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Abstract 

This paper addresses an existing gap in the developing literature on conditional skewness. 
We develop a simple procedure to evaluate parametric conditional skewness models. This 
procedure is based on regressing the realized skewness measures on model-implied 
conditional skewness values. We find that an asymmetric GARCH-type specification on 
shape parameters with a skewed generalized error distribution provides the best in-
sample fit for the data, as well as reasonable predictions of the realized skewness 
measure. Our empirical findings imply significant asymmetry with respect to positive and 
negative news in both conditional asymmetry and kurtosis processes. 

JEL classification: C22, C51, G12, G15 
Bank classification: Econometric and statistical methods 

Résumé 

Les auteurs élaborent une procédure d’évaluation simple des modèles paramétriques 
d’asymétrie conditionnelle en vue de combler une lacune de la littérature sur le sujet. 
Cette procédure est basée sur la régression de l’asymétrie réalisée sur l’asymétrie 
conditionnelle. Les auteurs constatent qu’une spécification de type GARCH-asymétrique 
pour les paramètres de forme, couplée à une distribution d’erreurs généralisée 
asymétrique, offre le meilleur ajustement statistique en échantillon ainsi qu’une 
prévisibilité satisfaisante de la mesure de l’asymétrie réalisée. Ils notent une importante 
asymétrie dans l’effet des bonnes et des mauvaises nouvelles sur le plan tant de la 
dynamique de l’asymétrie conditionnelle que de celle de l’aplatissement conditionnel. 

Classification JEL : C22, C51, G12, G15 
Classification de la Banque : Méthodes économétriques et statistiques 

 

 



1 Introduction

Traditional modelling of financial time series critically relies on the assumption of conditional normality

of returns. This assumption implies that conditional skewness and excess kurtosis should be equal

to zero. However, empirical evidence is in sharp contrast to this assertion. Unconditionally, these

moments prove not to be zero. Moreover, similar to the first two conditional moments, higher moments

demonstrate considerable time variation as noted by Bekaert et al. (1998) and Ghysels et al. (2011).

Thus, explicit modelling of conditional higher moments that allows for time variation, is necessary to

avoid model misspecification.

Since the pioneering work of Hansen (1994), a number of researchers have proposed parametric

models for conditional skewness. Examples of studies on the economic importance of conditional skew-

ness in financial asset returns, its econometric modelling and its empirical applications include Harvey

and Siddique (1999, 2000), Chen et al. (2001), Brännäs and Nordman (2003), Jondeau and Rockinger

(2003), Patton (2004), León et al. (2005), Lanne and Saikkonen (2007), Grigoletto and Lisi (2009),

Wilhelmsson (2009), Ghysels et al. (2011), Durham and Park (2013), Conrad et al. (2013), and Feunou

et al. (2013). There exist a number of studies that focus on conditional kurtosis, among them Brooks

et al. (2005) and Guidolin and Timmermann (2008). In this paper we focus on conditional skewness,

or conditional asymmetry.

The existing research does not tell us which parametric conditional skewness model provides a better

fit for the data. As noted by Kim and White (2004), this is partially due to the extreme sensitivity

of traditional skewness and kurtosis measures to outliers.1 They propose several robust measures for

skewness and kurtosis. In previous work (Feunou et al. 2013), we found that conditional asymmetry

in returns is related to the “relative semi-variance,” defined as the upside variance minus the downside

variance.2 We showed that modelling downside risk is possible when a measure of skewness is explicitly

incorporated in the model. We used Pearson’s (1895) “mode skewness” as the measure of choice.

Pearson’s mode skewness is more robust to outliers than traditional skewness measures. Building upon

and expanding on suggestions in Kim and White (2004) and Feunou et al. (2013), this paper fills the

existing gap in the literature regarding model adequacy for parametric conditional skewness models.

Our objective is threefold. First, we establish through a proposition that the relative semi-variance,

1By traditional, we mean standardized third and fourth moments of a random variable.

2We define the “upside variance” as the variance of the returns conditional upon their realization above a
certain threshold. Their variance conditional upon their realization below the same threshold is called “downside
variance.” Based on these two definitions, we define the difference between upside variance and downside variance
as the “relative semi-variance.”

1



divided by the total variance, is a measure of skewness that satisfies the properties proposed by Groen-

eveld and Meeden (1984) for any reasonable skewness measure. Second, we develop an intuitive and

easy-to-implement method for non-parametric measurement of realized asymmetry. Third, based on

this measure of realized asymmetry, we can test any parametric model for conditional skewness and

provide a method of how to model the conditional skewness. We test a number of parametric models of

conditional asymmetry with various functional and distributional assumptions. The testing procedure

is based on Mincer and Zarnowitz (1969) regressions and is similar in spirit to the methodology devel-

oped by Chernov (2007) to close the realized-implied volatility predictive regression gap. We find that

in addition to allowing time variation in the conditional asymmetry, we need to allow for a “leverage

effect,” but also for asymmetry-in-asymmetry to obtain the best characterization of the conditional

skewness dynamics.3 The most successful characterization of the conditional asymmetry shares several

functional features with the celebrated exponential GARCH (EGARCH) model of Nelson (1991).

Ghysels et al. (2011) propose a methodology for modelling and estimating the conditional skewness

based on a mixed data sampling (MIDAS) method of volatility estimation introduced and extensively

studied by Ghysels et al. (2005, 2006, 2007), and Bowley’s (1920) measure of skewness. Our work differs

from Ghysels et al. in two important dimensions. First, we are interested in assessing the adequacy

of different models of conditional asymmetry, while Ghysels et al. focus on a single model. Second,

Ghysels et al. build their model of conditional asymmetry based on Bowley’s (1920) robust coefficient

of skewness. This measure is constructed using the inter-quantile ranges of the series investigated, while

our measure is based on the difference between upside and downside semi-variances.

Durham and Park (2013) study the contribution of conditional skewness in a continuous-time frame-

work. For tractability, they assume simple dynamics based on a single Lévy process for the conditional

skewness in their estimated models. We model the conditional asymmetry in discrete time and assume

much richer dynamics. Durham and Park establish the cost of ignoring conditional higher moments

in modelling returns dynamics. Thus, their simple model is adequate to motivate their work. The

economic relevance of conditional asymmetry has been established in several asset pricing studies. As

pointed out by Christoffersen et al. (2006), conditionally non-symmetric return innovations are critically

important, since in option pricing, for example, heteroskedasticity and the leverage effect alone do not

suffice to explain the option smirk. In this study, we try to find the model that best characterizes the

dynamics of the conditional asymmetry in S&P 500 returns in a rich set of models.

Jondeau and Rockinger (2003) characterize the maximal range of skewness and kurtosis for which

3We find that the evidence for asymmetry-in-asymmetry itself is relatively weak. But the flexibility offered
by separating the contributions of positive and negative shocks improves the model’s performance significantly.
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a density exists. They claim that the generalized Student-t distribution spans a large domain in this

maximal set, and use this distribution to model innovations of a GARCH-type model with conditional

parameters. They find time dependency of the asymmetry parameter, but a constant degree-of-freedom

parameter in the series they study. They provide evidence that skewness is strongly persistent, but

kurtosis is much less so. While influenced by Jondeau and Rockinger (2003), our study differs from

their work in two important dimensions. First, we study a larger number of models and distributions

than Jondeau and Rockinger (2003), and we therefore consider our study to be more comprehensive.

Second, since we compare non-nested models, we rely on Mincer and Zarnowitz’s (1969) methodology

to investigate the adequacy of models.

The rest of the paper proceeds as follows. In section 2, we provide the theoretical background for

our study. We discuss the implications of various distributional assumptions in section 3. Section 4

describes the different parametric model specifications for the conditional skewness that we test in our

empirical analysis. We report our empirical findings in section 5. Section 6 concludes.

2 Theoretical Background

Conventional asymptotic theory in econometrics typically leads to limiting distributions for economic

variables that are conditionally Gaussian as sample size increases. Examples of such work include

Bollerslev et al. (1994) and Davidson (1994). Thus, conditional skewness should converge to zero

as sample size increases. However, as Ghysels et al. (2011), Brooks et al. (2005), and Jondeau and

Rockinger (2003) show, conditional skewness for many financial time series does not vanish in large

samples or through sampling at higher frequencies. In what follows, we extend their findings and

develop a testing framework to compare different parametric models of conditional skewness.

