22 basis point out-of-sample. The deterioration is worse for the Linear

model. The B-Linear model now clearly outperforms the Linear model, especially in

the second subsample, as we would expect. In addition, the deterioration is small-

est for the more realistic B-Ordered models—only 2 bps. As expected, the added

structure in the more realistic models acts like added parsimony and helps with out-

of-sample forecasts. Overall, models that are more realistic perform better.

A.2 Out-of-Sample Accuracy Tests

The out-of-sample results give us the opportunity to implement standard test

procedures for equal forecast accuracy, since none of the models are nested. Ta-

ble 4 reports results from formal Diebold-Mariano tests (Diebold and Mariano, 1995).

For robustness, we present test statistics derived using the mean absolute deviation

(MAD) or the mean squared error (MSE) loss functions. In both cases, the test

statistics have standard normal distribution under the null of equal accuracy.

Panel (a) reports test statistics for the null hypothesis that each model’s predic-

tive ability matches the Linear model. The results are consistent with the RMSE

comparison in Table 3 above. The B-Linear model provides improvements that are

significant at the 10% level based on MAD and MSE. The more realistic Ordered and

B-Ordered models provide large improvements that are significant at the 1% level in

this sample. The Square model performs poorly.

Panel (b) reports test statistics for the null hypothesis that each model matches

the higher accuracy of forecasts from the B-Ordered model. The results are also

unambiguous. The B-Ordered model provides forecasts that are significantly more
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accurate at the 1% level.5 The better performance of more realistic models is statis-

tically significant.

A.3 Target Rate Volatility Forecasts

Most of the models that we consider are non-linear and predict substantial vari-

ations in the volatility of target rate changes, whether or not the state variables Yt

have time-varying volatility. In fact, only one model does not: the Linear model with

constant state volatility. For every other model, the non-linearity in equation for the

target rate equation also influences the conditional mean and variance of future target

rates. Therefore, the parameter estimates involve a trade-off between the mean and

variance, since these two moments enter the likelihood used for estimation.

Table 5 reports the RMSE of each model’s volatility forecasts. We measure the

accuracy relative to the option-implied volatility. The volatility forecast error is the

difference between the model volatility forecasts and the option-implied volatility

forecasts. Panel (a) reports RMSE of volatility forecasts with the rich volatility

dynamics for state variables. Once again, the in-sample results show similar forecast

performance for models with and without a positivity constraint. We use the out-of-

sample exercise from the previous section to check for over-fitting. Panel (b) shows

that the accuracy decreases by 4 to 5 bps for models without a positivity constraint.

The deterioration is much lower for the B-Linear model and essentially zero for the

B-Ordered model.

Once again, the out-of-sample results provide us with opportunity to implement

standard tests for equal forecast accuracy, since these models are not nested. Again,

we present results using the MAD or MSE loss functions. Table 6a provides the test

statistics for the null hypothesis that each model has accuracy equal to the Linear

5This test is redundant in the case of the Linear model.
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model. Both the B-Linear and the B-Ordered models yield more accurate volatility

forecasts. Table 6b provides the test statistics for the null hypothesis that each model

has accuracy equal to the B-Ordered model. Again, the more realistic model produces

volatility forecasts that are more accurate. The difference is significant at the 1% level

in all but one case.

A.4 Response Coefficients

Overall the B-Ordered model produces more accurate forecasts of the target rate

and of its volatility. This difference must come from estimates of ω, ρ, β and σ in

Equation 19, since parameters of the state dynamics are the same for every model.

However, these parameters are not directly comparable because of the non-linearity

in the mapping rt = gM(r∗t ). Instead, we report results for the partial derivatives

∂Et[rt+1]/∂Yt and ∂Et[rt+1]/∂rt to compare the response of the target rate fore-

casts with changes in the state variables. We distinguish these first-order response

coefficients—given by the partial derivatives—from the underlying parameter esti-

mates.

Since the models are not linear, the response coefficients depend on the current

states and vary over time. Table 7 reports the average coefficient values in the full

sample and in the two sub-samples before and after 2008. First consider the Linear

model. The persistence is 0.97, the response to survey inflation is 0.148 and the

response to survey unemployment is very small (< 0.01). The estimated persistence is

higher and the estimated responses are lower than conventional estimates of response

coefficients in linear models. A few reasons can explain the differences: we use the

target rate instead of a short-term interest rate, we sample data from one FOMC

meeting to another instead of quarterly, and we use survey forecasts instead of released
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data. But we are interested in the differences in response coefficients across the models

that we estimated.

In the Linear model, the partial derivatives—and therefore the response coefficients—

are constant. Similarly, the Ordered model implies response coefficients that are very

close to the Linear model. By contrast, embedding the positivity constraint produces

stark differences between the response coefficients in different sub-samples. The per-

sistence coefficients are much higher in the sub-sample when the target rate is far from

zero than in the sub-sample when the target rate is at or close to zero. The intuition

is that the non-linearity makes the forecasts insensitive to the current rate. Figure 2

reports the time series of the response coefficients for the B-Ordered model. It shows

the rapid decline of every response coefficient around 2008. These coefficients stay

at zero from 2009 until some point in 2014, when they start moving, up and down,

toward their normal values.