In general, common parametric distributions considered in empirical work to characterize the dis-

tribution of logarithmic returns are unimodal and satisfy the following conditions:

V ar [r | r ≥ m] > V ar [r | r < m]⇔ Skew [r] > 0

V ar [r | r ≥ m] = V ar [r | r < m]⇔ Skew [r] = 0

V ar [r | r ≥ m] < V ar [r | r < m]⇔ Skew [r] < 0,

(1)

where m is a suitably chosen threshold. A few studies in the literature use distributions that explicitly

allow for skewness in returns; in particular, the skewed generalized Student-t distribution popularized by

Hansen (1994), the skewed generalized error distribution of Nelson (1991), and the binormal distribution

applied to financial data in our previous work (Feunou et al. 2013) all satisfy equation (1). We introduce

a new measure of asymmetry, called the relative semi-variance (RSV), defined by the difference between
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the upside variance and the downside variance, where upside and downside are relative to a cut-off point

equal to the mode.

Proposition 2.1 Let the random variable x follow a unimodal distribution with mode m. Denote
the upside variance as σ2

u = V ar [x|x ≥ m] and the downside variance as σ2
d = V ar [x|x < m]. We

standardize the relative semi-variance RSV ≡ σ2
u − σ2

d by dividing it by the total variance to obtain a
scale-invariant and dimensionless measure for skewness defined as

γ (x) =
σ2
u − σ2

d

σ2
, (2)

where σ2 = V ar [x] is the total variance. The distribution is right-skewed if σ2
u > σ2

d, and left-skewed if
σ2
u < σ2

d. The proposed skewness measure is coherent; that is, it satisfies the three properties proposed by
Groeneveld and Meeden (1984) that any reasonable skewness measure should satisfy.4 These properties
are:

• (P1) for any a > 0 and b, γ (x) = γ (ax+ b);

• (P2) if x is symmetrically distributed, then γ (x) = 0;

• (P3) γ (−x) = −γ (x).

Proof: Note that, for any a > 0 and b, the mode of ax + b is equal to am + b. Besides the total

variance, the upside variance and the downside variance of ax+ b are given by

V ar [ax+ b] = V ar [ax] = a2V ar [x] = a2σ2,

V ar [ax+ b | ax+ b ≥ am+ b] = V ar [ax+ b | x ≥ m] = V ar [ax | x ≥ m] = a2V ar [x | x ≥ m] = a2σ2
u

V ar [ax+ b | ax+ b < am+ b] = V ar [ax+ b | x < m] = V ar [ax | z < m] = a2V ar [x | x < m] = a2σ2
d.

Thus, the skewness of ax+ b is given by

γ (ax+ b) =
V ar [ax+ b | ax+ b ≥ am+ b]− V ar [ax+ b | ax+ b < am+ b]

V ar [ax+ b]

=
a2σ2

u − a2σ2
d

a2σ2
=
σ2
u − σ2

d

σ2
= γ (x) .

The γ(x) skewness measure thus satisfies (P1).5

To demonstrate that γ (x) satisfies the second property, suppose that x is symmetric and unimodal;

then we know that the mode is equal to the mean. As a result, x − m is symmetric and unimodal

with mean zero. Consequently, x−m and its opposite, m− x, have the same distribution. The upside

variance of x−m is equal to σ2
u and the downside variance of x−m is equal to σ2

d. However,

σ2
d = V ar [x−m | x−m < 0] = V ar [m− x | x−m < 0] = V ar [m− x | m− x > 0] .

4Suitability of γ (x) as a skewness measure critically depends on the measure of volatility used in modelling
the returns process. Later in the paper, we show that our results are based on the Engle and Ng (1993) NGARCH
volatility model. Based on empirical results, we argue that NGARCH is a perfectly adequate volatility measure
and, thus, our conditional skewness measures are well specified.

5This result means that relative semi-variance, σ2
u − σ2

d, satisfies (P1) up to a multiplicative constant.
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So, σ2
d is also the upside variance of m − x. Since x −m and m − x have the same distribution, then

σ2
u = σ2

d and in consequence γ (x) = 0. This shows that our measure of skewness satisfies (P2).

To demonstrate that γ (x) satisfies (P3), note that the mode of −x is simply −m. The upside

variance of −x is thus the downside variance of x:

V ar [−x | −x ≥ −m] = V ar [x | −x ≥ −m] = V ar [x | x ≤ m] = σ2
d.

Similarly, we can show that the downside variance of −x is equal to σ2
u, the upside variance of x. On

the other hand, −x and x have the same total variance σ2. Consequently, we have

γ (−x) =
V ar [−x | −x ≥ −m]− V ar [−x | −x < −m]

V ar [−x]

=
σ2
d − σ2

u

σ2
= −σ

2
u − σ2

d

σ2
= −γ (x) .

Our skewness measure thus satisfies (P3).

2.1 Building a realized skewness measure

Based on our discussion in section 2, we posit that modelling conditional skewness or asymmetry

is equivalent to modelling relative semi-variance, RSVt. The literature on modelling and measuring

volatility in finance and economics is vast. It suffices to say that, for years now, using realized vari-

ance following the methodology of Andersen et al. (2001, 2003) is the standard method for measuring

volatility in financial time series. As an example, Chernov’s (2007) study on the adequacy of option-

implied volatility in forecasting future volatility crucially depends on this methodology. We modify

this standard methodology in the literature to build a non-parametric and distribution-free measure for

conditional asymmetry in returns. In a recent paper, Neuberger (2012) discusses a somewhat similar

measure of realized skewness.

We construct our measures following the common practice in the realized variance literature by

summing up finely sampled squared-return realizations over a fixed time interval, RVt =
nt∑
j=1

r2
j,t, where

there are nt high-frequency returns in period t, rj,t is the jth high-frequency return in period t.

We then construct the realized downside and upside variance series as

RV dt =
nt

2ndt

nt∑
j=1

r2
j,tI (rj,t < mt) and RV ut =

nt
2nut

nt∑
j=1

r2
j,tI (rj,t ≥ mt) , (3)

where ndt and nut are, respectively, the number of high-frequency returns below and above the conditional

mode of return mt in period t, and where I (·) denotes an indicator function. Thus, the measure for

realized relative semi-variance is simply defined as

RRSVt = RV ut −RV dt , (4)
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which, divided by realized variance, will define realized skewness according to our proposed measure

for skewness introduced in Proposition 2.1. Realized volatility will refer to the square root of realized

variance.

It is a well-known fact that Et [RVt+1] = σ2
t , where σ2

t = V art [rt+1] is the conditional variance,

and where rt =
nt∑
j=1

rj,t is the return of period t. This is a well-established result based on Corollary 1

in Andersen et al. (2003). We establish that Et [RRSVt+1] = σ2
u,t − σ2

d,t, and the following proposition

and its proof show the veracity of our assertion.

Proposition 2.2 Let the unidimensional continuous-price process {Pt}Tt=0, where T > 0, be defined
on a complete probability space (Ω,F ,P). Let {F}t∈[0,T ] ⊆ F be an information filtration, defined as a
family of increasing P-complete and right-continuous σ-fields. Information set Ft includes asset prices
and relevant state variables through time t. Let RV ut+1 and RV dt+1 be defined as above for this price
process. Then Et

[
RV ut+1 −RV dt+1

]
≈ σ2

u,t − σ2
d,t.

Proof: See the appendix.

Thus, a simple testing procedure consists of regressing RV ut+1 −RV dt+1 on σ2
u,t − σ2

d,t, or

RV ut+1 −RV dt+1 = β0 + β1

(
σ2
u,t − σ2

d,t

)
+ εt+1. (5)

Following the standard Mincer and Zarnowitz (1969) methodology, we view the model with the β0

closest to zero, the β1 closest to one and the highest regression R2 as the better model for conditional

skewness.6

We have followed Barndorff-Nielsen et al. (2010) closely in our treatment of sources of conditional

skewness. This implies that in the proof of the above proposition, and following Barndorff-Nielsen et al.