The response coefficients point at two key differences that could explain the bet-

ter performance of the B-Ordered model. First, in the 2003-2008 sub-sample, the

B-Ordered model implies a lower persistence and greater response coefficients than

the Linear and Ordered models, which may explain the better conditional forecasts.

By contrast, the response coefficient to economic information is higher in the B-

Ordered model. The average response coefficient to inflation is 0.19. One-fifth of

any increase of inflation survey forecasts is expected to be built into the target rate

at the next meeting. The average response to unemployment is -0.17, which is the

highest sensitivity across all models. The greater role of conditioning information is

associated with a lower average persistence coefficient, 0.94.

Second, in the 2009-2015 sample, the B-Ordered model implies the largest fall

across response coefficients. The average persistence falls to 0.13, the average response
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to inflation falls to 0.03 and the average response to unemployment falls to -0.02. The

Square and B-Linear models exhibit some decreasing, but not nearly as large as the

B-Ordered model. In this case, it is the lower response coefficients that may explain

the better conditional forecasts.

B Richer Specifications

The greater accuracy of the B-Ordered model is robust to richer specification of the

latent target rate r∗t . But using a rich information set and flexible volatility dynamics

improves the in-sample performance of the Linear model. In particular, the inclusion

of a survey forecast for the short-term interest rate plays an important role in this

context. Still, the more realistic models remain more accurate out-of-sample.

B.1 4-Factor Models

We assess the forecasting accuracy of models with four states variables,

r∗t = ω + β>Yt + σrεt, (20)

where Yt includes survey forecasts of inflation and unemployment, as above, as well

as survey forecasts of the T-bill and 5-year bond yields. This specification uses rich

forward-looking information from the term structure instead of the lagged target rate.

In principle, this could improve the forecasting performance.

Table 8 reports the RMSE from model forecasts of the target rate. Panel (a)

reports in-sample results exactly as in Section A. The forecasting accuracy improves

overall. If anything, the accuracy improves most for the Ordered and B-Ordered

models. Overall, the same pattern emerges. The Linear and B-Linear models out-

perform the Square model, but the Ordered and B-Ordered models outperform every

other model. Panel (b) reports out-of-sample. The same picture emerges. Increas-
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ing the information set improves the performance of every model, but the ranking is

unchanged. More realistic models provide better forecasts.

Table 9 reports results from Diebold-Mariano tests of equal forecasting accuracy

(Diebold and Mariano, 1995). Panel (a) reports test statistics for the null hypoth-

esis that each model’s predictive ability matches the Linear model. The results are

consistent with the RMSE comparison in Table 8 above. The Square model performs

poorly. The B-Linear model provides improvements that are significant at the 10%

and 5% level based on MAD and MSE, respectively. The more realistic Ordered and

B-Ordered models provide large improvements that are significant at the 1% level in

this sample. Panel (b) reports test statistics for the null hypothesis that each model

matches the higher accuracy of forecasts from the B-Ordered model. The results are

also unambiguous. The B-Ordered model provides forecasts that are significantly

more accurate at the 1% level.6

Table 10 reports the RMSE of volatility forecasts for specifications with four state

variables. Panel (a) reports RMSE for in-sample forecasts. The Linear model appears

to provide the best forecasts, but this is due to over-fitting. The performance of the

Linear model collapses out-of-sample. Panel (b) shows that the volatility forecasts

deteriorate for every model out-of-sample. Again, the deterioration is worse for the

Linear model that now ranks last. Once again, the more realistic model with positivity

or discrete changes performs best overall. The out-of-sample deterioration for the B-

Ordered model is only 2 bps.

Finally, Table 11 provides the test statistics for the null hypothesis that each

model has accuracy equal to the B-Ordered model (the statistics have standard nor-

mal distribution). The results are clear. The more realistic model produces volatility

6This test is redundant in the case of the Linear model.
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forecasts that are more accurate with either constant or time-varying volatility dy-

namics (Panel a and b, respectively). The difference is significant at the 1% level in

all but one case.

B.2 Using Options

Finally, we ask whether including option prices at estimation can improve the

accuracy of the less realistic models. The answer to this question is not trivial since

the information set already contains survey forecasts of interest rates and of the state

of the economy. Table 12 presents out-of-sample tests of forecast accuracy when each

model has been estimated with and without option data. Panel 12a reports results

for the benchmark models and Panel 12b reports results in the cases with four state

variables. The results for the B-Ordered model show that using information from

option prices yields no improvement in forecast accuracy. For other specifications,

the answer depends on the number of state variables. In the benchmark models with

three states, including option data yields significant improvement only for the Square

model. By contrast, in the 4-factor models, the Square model forecasts deteriorate

when using option data.