(2010), we have shut down the “instantaneous” or “high-frequency leverage effect” to derive the desired

results. In practice, we have shown that our realized relative semi-variance shares many features with

the realized semi-variances studied by Barndorff-Nielsen et al. (2010).

We have observed, but have not studied this issue in depth, that in data sampled at high enough

frequency, conditional skewness is driven purely by jumps. This is a reasonable assumption at frequen-

cies such as 5-minute, 15-minute, half-hour, hourly, or even daily sampled data, since the instantaneous

leverage effect is clearly weak at such high frequencies. However, as the sampling frequency is lowered

to, for example, monthly or quarterly periods, this assertion loses power. The leverage effect is an

important contributor to conditional skewness in lower sampling frequencies.

6In practice, we put less weight on the first condition, with β0 statistically indistinguishable from 0. As
Chernov (2007) documents this issue in a parallel literature, pinning down the correct functional form of the
statistical relationship between latent variables is difficult. Thus, we focus on the more robust and theoretically
more important relationship between our skewness measures through slope parameters. That said, we report
results for joint tests for β0 = 0, β1 = 1 in our discussion of empirical findings.
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Figure 1 shows the paths for daily realized relative semi-variance and realized variance for S&P

500 returns in the 1980–2010 period. Both series are constructed using 15-minute returns. In order to

provide a more tractable picture of the behavior of realized relative semi-variance, we thin out the plot

and use every 22nd data point in the figure. We study the correlation between realized relative semi-

variance and realized variance and volatility. We find that the correlation between realized variance and

relative semi-variance is -0.5076, the correlation between realized variance and skewness is -0.0206, the

correlation between realized volatility and relative semi-variance is -0.4475, and finally, the correlation

between realized volatility and skewness is -0.0538. Thus, RRSV and RV are negatively correlated. It

is immediately clear that spikes in realized relative semi-variance typically lead to significant jumps in

realized variance. It is also clear that there is evidence of clustering visible in relative semi-variance,

particularly in the first half of the sampling period. The range of realized relative semi-variance is

comparable to that reported in our previous work (Feunou et al. 2013).

3 Model Specification for the Conditional Skewness

In modelling the first two conditional moments, it is not necessary to take a stance on the parametric

distribution of the returns. Unlike the first two conditional moments where no assumption on the

parametric distribution is required, modelling higher moments requires a specification of a parametric

distribution. Two flexible families of distributions attract a lot of attention in the literature. They are

the skewed generalized Student-t (GST) and the skewed generalized error distribution (SGED). We also

study the binormal distribution, which we recently introduced to the finance literature (Feunou et al.

2013). Without loss of generality, we standardize these distributions by fixing their mean to be equal

to zero, and their variance to be equal to one. Standardized returns are denoted by z.

3.1 The skewed generalized Student-t distribution

Hansen (1994) popularized the skewed GST distribution. Its density is defined by

fGST (z) =


bc

(
1 + 1

η−2

(
bz+a
1−λ

)2
)−(η+1)/2

if z < −a/b

bc

(
1 + 1

η−2

(
bz+a
1+λ

)2
)−(η+1)/2

if z ≥ −a/b

where λ is the skewness parameter, η represents degrees of freedom and

a ≡ 4λc
η − 2

η − 1
, b2 ≡ 1 + 3λ2 − a2, c ≡ Γ ((η + 1) /2)√

π (η − 2)Γ (η/2)
.

This density is defined for 2 < η < ∞ and −1 < λ < 1. GST density nests a large set of conventional

densities. For example, if λ = 0, Hansen’s GST distribution reduces to the traditional Student-t
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distribution. We recall that the traditional Student-t distribution is not skewed. In addition, if η =∞,

the Student-t distribution collapses to a normal density.

Since λ controls skewness, if λ is positive, the probability mass concentrates in the right tail. If

it is negative, the probability mass is in the left tail. It is well known that the traditional Student-t

distribution with η degrees of freedom admits all moments up to the ηth. Therefore, given the restriction

η > 2, Hansen’s distribution is well defined and its second moment exists. The third and fourth moments

of this distribution are defined as

E
[
z3
]

=
(
m3 − 3am2 + 2a3

)
/b3,

E
[
z4
]

=
(
m4 − 4am3 + 6a2m2 − 3a4

)
/b4,

with m2 = 1 + 3λ2, m3 = 16cλ
(
1 + λ2

) (η−2)2

(η−1)(η−3) if η > 3, and m4 = 3η−2
η−4 (1 + 10λ2 + 5λ4) if η > 4.

The mode of the distribution is −a/b. Thus, the relative semi-variance is

V ar [z|z > −a/b]− V ar [z|z < −a/b] =
4λ

b2

[
1− 4c2

(η − 2)
2

(η − 1)
2

]
. (6)

We find that using relative semi-variance as a measure of skewness in the context of generalized

Student-t distribution adds flexibility to the analysis. Note that for the third moment to exist for a

random variable with skewed GST distribution, η must be greater than 3. However, we need only η > 2

for relative semi-variance to exist, which is the same condition for the existence of the second moment.

Thus, it is possible to study asymmetry even when the third moment does not exist.

3.2 The skewed generalized error distribution

The probability density function for the SGED is

fSGED (z) = C exp

(
− |z + δ|η

[1 + sign (z + δ)λ] θη

)
.

We define C = η
2θΓ

(
1
η

)−1

, θ = Γ
(

1
η

) 1
2

Γ
(

3
η

)− 1
2

S (λ)
−1
, δ = 2λAS (λ)

−1
, S (λ) =

√
1 + 3λ2 − 4A2λ2,

and A = Γ
(

2
η

)
Γ
(

1
η

)− 1
2

Γ
(

3
η

)− 1
2

, where Γ (·) is the gamma function. Scaling parameters η and λ are

subject to η > 0 and −1 < λ < 1.

This density function nests a large set of conventional densities. For example, when λ = 0, we have

the generalized error distribution, as in Nelson (1991). When λ = 0 and η = 2, we have the standard

normal distribution; when λ = 0 and η = 1, we have the double exponential distribution; and when

λ = 0 and η =∞, we have the uniform distribution on the interval
[
−
√

3,
√

3
]
.

The parameter η controls the height and the tails of the density function, and the skewness parameter

λ controls the rate of descent of the density around the mode (−δ). The third and the fourth moment
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are defined as

E
[
z3
]

= A3 − 3δ − δ3,

E
[
z4
]

= A4 − 4A3δ + 6δ2 + 3δ4,

where A3 = 4λ
(
1 + λ2

)
Γ (4/η) Γ (1/η)

−1
θ3 and A4 =

(
1 + 10λ2 + 5λ4

)
Γ (5/η) Γ (1/η)

−1
θ4. The mode

of this distribution is −δ.

As a result, we find that the relative semi-variance is

V ar [z|z > −δ]− V ar [z|z < −δ] =
4λ
(
1−A2

)
S (λ)

2 . (7)

3.3 The binormal distribution

The binormal distribution was introduced by Gibbons and Mylroie (1973). It is an analytically tractable

distribution that accommodates empirically plausible values of skewness and kurtosis, and nests the fa-

miliar normal distribution.7 In our previous work (Feunou et al. 2013), we showed that a GARCH

model based on the binormal distribution, which we call BiN-GARCH, is quite successful in charac-

terizing the elusive risk-return trade-off in the U.S. and international index returns. Our BiN-GARCH

model explicitly links the market price of risk to conditional skewness.

The conditional density function of a standardized binormal distribution (SBin), or binormal dis-

tribution with zero mean unit variance, and Pearson mode skewness λ, is given by

fSBin (z) = A exp

(
−1

2

(
z + λ

νd

)2
)
I (z < −λ) +A exp

(
−1

2

(
z + λ

νu

)2
)
I (z ≥ −λ) ,

where νd = −
√
π /8λ +

√
1− (3π /8 − 1)λ2 and νu =

√
π /8λ +

√
1− (3π /8 − 1)λ2, and where

A =
√

2 /π /(νd + νu) . If λ = 0, then νd = νu = 1, and this distribution collapses to the familiar

standard normal distribution.

We find that −λ is the conditional mode, and up to a multiplicative constant, ν2
d and ν2

u are

interpreted as downside variance and upside variance with respect to the mode, respectively. Specifically,

V ar [z | z < −λ] =

(
1− 2

π

)
ν2
d and V ar [z | z ≥ −λ] =

(
1− 2

π

)
ν2
u. (8)

We consider this property to be the most important characteristic of the binormal distribution, given our

objectives. The existence and positivity of the quantities νd and νu impose a bound on the parameter

λ, given by |λ| ≤ 1
/√

π /2 − 1 ≈ 1.3236. Finally, it is trivial to show that the relative semi-variance

7See Bangert et al. (1986), Kimber and Jeynes (1987), and Toth and Szentimrey (1990), among others, for
examples of using the binormal distribution in data modelling, statistical analysis and robustness studies.
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for the standardized binormal distribution is

V ar [z|z ≥ −λ]− V ar [z|z < −λ] =
√

2π

(
1− 2

π

)
λ
√

1− (3π /8 − 1)λ2. (9)

3.4 The skewness-kurtosis boundary

Let µ3 = E(z3
t ) and µ4 = E(z4

t ) denote the non-centered third and fourth moments of a random variable

{zt}∞t=0. For any distribution on zt with (−∞,∞) support, we have µ2
3 < µ4−1 with µ4 > 0 (see Widder

1946, p. 134, Theorem 12.a; Jondeau and Rockinger 2003).

This relation confirms that, for a given level of kurtosis, only a finite range of skewness may be

spanned. This is known as the skewness-kurtosis boundary, and it ensures the existence of a density.

Thus, the real challenge while modelling the distribution of zt is to get close enough to this skewness-

kurtosis boundary.

Figure 2 shows the skewness-kurtosis boundary for Hansen’s skewed generalized Student-t, SGED,

and binormal distributions against the theoretical boundary discussed in Widder (1946) and Jondeau

and Rockinger (2003). It is clear from this figure that the SGED spans a larger area of the theoretical

skewness-kurtosis boundary than does the skewed generalized Student-t distribution. Thus, we expect

models based on the SGED to outperform models based on the GST distribution. The sharp limit on

permissible skewness levels in the binormal distribution seriously limits its ability to span the theoretical

skewness-kurtosis boundary.

Figures 3 and 4 demonstrate the contribution of skewness and peakedness parameters, λ and η, re-

spectively, to generating skewness and kurtosis in skewed generalized Student-t distribution and SGED,

respectively. Note that the patterns for the skewness surface in both distributions are very similar.

The difference lies in the permissible values for η and the level of skewness generated by comparable

combinations of skewness and peakedness parameters. That is, the skewed generalized Student-t seems

to generate larger values for skewness in comparison with SGED. The pattern of the kurtosis surface,

however, is different for these distributions. The skewed generalized Student-t distributions demonstrate

a more explosive pattern as we move toward the corners of the admissible set for λ. The behavior of

the kurtosis surface for all admissible values of λ is more subdued for SGED. Both distributions show

mild evidence of asymmetry in kurtosis for lower values of η.

4 Model Specification

In this section, we introduce the functional forms of the models that we fit to the data for testing

purposes. We first discuss how we make our models comparable. We want to estimate the parameters

10



of interest without imposing restrictions on our estimation procedure; however, we also want to preserve

the theoretical bounds imposed on the shape parameters. We use sign-preserving transformations. In

particular, following Hansen (1994) and Nelson (1991), because of the different restrictions on the

shape parameters, we map the transformed parameters to be estimated into the true parameters, using

a logistic mapping for the skewness and an exponential mapping for the peakedness. This step allows us

to estimate the transformed parameters λ̃ and η̃ as free values, and then recover the original parameters.

For the generalized Student-t distribution, we use the mappings

λ = −1 +
2

1 + exp
(
−λ̃
) and η = 2 + exp (η̃) . (10)

These transformations are intuitive. Recall that skewed generalized Student-t distribution requires that

|λ| < 1. Transforming λ following equation (10) ensures that these bounds are preserved, regardless of

the estimated value of λ̃. Similarly, GST requires that 2 < η <∞. Equation (10) preserves these limits

for η, regardless of the estimated value of η̃. For the skewed generalized error distribution, we have

λ = −1 +
2

1 + exp
(
−λ̃
) and η = exp (η̃) , (11)

so as to maintain the restrictions |λ| < 1 and η > 0.

Finally, for the standardized binormal distribution, we have

λ =
1√
π
2 − 1

−1 +
2

1 + exp
(
−λ̃
)
 . (12)

Note that the binormal distribution does not have a distinct peakedness parameter. The transformation

in equation (12) is to maintain the bound on Pearson mode skewness, |λ| ≤ 1
/√

π /2 − 1 ≈ 1.3236,

for the binormal distribution discussed immediately after equation (8).

We estimate and compare results from up to nine specifications for skewness and peakedness factors,

across the three distributions discussed in section 3. A total of 24 models fit to the data. In the most

basic model, both of these factors are constant parameters to be estimated. We relax this specification

and allow for time variation and functional complexity in these processes. We assume that the condi-

tional variance process for returns follows an Engle and Ng (1993) NGARCH specification. Thus, the

conditional variance process follows

σ2
t+1 = α0 + α1σ

2
t (zt+1 − θ)2

+ β2σ
2
t . (13)

This choice of functional form for the conditional variance allows for a “leverage effect” in returns. We

assume that returns follow rt+1 = µ+σtzt+1, where zt+1 | It ∼ GST (λt, ηt), zt+1 | It ∼ SGED (λt, ηt),
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or zt+1 | It ∼ BiN (λt), and where It denotes the information set up to time t.8

The most basic model that we study assumes constant λ̃ and η̃. We call this model M0. We relax the

assumption of time invariance for the skewness process in Model 1, but maintain that the peakedness

process is still a parameter to be estimated. In model M1, we assume that the skewness process follows

a symmetric ARCH(1) process,

λ̃t+1 = κ0 + κ1zt+1. (14)

The assumption of symmetry here means that the arrival of good or bad news impacts the skewness

process with the same magnitude.

Asymmetry in volatility is a well-documented feature of financial data. Several studies in the

(G)ARCH literature address this issue, which leads to the leverage effect in financial data. Among

these studies, we note Nelson (1991), Glosten et al. (1993), and Engle and Ng (1993). Jondeau and

Rockinger (2003) argue that asymmetry in ARCH for skewness and kurtosis requires investigation.

Hence, we study this issue in model M2, where we assume an Asym-ARCH structure in the skewness

process, λ̃, but assume constant η̃. In this model, λ̃ follows

λ̃t+1 = κ0 + κ1,+zt+1I(zt+1 > 0) + κ1,−zt+1I(zt+1 < 0), (15)

where I(·) denotes an indicator function.

We allow for the richer GARCH(1,1) dynamics in the skewness process in model M3. In this model,

we still assume constant η̃. λ̃ follows

λ̃t+1 = κ0 + κ1zt+1 + κ2λ̃t. (16)

This model, except for distributional assumptions and normalization, is the same model studied by

Harvey and Siddique (1999).

To study the potential existence of an asymmetry-in-asymmetry or leverage effect in the conditional

skewness, we assume that the skewness process follows an asymmetric GARCH form in model M4. In

this model, η̃ is still assumed to be constant. Asym-GARCH in λ̃ implies the following functional form:

λ̃t+1 = κ0 + κ1,+zt+1I(zt+1 > 0) + κ1,−zt+1I(zt+1 < 0) + κ2λ̃t. (17)

In the remaining four models, we relax the assumption of constant η̃. In model M5, we assume a

8To keep our notation consistent with the realized volatility literature, our timing convention differs slightly
from the familiar GARCH notation. Throughout the paper, the subscript t on any variable means that it is
observed exactly at time t. In the traditional GARCH notation, the subscript t in the conditional variance
means that it is the variance of the time t returns. Hence, the variance is observed at time t− 1.
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symmetric ARCH structure for both λ̃ and η̃:

λ̃t+1 = κ0 + κ1zt+1, (18)

η̃t+1 = γ0 + γ1zt+1.

In model M6, we study the impact of good and bad news on both skewness and peakedness processes

by assuming an asymmetric ARCH in both λ̃ and η̃:

λ̃t+1 = κ0 + κ1,+zt+1I(zt+1 > 0) + κ1,−zt+1I(zt+1 < 0), (19)

η̃t+1 = γ0 + γ1,+zt+1I(zt+1 > 0) + γ1,−zt+1I(zt+1 < 0).