IV Conclusion

Specifications of the target rate that impose more realistic features are favored

in the data. Imposing a positivity constraint and discrete increments significantly

increases the accuracy of model out-of-sample forecasts for the level and volatility

of interest rates. In addition, imposing the constraints mitigates in-sample over-

fitting and produces estimates of the response coefficients that are more reasonable.

This is especially true for the positivity constraint. In addition, imposing discrete

increments used by most central banks absorbs some of the partial adjustment, lowers
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the estimated persistence and increases the estimated response to macroeconomic

information.

It remains to be seen whether these results extend to other countries that have

also experienced zero or negative target rates. We leave for future work whether

the differences in forecasting power produce different measures of monetary policy

shocks, and whether differences in response coefficients have implications in more

general models of the economy.
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Appendix
A Moment-Generating Functions for r∗t+1

A.1 Et
[
exp

(
ur∗t+1

)]
The one-step-ahead conditional characteristic function of r∗t+1 is given by:

ψt (u) ≡ Et
[
exp

(
ur∗t+1

)]
= exp

((
ωt−1 + β>Et [Yt+1]

)
u+

(
σ2
r + β>ΣtΣ

>
t β
)

2
u2

)
, (21)

for u a real or complex scalar. Note that the partial derivatives ψ>t (u) and ψ>>t (u) are given by:

ψ>t (u) =
(
ωt−1 + β>Et [Yt+1] +

(
σ2
t + β>ΣtΣ

>
t β
)
u
)
ψt (u) (22)

ψ>>t (u) =

[(
σ2
r + β>ΣtΣ

>
t β
)

+
(
ωt−1 + β>Et [Yt+1] +

(
σ2
r + β>ΣtΣ

>
t β
)
u
)2
]
ψt (u) . (23)

A.2 Et

[
exp

(
ar∗t+1

)
1[r∗t+1≤x]

]
We are also interested in Et

[
r∗t+11[r∗t+1≤x]

]
and Et

[(
r∗t+1

)2
1[r∗t+1≤x]

]
to forecast the level and vari-

ance of the target rate one-period ahead in the B-Linear model. Define ϕt (a;x) ≡ Et
[
exp

(
ar∗t+1

)
1[r∗t+1≤x]

]
the truncated generating function, with a scalar. Then, using result in Duffie, Pan, and Singleton
(2000), we have

ϕt (a;x) =
ψt (a)

2
− 1

π

∫ ∞
0

Im
(
ψt (a+ iv) e−ivx

)
v

dv. (24)

The partial derivatives with respect to the first argument are as follows:

ϕ>t (a;x) = Et

[
r∗t+1 exp

(
ar∗t+1

)
1[r∗t+1≤x]

]
ϕ>>t (a;x) = Et

[(
r∗t+1

)2
exp

(
ar∗t+1

)
1[r∗t+1≤x]

]
,

This leads to to following solution:

Et

[
r∗t+11[r∗t+1≤x]

]
= ϕ>t (0;x) (25)

=
ωt−1 + β>Et [Yt+1]

2
− 1

π

∫ ∞
0

Im
(
ψ>t (iv) e−ivx

)
v

dv

Et

[(
r∗t+1

)2
1[r∗t+1≤x]

]
= ϕ

>>
t (0;x) (26)

=
σ2
r + β>ΣtΣ

>
t β +

(
ωt−1 + β>Et [Yt+1]

)2
2

− 1

π

∫ ∞
0

Im
(
ψ>>t (iv) e−ivx

)
v

dv.
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A.3 Et
[
exp

(
umax(r∗t+1, 0)

)]
In the B-Linear model, the conditional moment-generating function Et

[
exp

(
umax(r∗t+1, 0)

)]
is

given by:

Et
[
exp

(
umax(r∗t+1, 0)

)]
= Et

[
exp (umax(rt+1, 0)) 1r∗t+1>0

]
+ Et

[
exp (umax(rt+1, 0)) 1r∗t+1≤0

]
= Et

[
exp(ur∗t+1)(1− 1rt+1≤0)

]
+ Pt(r

∗
t+1 ≤ 0),

leading to the following closed-form solution:

Et
[
exp

(
umax(r∗t+1, 0)

)]
= ψt (u)− ϕt (u; 0) + Φ

− (ωt−1 + β>Et [Yt+1]
)√

σ2
r + β>ΣtΣ>t β

 . (27)

In particular, evaluating the partial derivatives at u = 0:

Et
[
max(r∗t+1, 0)

]
= ψ>t (0)− ϕ>t (0; 0) (28)

Et
[
max(r∗t+1, 0)2

]
= ψ>>t (0)− ϕ>>t (0; 0) . (29)

B Density and Probability Distribution

We derive the density ft(rt+1) for the Linear, B-Linear and Square models. In each case, we start
with the computation of ft(rt+1|Yt+1) and then derive ft(rt+1). Similarly, we derive the probability
distribution function Pt(n) for the Ordered and B-Ordered model.

B.1 Linear

In the Linear model,

ft (rt+1|Yt+1) =
1

σr
φ

(
rt+1 −

(
ωt−1 + β>Yt+1

)
σr

)
,

and

ft (rt+1) =
1√

σ2 + β>ΣΣ>β
φ

(
rt+1 −

(
ωt−1 + β>Et [Yt+1]

)√
σ2 + β>ΣΣ>β

)
.

B.2 B-Linear

In the B-Linear model,

ft (rt+1|Yt+1) =
1

σ
φ

(
rt+1 −

(
ωt−1 + β>Yt+1

)
σ

)
1[rt+1>0]

+Φ

(
rt+1 −

(
ωt−1 + β>Yt+1

)
σ

)
1[rt+1=0],

25



and

ft (rt+1|Yt+1)

=
1√

σ2 + β>ΣΣ>β
φ

(
rt+1 −

(
ωt−1 + β>Et [Yt+1]

)√
σ2 + β>ΣΣ>β

)
1[rt+1>0]

+Φ

(
rt+1 −

(
ωt−1 + β>Et [Yt+1]

)√
σ2 + β>ΣΣ>β

)
1[rt+1=0].

B.3 Square

In the Square model,

ft (rt+1|Yt+1) =
1

2σ
√
rt+1

 φ

(√
rt+1−(ωt−1+β>Yt+1)

σ

)
+φ

(√
rt+1+(ωt−1+β>Yt+1)

σ

)
 1[rt+1>0],

and

ft (rt+1)

=
1

2
√
σ2 + β>ΣΣ>β

√
rt+1

 φ

(√
rt+1−(ωt−1+β>Et[Yt+1])√

σ2+β>ΣΣ>β

)
+φ

(√
rt+1+(ωt−1+β>Et[Yt+1])√

σ2+β>ΣΣ>β

)
 1[rt+1>0].

B.4 Ordered and B-Ordered

For the Ordered models, the mapping from the latent r∗t+1 to the observed target rate rt+1 works
via Equation 3. This implies that the conditional probability distribution for rt+1 collapses to the
conditional probability distribution for n:

Pt(n) ≡ Pt(rt+1 = rt + 0.25n) = Pt

(
rt + 0.25n < r∗t+1 ≤ rt + 0.25(n+ 1)

)
,

as in Equation 10. First,

Pt(n
∣∣ Yt+1) =



Φ

(
rt+(n

¯
+1)c−(ωt−1+β>Yt+1)

σ

)
for n = n

¯

Φ

(
rt+(n+1)c−(ωt−1+β>Yt+1)

σ

)
− Φ

(
rt+nc−(ωt−1+β>Yt+1)

σ

)
for n

¯
< n < n̄

Φ

(
(ωt−1+β>Yt+1)−(rt+n̄c)

σ

)
for n = n̄

, which implies

Pt(n) =



Φ

(
rt+(n

¯
+1)c−(ωt−1+β>Et[Yt+1])√

σ2
r+β>ΣtΣ>t β

)
for n = n

¯

Φ

(
rt+(n+1)c−(ωt−1+β>Et[Yt+1])√

σ2
r+β>ΣtΣ>t β

)
− Φ

(
rt+nc−(ωt−1+β>Et[Yt+1])√

σ2
r+β>ΣtΣ>t β

)
for n

¯
< n < n̄

Φ

(
(ωt−1+β>Et[Yt+1])−(rt+n̄c)√

σ2
r+β>ΣtΣ>t β

)
for n = n̄.
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C Conditional Variance or rt+1

C.1 Linear

In the Linear model, the conditional variance of rt+1 is given directly by

V art [rt+1] = β>ΣtΣ
>
t β + σ2

r .

C.2 B-Linear

Then, the conditional variance of rt+1 can be computed from V ar(x) = Ex2 − (Ex)2. Using
Equations 28-29:

Et [rt+1] =
ωt−1 + β>Et [Yt+1]

2
+

1

π

∫ ∞
0

Im
(
ψ>t (iv)

)
v

dv

Et
[
r2
t+1

]
= Et

[(
r∗t+1

)2]− ψ>>t (0)

2
+

1

π

∫ ∞
0

Im
(
ψ>>t (iv)

)
v

dv

=
Et

[(
r∗t+1

)2]
2

+
1

π

∫ ∞
0

Im
(
ψ>>t (iv)

)
v

dv

=
σ2
r + β>ΣtΣ

>
t β +

(
ωt−1 + β>Et [Yt+1]

)2
2

+
1

π

∫ ∞
0

Im
(
ψ>>t (iv)

)
v

dv.