Model M7 investigates the implications of assuming a GARCH specification for both skewness, λ̃,

and peakedness, η̃, processes:

λ̃t+1 = κ0 + κ1zt+1 + κ2λ̃t, (20)

η̃t+1 = γ0 + γ1zt+1 + γ2η̃t.

As with M3, this formulation is very similar to the model in Harvey and Siddique (1999).

Finally, we study the implications of assuming an asymmetric GARCH functional form for both λ̃

and η̃ in model M8:

λ̃t+1 = κ0 + κ1,+zt+1I(zt+1 > 0) + κ1,−zt+1I(zt+1 < 0) + κ2λ̃t (21)

η̃t+1 = γ0 + γ1,+zt+1I(zt+1 > 0) + γ1,−zt+1I(zt+1 < 0) + γ2η̃t.

5 Estimation Results

5.1 Data

We use daily Standard and Poor’s 500 (S&P 500) index excess returns from Thomson Reuters Datas-

tream. The data series starts in January 1980 and ends in September 2010.

Table 1 reports summary statistics of the data. In Panel A, we report annualized return means and

standard deviations, in percentages, in columns two and three. We report unconditional skewness in col-

umn four. We observe negative unconditional skewness for market returns. The value of unconditional

skewness is not small relative to the average daily returns. Our data seem to be highly leptokurtotic,

since the series demonstrates significant unconditional excess kurtosis, as seen in column five. The re-

ported p-values of Jarque and Bera’s (1980) normality test imply a significant departure from normality

in the data. Our proxy for the risk-free rate is the yield of the 3-month constant-maturity U.S. Treasury

bill, which we obtained from the Federal Reserve Bank of St. Louis FRED II data bank. The crash of
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October 1987, the Asian crisis of 1997, the Russian default of 1998 and the 2007–09 Great Recession

are represented in the data.

Our intraday data series comes from Olsen Financial Technologies and is their longest available

one-minute close level S&P 500 index price series. The data span the period from February 1986 to

September 2010. To reduce the market microstructure effect in our empirical results, we construct

intraday returns at a 15-minute frequency. These results appear in Panel B of Table 1.

5.2 Discussion of the results

We report two sets of results for each distribution. First, we report estimation results for all models

studied for each distribution. We then report the results from running the Mincer and Zarnowitz (1969)

regressions of realized skewness measure on parametric skewness results. We report estimation results

for the full sample (1980–2009) and three subsamples, spanning 1980–89, 1990–99, and 2000-09. For

model selection, we mainly rely on empirical findings based on our full-sample estimates. Estimated

results based on subsamples are generally for demonstration of time variation or robustness and play a

secondary role.

In each case, for each distribution and for each sample period, we first identify the model that best

characterizes the returns. Our strategy to identify such a model is to compute likelihood ratio (LR)

test statistics. A model is considered viable when (i) the LR test rejects equal goodness of fit between

a baseline normally distributed model and the model with conditional skewness, and (ii) the LR test

rejects equal goodness of fit between each model and the model preceding it.9 That is, we control

for overparameterization of models by comparing models sequentially. The LR test is not applicable

for non-nested models. In such cases, we do not compute LR test statistics. If the LR test does not

differentiate between two models’ fit or it is inapplicable, then we first look at the Bayesian information

criteria (BIC) of models. If this is still not helpful, we prefer the less parameterized model over the more

parameterized model with the same goodness of fit and similar BIC. Based on the estimated parameters

of the preferred parametric model, we filter out the model-implied relative semi-variance process. Note

that, in our study, model M8 nests all other models.

We then regress realized relative semi-variance onto model-implied relative semi-variance. Next,

we turn to model evaluation. Our criteria for the success of a parametric model of skewness (relative

semi-variance) here – in descending order of importance – are: (i) a slope parameter that is statistically

9This means that, in our tables, the reported LR test statistics are computed by using log-likelihood values
from model Mx and model Mx− 1. That is, the LR statistic for model M2 is based on log-likelihood values for
models M1 and M2. When necessary, we indicate that we have used log-likelihood values from non-sequential
but nested models to construct a test statistic.
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indistinguishable from unity at reasonable confidence levels, (ii) the highest possible R2 given that the

previous condition is met, and finally (iii) whether the slope and intercept coefficients of the Mincer-

Zarnowitz regression in question are jointly equal to one and zero, respectively, given that the previous

two conditions are met. The last criterion reflects the difficulty of pinning down the correct functional

form of a latent variable, in our case conditional skewness. Thus, we put less weight on intercept

estimates that are statistically not different from zero. Chernov (2007) documents this issue for realized

and implied volatility literature.

Tables 2 and 3 report the estimation results for models in section 4 for the GST distribution. Note

that the baseline model (represented as N in both tables) is rejected in favor of all alternative models

entertained in our study, based on likelihood ratio tests that are not reported to save space. Models

M0–M8 deliver a better fit for the data. Thus, the first criterion is met.

For model M0, we find that estimated peakedness parameters are statistically different from zero at

the 5 percent level across all samples studied. However, the skewness parameter is statistically significant

in the full sample and the 2000–09 subsample. We conclude that there is very strong evidence in favor

of the existence of excess kurtosis and convincing evidence supporting skewness, which gets stronger as

we use the 21st-century data.10

Models M1–M4 show a somewhat similar pattern. While the size of the estimated parameters may

differ across these models and across samples, they are all significantly different from zero at the 5

percent level. Estimated autoregressive parameters, whether symmetric or asymmetric (κ1+ or κ1−),

and the GARCH-like parameter κ2 are generally statistically different from zero. In addition, we observe

evidence of asymmetry-in-asymmetry in our results. That is, positive returns increase the skewness – or,

in other words, push the skewness toward positive values, and negative returns decrease the skewness –

or push skewness toward negative values. Thus, positive and negative news have different and opposite

impacts on skewness. Based on the size of the estimated parameters, the impact of positive news is

larger than that of negative news.

Models M5 to M8 in Tables 2 and 3 report the impact of time variation on the conditional kurtosis.

In general, the GARCH-type parameter γ2 and the ARCH-type parameter γ1,+ are statistically signif-

icant at the 5 percent level. We observe evidence of an asymmetric impact in good and bad news for

conditional kurtosis models. The estimated γ1,− parameter is statistically different from zero in the full

sample, but this is not true in general for subsample results. In addition, the magnitude of estimated

γ1,+ is generally larger than that of γ1,− parameters. Thus, it seems that, in this case, good news is

10Please note that in Tables 2, 3, 5, 6, and 8, we abuse the notation to save space. That is, κ1+ and γ1+
represent both the coefficients for the ARCH-like terms and the coefficients for positive innovation shocks.
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more important than bad news for conditional kurtosis dynamics.

The likelihood test statistics (henceforth LR statistics) show that the models studied differ on how

well they fit the data. Overall, model M8, which allows for asymmetric GARCH-type dynamics for both

λ̃t and η̃t, performs the best based on LR tests. That is, based on LR tests carried out, M8 provides

a better fit than models M0 to M7 in the full sample and the 1990–99 and 2000–09 subsamples for

returns.

Table 4 reports the results from running the Mincer-Zarnowitz predictive regressions introduced in

equation (5), where the right-hand-side variables are implied skewness measures from one of the models

in equations (14)-(21) and the left-hand-side variable is the realized skewness measure introduced in

equation (4). The RRSV measure is based on high-frequency information, while implied skewness mea-

sures are based on daily data. Note that model M1 provides the highest R2 in full-sample estimation,

but the estimated β1 is significantly different from unity. However, the best model should be the one

with the highest R2 among all specifications with β1 not significantly different from unity. Our results

suggest that models M4 and M8 both have β1 not statistically different from one, and the highest R2

of 19 percent in full-sample estimation. Both these specifications have time-varying conditional skew-

ness dynamics featuring asymmetry-in-asymmetry, but M8 nests M4 through the conditional kurtosis

dynamics. For all models, the hypothesis β1 = 1 is not rejected in the second subsample except for

specifications M0 and M7, while the joint hypothesis β0 = 0 and β1 = 1 is not rejected in the third

subsample except for specifications M0, M4 and M6. Our preferred model would then be M8 based on

full-sample and subsample Mincer-Zarnowitz predictive regression results, added to the fact that M8 is

significantly favored over M4 given the LR tests reported in Tables 2 and 3.