C.3 Square

In the Square model, we use standard results:

V art [rt+1] = V art

[(
r∗t+1

)2]
= V art

[
r∗t+1

]2
V art

r∗t+1 − Et
[
r∗t+1

]√
V art

[
r∗t+1

] +
Et
[
r∗t+1

]√
V art

[
r∗t+1

]
2

= 2
(
β>ΣtΣ

>
t β + σ2

r

)2
(

1 + 2
Et
[
r∗t+1

]2
V art

[
r∗t+1

])

= 2
(
β>ΣtΣ

>
t β + σ2

r

)2
(

1 + 2

(
ωt−1 + β>Et [Yt+1]

)2
σ2
r + β>ΣtΣ>t β

)

= 2
(
β>ΣtΣ

>
t β + σ2

r

)(
σ2
r + β>ΣtΣ

>
t β + 2

(
ωt−1 + β>Et [Yt+1]

)2
)
.

C.4 Ordered

In the Ordered model, the conditional variance can be computed directly from its definition and
the solution for Pt(n):

V art(rt+1) =
∑
n

(rt + 0.25n)2Pt(n).
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C.5 B-Ordered

In the B-Ordered model, the conditional variance can be computed directly from its definition and
the solution for Pt(n):

V art(rt+1) =
∑
n

(
max(rt + 0.25n, 0)

)2
Pt(n).

D Response Coefficients

D.1 Linear

In the Linear model, the response coefficient is given by:

∂Et [rt+1]

∂Yt
= β

∂Et [Yt+1]

∂Yt
,

and
∂Et [rt+1|Yt+1]

∂rt
= ρ.

D.2 Black Linear

In the Black Linear model, the response coefficient is given by:

∂Et [rt+1]

∂Yt
=

ωt−1 + β> ∂Et[Yt+1]
∂Yt

2

+
1

π

∫ ∞
0

Im
((
ωt−1 + β> ∂Et[Yt+1]

∂Yt
+
(
σ2
r + β>ΣtΣ

>
t β
)
iv
)
ψt (iv)

)
v

dv

+
1

π

∫ ∞
0

Im
((
ωt−1 + β>Et [Yt+1] +

(
σ2
r + β>ΣtΣ

>
t β
)
iv
)
β> ∂Et[Yt+1]

∂Yt
ivψt (iv)

)
v

dv,

and

∂Et [rt+1|Yt+1]

∂rt
=

[
Φ

(
ωt−1 + β>Yt+1

σr

)
+ 2

(
ωt−1 + β>Yt+1

σr

)
φ

(
ωt−1 + β>Yt+1

σr

)]
ρ.

D.3 Square

In the Square model, the response coefficient is given by:

∂Et [rt+1]

∂Yt
= 2

(
ωt−1 + β>Et [Yt+1]

)
β
∂Et [Yt+1]

∂Yt

and
∂Et [rt+1|Yt+1]

∂rt
= 2

(
ωt−1 + β>Yt+1

)
ρ.
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D.4 Ordered

In the Ordered model, the response coefficient is given by:

∂Et [rt+1]

∂Yt
= − 1√

σ2
r + β>ΣtΣ>t β

(rt + n
¯
c)φ

rt + (n
¯

+ 1) c−
(
ωt−1 + β>Et [Yt+1]

)√
σ2
r + β>ΣtΣ>t β

β
∂Et [Yt+1]

∂Yt

− 1√
σ2
r + β>ΣtΣ>t β

∑
n
¯
<n<n̄

(rt + nc)

 φ

(
rt+(n+1)c−(ωt−1+β>Et[Yt+1])√

σ2
r+β>ΣtΣ>t β

)
−φ
(
rt+nc−(ωt−1+β>Et[Yt+1])√

σ2
r+β>ΣtΣ>t β

)
β∂Et [Yt+1]

∂Yt

+
1√

σ2
r + β>ΣtΣ>t β

(rt + n̄c)φ

(ωt−1 + β>Et [Yt+1]
)
− (rt + n̄c)√

σ2
r + β>ΣtΣ>t β

β
∂Et [Yt+1]

∂Yt

and

∂Et [rt+1|Yt+1]

∂rt
= − 1

σr
(rt + n

¯
c)φ

(
rt + (n

¯
+ 1) c−

(
ωt−1 + β>Yt+1

)
σr

)
ρ

− 1

σr

∑
n
¯
<n<n̄

(rt + nc)

 φ

(
rt+(n+1)c−(ωt−1+β>Yt+1)

σr

)
−φ
(
rt+nc−(ωt−1+β>Yt+1)

σr

)
 ρ

+
1

σr
(rt + n̄c)φ

((
ωt−1 + β>Yt+1

)
− (rt + n̄c)

σr

)
ρ.

E Cumulative Probability Distributions

We derive the cumulative probability distribution in each model. We repeatedly use the fact that

X ∼ N
(
X̄, α2

)
→ E [Φ (X)] = Φ

(
X̄√

1 + α2

)
.