Tables 5 and 6 report the estimation results for models M0–M8 when errors are SGED. Similar

to what is seen in the results for the GST case, models M0–M8 perform better than the baseline

model N across the board. Models M0–M4 demonstrate statistically significant peakedness parameter

estimates across models and samples. The statistical evidence in favor of asymmetry-in-asymmetry is

quite strong in the full sample. Statistical evidence supporting asymmetry-in-asymmetry is more mixed

in the subsamples.

Our estimation results for models M5–M8 imply that, again, evidence in support of asymmetry-

in-asymmetry in the conditional skewness is quite strong for the full sample and in the subsamples.

In addition, there is significant support for asymmetry in the conditional kurtosis, where good news

reduces fat-tailedness. This is not surprising. Arrival of “good news” should reduce market uncertainty,

and hence conditional kurtosis. Based on the LR statistics, again model M8 is the preferred model in the

16



full sample and across the subsamples. It appears as if allowing for a rich, asymmetric parameterization

adds to model flexibility and hence its performance. It is worth noting that model M8 shares many

features with the celebrated Nelson (1991) EGARCH model. We find that in the 1990–99 and 2000–09

subsamples, models M6 and M8 are indistinguishable using LR tests. Based on BIC, model M6 is

preferred to M8 in these subsamples. However, as mentioned earlier, we base our judgment mainly on

full-sample results, where the LR test clearly picks M8 over M6 and M7.

Table 7 reports the results for Mincer-Zarnowitz predictive regressions where implied relative semi-

variance estimates are based on models with SGED errors. In the full sample, models M0–M2, M5

and M8 all have slope parameters that are statistically indistinguishable from one. Joint tests of both

slope and intercept parameters being different from one and zero, respectively, cannot be rejected for

the above models at the 5 percent confidence level for the full sample, and models M1 and M5 provide

the highest R2 of 24 percent. These specifications have ARCH-type time-varying conditional skewness

dynamics in common, but M5 nests M1 through the conditional kurtosis dynamics. However, neither

of these two models is preferred in any of the subsamples, since the hypothesis β1 = 1 is rejected at

conventional levels of confidence. Again, as mentioned earlier, we base our judgment mainly on full-

sample results, and model M1 would be the preferred specification, since it is more parsimonious and

slightly favored over M5 based on LR tests and BIC values in Tables 5 and 6. However, note that the

joint hypothesis β0 = 0 and β1 = 1 is not rejected for model M8, neither in the full sample with an R2

of 14 percent nor in the second and third subsamples with R2s of 7 percent and 16 percent, respectively.

In the first subsample, M8 is also the preferred model, with an R2 of 22 percent among all specifications

where the hypothesis β1 = 1 is not rejected. Then M8 would be the best model, should we extend our

model-selection criteria to subsample regression results and the need for fitting the excess-returns data

as well.

We report the estimation results for the binormal distribution model in Table 8. Since the standard-

ized binormal distribution is a one-parameter distribution, it does not allow for independent estimation

of conditional kurtosis. Thus, we estimate only models M0–M4 for the case of standardized binormal

distributed errors. Similar to the previous cases, we find significant supporting evidence for asymmetry-

in-asymmetry. Almost all estimated parameters are statistically different from zero. Based on the LR

statistics, M3 is the preferred model for the full sample. It allows for symmetric GARCH-type dynamics

in the conditional skewness measure. In the 1980–89 subsample, M3 remains the model of choice. In

the 1990–99 subsample, M4 is tied with M2 based on the LR test, but M2 is preferred to M4 based on

BIC. In the 2000–09 subsample, no model performs better than M0, which allows for constant λ and η.
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Table 9 reports model evaluation results through Mincer-Zarnowitz predictive regressions, for models

M0–M4 with standardized binormally distributed errors. Across the full sample, models M1, M2 and

M4 have estimated β1 parameters that are statistically indistinguishable from unity. M1 and M2 have

the highest R2 of 25 percent for the full sample. Once we consider subsamples, models M1 and M4

demonstrate similar performance; both models do not reject the hypothesis β1 = 1 in all subsamples

except 1980–89. However, based on our results reported in Table 8, we know that model M1 is preferred

over model M4 in fitting the excess-returns data. Thus, based on Mincer-Zarnowitz predictive regression

considerations, we choose M1, which allows for asymmetric ARCH-type dynamics in the conditional

skewness. Note, however, that although model M3 has an estimated β1 parameter of 0.9262 that is

statistically different from unity in the full sample, this value remains quite close to one. Furthermore,

β1 parameter estimates are not statistically different from one for model M3 in all subsamples. Given

these observations, once we accommodate the need for fitting the excess-returns data as well, we may

be tempted to choose M3 over M1 based on LR testing and similar predictive results.11

Comparing our results for the full sample across the three distributional assumptions, we observe

the following: (i) GST-based estimation results imply that Model 8, which allows for asymmetry in

both conditional skewness and kurtosis, performs better than alternative models studied in charac-

terizing excess-returns dynamics and in Mincer-Zarnowitz predictive regressions of parametric onto

non-parametric measures of relative downside semi-variances. (ii) SGED-based estimation results im-

ply that if we want both reasonable characterization of excess-returns dynamics and strong predictive

results for measuring RRSV, then our choice is M8, which allows for asymmetry in both conditional

skewness and kurtosis. However, if we are interested only in predictive power for the RRSV, then M1 is

the better choice. (iii) Binormal distribution-based estimation results, similar to the SGED case, lead

us to choose the parsimonious M1 for predictive purposes only. Once we decide to characterize excess-

returns dynamics as well, then we choose the more flexible M3, which allows for symmetric GARCH(1,

1)-type dynamics in the skewness process.

We derive our theoretical framework from the literature on realized volatility. Thus, in our testing

procedures, we follow that literature closely in that we are concerned with in-sample predictability and

not out-of-sample forecast ability. Thus, it appears that, strictly speaking, model M8 with SGED errors

provides estimated β1s that are statistically close to unity, delivers reasonable R2s and provides very

good in-sample characterization of excess-returns dynamics. We conclude that a model that allows for

asymmetric GARCH(1, 1)-type dynamics and a SGED is the overall preferred model. In addition, this

11χ2
2 critical values at 5 percent and 1 percent confidence levels are 5.99 and 9.21, respectively, while the

computed LR test statistic is over 11.
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model provides strong statistical support for asymmetry-in-asymmetry and asymmetry in conditional

kurtosis.

In quite a few cases, we could not reject a statistically significant positive difference between intercept

parameters β0 and 0. While the upward bias observed across models and distributions may seem

undesirable at first glance, we keep in mind that the vast literature on the information content of

implied volatility faces the same type of problem. Chernov (2007) addresses the bias issue by adding a

suitable predictor to the right-hand side of the predictive regression. It is possible that, by addressing

the possibility of a missing variable, predictive regressions may improve. However, since M8 coupled

with an SGED works well and is largely free of this bias, it is quite possible that this bias is due to

distributional assumptions. We will address this interesting issue in future research.

6 Conclusions

In this paper, we address an important gap in the recent and growing literature on conditional skew-

ness. In recent years, an increasing number of studies have addressed the importance of modelling

higher moments and how their dynamics affect financial risk-management procedures. We propose a

methodology to assess the model adequacy of the growing number of proposed parametric measures of

the conditional skewness.

We show that, theoretically, conditional skewness matters when a series demonstrates significant

relative semi-variance. We then propose a simple and intuitive non-parametric measure of relative

semi-variance, which we call realized relative semi-variance, in the spirit of the successful literature on

realized variance. We show that, under mild regularity conditions, parametric models of conditional

asymmetry approximate the realized relative semi-variance. We also show that our proposed measure

and methodology have close ties to the literature on realized variance, on the one hand, and to the

recent developments on realized semi-variance on the other.