E.1 Linear

In the Linear model, for z ∈ R:

Pt [rt+1 ≤ z] = Et

[
Pt [rt+1 ≤ z|Yt+1]

]
= Et

[
Φ

(
z −

(
ωt−1 + β>Yt+1

)
σr

)]
= Φ

z − (ωt−1 + β>Et [Yt+1]
)√

σ2
r + β>ΣtΣ>t β

 .
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E.2 B-Linear

In the B-Linear model, for z ∈ R:

Pt [rt+1 ≤ z|Yt+1] = Pt

[
max

(
ωt−1 + β>Yt+1 + σrεt+1, 0

)
≤ z|Yt+1

]
= 1[z≥0]Φ

(
−
(
ωt−1 + β>Yt+1

)
σr

)
+ Pt

[
−(ωt−1 + β>Yt+1)

σr
≤ εt+1 ≤

z −
(
ωt−1 + β>Yt+1

)
σr

|Yt+1

]

= 1[z≥0]Φ

(
−
(
ωt−1 + β>Yt+1

)
σr

)
+

[
Φ

(
z −

(
ωt−1 + β>Yt+1

)
σr

)
− Φ

(
−
(
ωt−1 + β>Yt+1

)
σr

)]
1[z≥0]

= Φ

(
z −

(
ωt−1 + β>Yt+1

)
σr

)
1[z≥0],

and therefore,

Pt [rt+1 ≤ z] = Et

[
Φ

(
z −

(
ωt−1 + β>Yt+1

)
σr

)
1[z≥0]

]

= Φ

z − (ωt−1 + β>Et [Yt+1]
)√

σ2
r + β>ΣtΣ>t β

 1[z≥0].

E.3 Square

In the Square model, for z ∈ R:

Pt [rt+1 ≤ z|Yt+1] = Pt

[(
ωt−1 + β>Yt+1 + σrεt+1

)2
≤ z

∣∣ Yt+1

]
= Pt

[∣∣∣ωt−1 + β>Yt+1 + σrεt+1

∣∣∣ ≤ √z ∣∣ Yt+1

]
1[z≥0]

= Pt

[
−
√
z ≤ ωt−1 + β>Yt+1 + σrεt+1 ≤

√
z
∣∣ Yt+1

]
1[z≥0]

= Pt

[
−
√
z −

(
ωt−1 + β>Yt+1

)
σr

≤ εt+1 ≤
√
z −

(
ωt−1 + β>Yt+1

)
σr

∣∣ Yt+1

]
1[z≥0]

=

(
Φ

(√
z −

(
ωt−1 + β>Yt+1

)
σr

)
− Φ

(
−
√
z −

(
ωt−1 + β>Yt+1

)
σr

))
1[z≥0],

and therefore:

Pt [rt+1 ≤ z] = 1[z≥0]

(
Et

[
Φ

(√
z −

(
ωt−1 + β>Yt+1

)
σr

)]
− Et

[
Φ

(
−
√
z −

(
ωt−1 + β>Yt+1

)
σr

)])

= 1[z≥0]

Φ

√z − (ωt−1 + β>Et [Yt+1]
)√

σ2
r + β>ΣtΣ>t β

− Φ

−√z − (ωt−1 + β>Et [Yt+1]
)√

σ2
r + β>ΣtΣ>t β

 .
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E.4 Ordered and Ordered B-Linear

In the Ordered model, for z ∈ N:

Pt [rt+1 ≤ z] =
n=z∑
n=n

Pt(n),

and in the B-Ordered model:

Pt [rt+1 ≤ z] =

n=z∑
n=n

Pt(n)1z≥0.

F Option Prices

We can derive option prices using Equation 11. We need a solution for Et
[
rt+11[rt+1≥z]

]
for each

model. The solution Pt [rt+1 ≥ z] is given in the previous section.

F.1 Linear

In the Linear model:

Et
[
rt+11[rt+1≥z]

]
= Et

[
r∗t+11[r∗t+1≥z]

]
= Et

[
r∗t+1

]
− Et

[
r∗t+11[r∗t+1≤z]

]
= ωt−1 + β>Et [Yt+1]− Et

[
r∗t+11[r∗t+1≤z]

]
= ωt−1 + β>Et [Yt+1]− ϕ>t (0, z).

F.2 B-Linear

In the B-Linear model:

Et
[
rt+11[rt+1≥z]

]
= Et

[
max

(
r∗t+1, 0

)
1[max(r∗t+1,0)≥z]

]
= Et

[
r∗t+11[r∗t+1≥max(z,0)]

]
= Et

[
r∗t+1

]
− Et

[
r∗t+11[r∗t+1≤max(z,0)]

]
= ωt−1 + β>Et [Yt+1]− Et

[
r∗t+11[r∗t+1≤max(z,0)]

]
= ωt−1 + β>Et [Yt+1]− ϕ>t (0,max(z, 0)).