We then study several parametric models of conditional skewness. Since the performance of the

parametric models of skewness crucially depends on the distributional assumptions, we study a range

of relevant distributional models, including the skewed generalized Student-t of Hansen (1994) and

Jondeau and Rockinger (2003), skewed GED, and binormal distribution in our previous work (Feunou

et al. 2013). We find statistically significant evidence in support of asymmetry-in-asymmetry, or the

so-called leverage effect in the conditional skewness, and strong support for asymmetric (G)ARCH-type

dynamics for both skewness and peakedness processes in the conditional distribution. We conclude

that, based on our results, the best model for conditional skewness is one that allows for asymmetric
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GARCH(1,1) dynamics and admits skewed GED errors, applied to both skewness and peakedness

processes in the conditional distribution of returns. This model shares many features with the well-

known EGARCH model of Nelson (1991).
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Appendix:

Proof of Proposition (2.2)

The set-up is similar to that of Andersen et al. (2003) (henceforth, ABDL (2003)). Proposition 1 of

ABDL (2003) permits a unique canonical decomposition of the logarithmic asset price process p =

(p (t))t∈[0,T ],

p (t) = p(0) +A(t) +M(t),

where A is a finite variation and predictable mean component, and M is a local martingale.

Let r (t, h) = p(t) − p(t − h) denote the continuously compounded return over [t− h, t]. The

cumulative returns process from t = 0 onward, r = (r(t))t∈[0,T ], is then r(t) ≡ r(t, t) = p (t) − p (0) =

A(t) +M(t).

Further assume that the mean process, {A(s)−A(t)}s∈[t,t+h], conditional on information at time t

is a predetermined function over [t, t+ h] .

An immediate result of this assumption is the Corollary 1, and hence equation (6) of ABDL (2003),

which establishes that

V ar (r(t+ h, h)|Ft) = E
(
[r, r]t+h − [r, r]t |Ft

)
.

In other words, the conditional variance equals the conditional expectation of the quadratic variation

of the returns process.

Denote the mode of the distribution of r(t+ h, h) conditional on Ft by m (t, h) . Let i (t+ h, h) =

1[r(t+h,h)≥m(t,h)] denote an indicator random process that takes 1 if the returns between [t, t+ h] are

greater than or equal to the conditional mode m (t, h) .

Since the mean process, {A(s)−A(t)}s∈[t,t+h], conditional on information at time t, is a predeter-

mined function over [t, t+ h] , without loss of generality, we omit A from this point onwards.
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We thus have

σ2
u (t, h) ≡ V ar (r(t+ h, h)|Ft, i (t+ h, h) = 1)

= V ar (M(t+ h)−M(t)|Ft, i (t+ h, h) = 1)

= V ar (M(t+ h)|Ft, i (t+ h, h) = 1)

= E
(
M(t+ h)2|Ft, i (t+ h, h) = 1

)
− {E (M(t+ h)|Ft, i (t+ h, h) = 1)}2

= E
(
[M,M ]t+h |Ft, i (t+ h, h) = 1

)
− {E (M(t+ h)|Ft, i (t+ h, h) = 1)}2

= E

(
[M,M ]t+h i (t+ h, h)

π (t, h)
|Ft
)
−
{
E

(
M(t+ h)i (t+ h, h)

π (t, h)
|Ft
)}2

,

where π (t, h) ≡ Pr [i (t+ h, h) = 1|Ft] .

Using Corollary 3 in Chapter II.6 of Protter (1992), where it is shown that E
(
M(t+ h)2

)
=

E
(
[M,M ]t+h

)
, we have

σ2
d (t, h) ≡ V ar (r(t+ h, h)|Ft, i (t+ h, h) = 1)

= E

(
[M,M ]t+h (1− i (t+ h, h))

1− π (t, h)
|Ft
)
−
{
E

(
M(t+ h) (1− i (t+ h, h))

1− π (t, h)
|Ft
)}2

,

and

σ2
u (t, h)− σ2

d (t, h)

= E

(
[M,M ]t+h i (t+ h, h)

π (t, h)
−

[M,M ]t+h (1− i (t+ h, h))

1− π (t, h)
|Ft
)

+

{
E

(
M(t+ h) (1− i (t+ h, h))

1− π (t, h)
|Ft
)}2

−
{
E

(
M(t+ h)i (t+ h, h)

π (t, h)
|Ft
)}2

σ2
u (t, h)− σ2

d (t, h)

=
1

π (t, h) (1− π (t, h))
E
(
[M,M ]t+h (i (t+ h, h)− π (t, h)) |Ft

)
− 1

π (t, h) (1− π (t, h))
E (M(t+ h) (i (t+ h, h)− π (t, h)) |Ft)×(

E

(
M(t+ h)

(
π (t, h)− π (t, h) i (t+ h, h) + i (t+ h, h)− i (t+ h, h)π (t, h)

π (t, h) (1− π (t, h))

)
|Ft
))

.

Since E [i (t+ h, h) |Ft] = π (t, h), we have

σ2
u (t, h)− σ2

d (t, h)

=
1

π (t, h) (1− π (t, h))
E
((

[M,M ]t+h − [M,M ]t
)

(i (t+ h, h)− π (t, h)) |Ft
)

− 1

π (t, h) (1− π (t, h))
E ((M(t+ h)−M (t)) (i (t+ h, h)− π (t, h)) |Ft)×(

E

(
M(t+ h)

(
(1− 2π (t, h))

π (t, h) (1− π (t, h))
(i (t+ h, h)− π (t, h)) + 2

)
|Ft
))
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σ2
u (t, h)− σ2

d (t, h)

=
1

π (t, h) (1− π (t, h))
E
((

[M,M ]t+h − [M,M ]t
)

(i (t+ h, h)− π (t, h)) |Ft
)

− 1

π (t, h) (1− π (t, h))
E ((M(t+ h)−M (t)) (i (t+ h, h)− π (t, h)) |Ft)×(

(1− 2π (t, h))

π (t, h) (1− π (t, h))
E ((M(t+ h)−M (t)) (i (t+ h, h)− π (t, h)) |Ft) + 2M(t)

)

σ2
u (t, h)− σ2

d (t, h)

=
1

π (t, h) (1− π (t, h))
E
((

[r, r]t+h − [r, r]t
)

(i (t+ h, h)− π (t, h)) |Ft
)

− 1

π (t, h) (1− π (t, h))
E (r(t+ h, h) (i (t+ h, h)− π (t, h)) |Ft)×(

(1− 2π (t, h))

π (t, h) (1− π (t, h))
E (r(t+ h, h) (i (t+ h, h)− π (t, h)) |Ft) + 2M(t)

)

(π (t, h) (1− π (t, h)))
(
σ2
u (t, h)− σ2

d (t, h)
)

= E
((

[r, r]t+h − [r, r]t
)

(i (t+ h, h)− π (t, h)) |Ft
)

−E (r(t+ h, h) (i (t+ h, h)− π (t, h)) |Ft)×(
(1− 2π (t, h))

π (t, h) (1− π (t, h))
E (r(t+ h, h) (i (t+ h, h)− π (t, h)) |Ft) + 2M(t)

)

(π (t, h) (1− π (t, h)))
(
σ2
u (t, h)− σ2

d (t, h)
)

= cov
(
[r, r]t+h − [r, r]t , i (t+ h, h) |Ft

)
−cov (r(t+ h, h), i (t+ h, h) |Ft)×(

(1− 2π (t, h))

π (t, h) (1− π (t, h))
cov (r(t+ h, h), i (t+ h, h) |Ft) + 2M(t)

)
.

Hence, two components drive the conditional skewness. The first component is the conditional

covariance between returns and the indicator variable that shows whether the market has an upward or

downward movement. The second component is the conditional covariance between the quadratic vari-

ation of returns and the same indicator variable. From this point on, we focus on the latter component,

since, as we show later in this appendix, it is driven by jumps in the returns. The former component is

the skewness induced by the instantaneous correlation between log-returns and volatility:

σ2
u (t, h)− σ2

d (t, h) ≈ 1

π (t, h) (1− π (t, h))
cov

(
[r, r]t+h − [r, r]t , i (t+ h, h) |Ft

)
.
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Let y(t+ h, h) ≡
(
y(1)(t+ h, h), y(2)(t+ h, h)

)′ ≡ ([r, r]t+h − [r, r]t , i (t+ h, h)
)′
.

From Corollary 1 of ABDL (2003), we have

cov
(
[r, r]t+h − [r, r]t , i (t+ h, h) |Ft

)
= E

([
y(1), y(2)

]
t+h
−
[
y(1), y(2)

]
t
|Ft
)
.