F.3 Square

In the Square model:

Et
[
rt+11[rt+1≥z]

]
= Et

[(
r∗t+1

)2
1

[(r∗t+1)
2≥z]

]
= Et

[(
r∗t+1

)2
1[|r∗t+1|≥

√
z]

]
= Et

[(
r∗t+1

)2
1[r∗t+1>

√
z]

]
+ Et

[(
r∗t+1

)2
1[r∗t+1<−

√
z]

]
= Et

[(
r∗t+1

)2 [
1− 1[r∗t+1<

√
z]

]]
+ Et

[(
r∗t+1

)2
1[r∗t+1<−

√
z]

]
= Et

[(
r∗t+1

)2 [
1− 1[r∗t+1<

√
z]

]]
+ Et

[(
r∗t+1

)2
1[r∗t+1<−

√
z]

]
= Et

[(
r∗t+1

)2]
+ Et

[(
r∗t+1

)2
1[r∗t+1<−

√
z]

]
− Et

[(
r∗t+1

)2
1[r∗t+1<

√
z]

]
,
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where, from Section A.1:

Et

[(
r∗t+1

)2]
= σ2

r + β>ΣtΣ
>
t β +

(
ωt−1 + β>Et [Yt+1]

)2
,

and from Section A.2:

Et

[
r∗t+11[r∗t+1≤x]

]
= ϕ>t (0;x)

Et

[(
r∗t+1

)2
1[r∗t+1≤x]

]
= ϕ

>>
t (0;x) .
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Figure 1: Survey Data
Data from the survey of professional forecasters. Panel (a) shows forecasts of the inflation
rate and the unemployment rate. Panel (b) shows forecasts of the 3-month and 5-year US
Treasury yields.
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Figure 2: Response Coefficients for the Linear and Black-Ordered Models
Response coefficients computed for the Black Ordered model from the first partial deriva-
tives of rt = gM(r∗t ) with respect to the lagged target rate ∂r, the inflation rate ∂π and
unemployment ∂u. The Linear model produces constant response coefficients by design.
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Table 3: Forecast RMSE with 3 State Variables

In-sample one-step-ahead forecast root mean squared errors for each model, in percentage points.
State variables are the Blue Chip 3-month survey forecasts of inflation, unemployment and the
lagged target rate.

Panel (a) Constant volatility

M Linear B-Linear Square Ordered B-Ordered Market

2003-2015 0.160 0.160 0.302 0.162 0.149 0.121

2003-2008 0.234 0.234 0.428 0.237 0.217 0.133

2009-2015 0.048 0.047 0.130 0.042 0.047 0.112

Panel (b) Time-varying volatility

M Linear B-Linear Square Ordered B-Ordered Market

2003-2015 0.163 0.159 0.354 0.164 0.150 0.121

2003-2008 0.231 0.231 0.520 0.232 0.219 0.133

2009-2015 0.069 0.054 0.090 0.071 0.046 0.112

Panel (c) Out-of-sample with time-varying volatility

M Linear B-Linear Square Ordered B-Ordered Market

2003-2015 0.219 0.174 1.096 0.206 0.167 0.124

2003-2008 0.264 0.264 1.706 0.256 0.256 0.141

2009-2015 0.183 0.064 0.249 0.164 0.051 0.112
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Table 4: Out-of-Sample Tests with 3 State Variables

Diebold-Mariano out-of-sample tests. Significant differences at 10%, 5% and 1% level are indicated
by *, ** and ***, respectively. State variables are the Blue Chip 3-month survey forecasts of
inflation, unemployment and the lagged target rate.

Panel (a) H0: Linear model

M Linear B-Linear Square Ordered B-Ordered

MAD loss H0 1.78* -5.28*** 2.07** 2.84***

MSE loss H0 1.80* -3.85*** 1.77* 2.01**

Panel (b) H0: B-Ordered model

M Linear B-Linear Square Ordered B-Ordered

MAD loss -2.84*** -4.76*** -5.89*** -2.81*** H0

MSE loss -2.04** -2.32*** -3.93*** -2.04** H0

Table 5: Volatility Forecasts with 3 State Variables

In-sample one-step-ahead volatility forecast root mean squared errors for each model, in percentage
points. State variables are the Blue Chip 3-month survey forecasts of inflation, unemployment and
the lagged target rate.

Panel (a) Time-varying volatility

M Linear B-Linear Square Ordered B-Ordered

2003-2015 0.092 0.075 0.167 0.079 0.086

2003-2008 0.121 0.048 0.239 0.043 0.087

2009-2015 0.060 0.091 0.069 0.099 0.084

Panel (b) Out-of-sample with time-varying volatility

M Linear B-Linear Square Ordered B-Ordered

2003-2015 0.139 0.106 0.765 0.140 0.086

2003-2008 0.086 0.086 1.091 0.087 0.087

2009-2015 0.166 0.117 0.426 0.166 0.085
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Table 6: Volatility Out-of-Sample Tests with 3 State Variables

Diebold-Mariano out-of-sample volatility forecast tests. Significant differences at 10%, 5% and 1%
level are indicated by *, ** and ***, respectively.

Panel (a) H0: Linear model

M Linear B-Linear Square Ordered B-Ordered

MAD H0 8.33*** -3.95*** 1.11 6.75***

MSE H0 8.72*** -4.33*** 0.43 6.69***

Panel (b) H0: B-Ordered model

M Linear B-Linear Square Ordered B-Ordered

MAD -6.75*** -3.22*** -5.07*** -6.24*** H0

MSE -6.69** -3.28*** -4.47*** -6.44** H0

Table 7: Response Coefficients with 3 State Variables

Response coefficients ∂Et[rt+1]/∂Yt and ∂Et[rt+1]/∂rt.

M Linear B-Linear Square Ordered B-Ordered

2003-2015

∂r 0.972 0.838 0.652 0.956 0.491

∂π 0.148 0.127 0.210 0.151 0.101

∂u -0.009 -0.008 -0.090 -0.010 -0.089

2003-2008

∂r 0.972 0.972 1.128 0.958 0.936

∂π 0.148 0.148 0.364 0.152 0.192

∂u -0.009 -0.009 -0.156 -0.010 -0.170

2009-2015

∂r 0.972 0.729 0.268 0.954 0.133

∂π 0.148 0.111 0.086 0.151 0.027

∂u -0.009 -0.007 -0.037 -0.010 -0.024
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Table 8: Forecast RMSE with All State Variables

In-sample one-step-ahead forecast root mean squared errors for each model with four state variables,
in percentage points. State variables are the Blue Chip 3-month survey forecasts of inflation,
unemployment, and 3-month and 5-year US Treasury yields.

Panel (a) Time-varying volatility

M Linear B-Linear Square Ordered B-Ordered Market

2003-2015 0.156 0.156 0.308 0.135 0.132 0.121

2003-2008 0.220 0.220 0.456 0.193 0.192 0.133

2009-2015 0.070 0.071 0.063 0.055 0.041 0.112

Panel (b) Out-of-sample with time-varying volatility

M Linear B-Linear Square Ordered B-Ordered Market

2003-2015 0.201 0.188 0.229 0.172 0.152 0.124

2003-2008 0.275 0.275 0.250 0.160 0.150 0.141

2009-2015 0.129 0.093 0.187 0.131 0.080 0.112

Table 9: Out-of-Sample Tests with All State Variables

Diebold-Mariano out-of-sample tests. Significant differences at 10%, 5% and 1% level are indicated
by *, ** and ***, respectively.

Panel (a) Linear model vs others

M Linear B-Linear Square Ordered B-Ordered

MAD loss H0 1.885* -2.605** 4.322*** 6.423***

MSE loss H0 2.056** -1.846* 3.053*** 4.268***

Panel (b) B-Ordered model vs others

M Linear B-Linear Square Ordered B-Ordered

MAD loss -6.423*** -7.310*** -8.187*** -3.911*** H0

MSE loss -4.268*** -3.559*** -5.128*** -2.621** H0
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Table 10: Volatility Forecasts with All State Variables

In-sample one-step-ahead volatility forecast root mean squared errors for each model, in percentage
points.

Panel (a) Time-varying volatility

M Linear B-Linear Square Ordered B-Ordered

2003-2015 0.077 0.125 0.125 0.189 0.094

2003-2008 0.085 0.169 0.124 0.277 0.120

2009-2015 0.070 0.071 0.099 0.050 0.066

Panel (b) Out-of-sample with time-varying volatility

M Linear B-Linear Square Ordered B-Ordered

2003-2015 0.206 0.177 0.184 0.170 0.118

2003-2008 0.244 0.244 0.283 0.167 0.167

2009-2015 0.176 0.110 0.057 0.172 0.069

Table 11: Volatility Out-of-Sample Tests with All State Variables

Diebold-Mariano out-of-sample volatility forecast tests. Significant differences at 10%, 5% and 1%
level are indicated by *, ** and ***, respectively.

Panel (a) Constant state volatility

M Linear B-Linear Square Ordered B-Ordered

MAD -11.12*** -8.75*** -1.36 -9.14*** H0

MSE -10.49*** -8.99*** -2.29*** -8.93*** H0

Panel (b) Time-varying volatility

M Linear B-Linear Square Ordered B-Ordered

MAD -9.23*** -7.67*** -3.63*** -6.61*** H0

MSE -8.48*** -7.10*** -4.33*** -5.89*** H0
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Table 12: Out-of-Sample Tests Including Option Data

Diebold-Mariano out-of-sample tests. Significant differences at 10%, 5% and 1% level are indicated
by *, ** and ***, respectively. State variables are the Blue Chip 3-month survey forecasts of
inflation, unemployment and the lagged target rate.

Panel (a) Benchmark Models

M Linear B-Linear Square Ordered B-Ordered

MAD loss 0.70 -0.69 2.84*** 0.85 1.02

MSE loss 1.58* 0.08 2.92*** 1.49 0.15

Panel (b) 4-Factor Models

M Linear B-Linear Square Ordered B-Ordered

MAD loss 0.18 0.82 -3.03*** 1.67* -1.54

MSE loss 1.52 1.49 -2.19*** 0.29 0.62
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