In other words, the conditional covariance between quadratic return variation and the upside in-

dicator equals the conditional expectation of the quadratic covariation between the quadratic return

variation and the upside indicator.

Proposition 2 of ABDL (2003) provides a consistent estimator of
[
y(1), y(2)

]
t
.

Recall that proposition: For an increasing sequence of random partitions of [0, T ], 0 = τm,0 ≤

τm,1 ≤ · · · , such that supj≥1 (τm,j+1 − τm,j) → 0 and supj≥1 τm,j → T for m → ∞ with probability

one, we have

lim
m→∞

∑
j≥1

[
y(1) (t ∧ τm,j)− y(1) (t ∧ τm,j−1)

] [
y(2) (t ∧ τm,j)− y(2) (t ∧ τm,j−1)

]→ [
y(1), y(2)

]
t
,

and thus we have

lim
m→∞


j̄t+h∑
j=j

¯t

(
[r, r]τm,j

− [r, r]τm,j−1

)
(i (τm,j)− i (τm,j−1))

→ [
y(1), y(2)

]
t+h
−
[
y(1), y(2)

]
t
,

where j
¯
t ≡ infτm,j≥t (j) , j̄t+h ≡ supτm,j≤t+h (j) and i (t) ≡ i (t, t) = 1[r(t)≥δ(t,0)].

Thus,
∑j̄t+h

j=j
¯t

(
[r, r]τm,j

− [r, r]τm,j−1

)
(i (τm,j)− i (τm,j−1)) is a measure of realized skewness.

We now simplify the derived realized skewness expression

[r, r]τm,j
− [r, r]τm,j−1

≈ (p (τm,j)− p (τm,j−1))
2
,

and we can show that

i (τm,j)− i (τm,j−1) = 1[p(τm,j)−p(τm,j−1)≥0] − 1[p(τm,j)−p(τm,j−1)≤0],

so that the measure of realized skewness becomes

j̄t+h∑
j=j

¯t

(p (τm,j)− p (τm,j−1))
2 [

1[p(τm,j)−p(τm,j−1)≥0] − 1[p(τm,j)−p(τm,j−1)≤0]

]
.

Thus, using Barndorff-Nielsen et al.’s (2010) (henceforth, BKS (2010)) notation, we have shown

that the realized skewness is the difference between the upside realized semi-variance (RS+) and the

downside realized semi-variance (RS−):
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RS+ (t+ h, h) =

j̄t+h∑
j=j

¯t

(p (τm,j)− p (τm,j−1))
2

1p(τm,j)−p(τm,j−1)≥0

RS− (t+ h, h) =

j̄t+h∑
j=j

¯t

(p (τm,j)− p (τm,j−1))
2

1p(τm,j)−p(τm,j−1)≤0.

To recap, we have

σ2
u (t, h)− σ2

d (t, h) ≈ 1

π (t, h) (1− π (t, h))
E
(
RS+ (t+ h, h)−RS− (t+ h, h) |Ft

)
.

Further using BKS (2010) results, we can provide more insight into the sources of conditional

skewness. BKS (2010) show that

RS+ (t+ h, h)−RS− (t+ h, h)→
t+h∑
t

(∆ps)
2

[1∆ps≥0 − 1∆ps≤0] ,

where ∆ps ≡ p (s) − p (s−) is the jump at time s. Hence positive skewness is driven by the fact that

positive jump amplitudes are higher than negative amplitudes, whereas negative skewness is driven by

the fact that negative jump amplitudes are higher than positive amplitudes.
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Figure 1: Realized volatility and realized relative semi-variance for S&P 500 returns, 1986–2009
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In this figure we plot realized variance and realized relative semi-variance for S&P 500 returns, sampled at 15-minute
frequency. To provide a more informative illustration, we plot daily realized volatilities and the end of the month realized
relative semi-variance (every 22nd observation is plotted) values.

Figure 2: Skewness-Kurtosis Boundary for Skewed Generalized Student-t, Skewed GED and
Binormal Distributions
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This figure depicts the skewness-kurtosis boundaries for Hansen (1994) skewed generalized Student-t distribution and
skewed GED against the theoretical boundary implied by Theorem 12.a, page 134 of Widder (1946). The theoretical
boundary is obtained from µ23 < µ4 − 1 with µ4 > 0, where µ3 = E(z3t ) and µ4 = E(z4t ) are the non-centered third and
fourth moments of a random variable {zt}∞t=0.
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Figure 3: Impact of Skewness and Peakedness Parameters on Skewness and Kurtosis Surfaces
for Skewed Generalized Student-t Distribution
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This figure shows the contribution of the skewness, λ, and peakedness parameter, η, in generating skewness (top panel)
and kurtosis (bottom panel) surfaces for the skewed generalized Student-t distribution of Hansen (1994). The range of
parameters is chosen such that they do not violate the skewness-kurtosis boundary.

Figure 4: Impact of Skewness and Peakedness Parameters on Skewness and Kurtosis Surfaces
for Skewed Generalized Error Distribution
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This figure shows the contribution of the skewness, λ, and peakedness parameter, η, in generating skewness (top panel)
and kurtosis (bottom panel) surfaces for the skewed generalized error distribution (SGED). The range of parameters is
chosen such that they do not violate the skewness-kurtosis boundary.
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Table 1: Summary Statistics of the Data

Panel A: Descriptive Statistics, Excess Returns
Return Series Mean (%) Std. Dev. (%) Skewness Kurtosis J-B p-Value

S&P 500 3.48 21.94 -1.24 31.87 0.01
Panel B: Descriptive Statistics, Relative downside semi-variance

RSV (%) Std. Dev. (%) Skewness Kurtosis J-B p-Value
S&P 500 (NP) 1.84 8.71 1.21 16.36 0.01

The top panel of this table reports summary statistics of excess returns. Calculation of the returns is based on subtracting
the daily 3-month U.S. Treasury bill rate from the log difference of the market total return index. Mean of excess returns
and standard deviations are reported as annualized percentages. Excess kurtosis values are reported. The column titled
“J-B p-Value” reports p-values of Jarque and Bera (1980) tests of normality in percentages. The bottom panel reports
the computed statistics of the observed relative semi-variance (RSV) in the data. Reported RSV is based on the mean
difference between filtered downside and upside semi-variances. The first column reports the annualized RSV, and the
second column is the standard deviation of this quantity. Due to availability of high-frequency data for S&P 500 returns,
we report the non-parametric estimate for relative downside semi-variance for the United States denoted as S&P 500
(NP), based on 15-minute returns. The sample period is January 1980 to September 2010. Source: Thomson Reuters
Datastream and FRED II data bank at the Federal Reserve Bank of St. Louis.
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Table 2: Estimation Results for the Conditional Skewness Dynamics with Generalized Student-
t Distribution (1)

N M0 M1 M2 M3 M4 M5 M6 M7 M8

1980-2009
κ0 -0.1047* -0.1050* -0.1147* -0.0327* -0.0594* -0.1109* -0.1246* -0.0324* -0.0655*

(0.0298) (0.0296) (0.0428) (0.0136) (0.0282) (0.0297) (0.0435) (0.0128) (0.0286)
κ1+ 0.1070* 0.1222* 0.1080* 0.1511* 0.1144* 0.1211* 0.1208* 0.1584*

(0.0253) (0.0544) (0.0224) (0.0459) (0.0260) (0.0486) (0.0220) (0.0443)
κ1− 0.0981* 0.0814* 0.0840* 0.0716*

(0.0385) (0.0312) (0.0426) (0.0353)
κ2 0.6593* 0.6590* 0.6694* 0.6643*

(0.0955) (0.0915) (0.0823) (0.0902)
γ0 -1.4635* -1.4464* -1.4450* -1.4660* -1.4663* -1.4762* -1.0870* -0.7289* -0.4997*

(0.1159) (0.1364) (0.1368) (0.1365) (0.1361) (0.1567) (0.1594) (0.1737) (0.1947)
γ1+ -0.5805* -1.0077* -0.6848* -0.9800*

(0.1898) (0.1191) (0.1283) (0.1092)
γ1− 0.2368* 0.1909*

(0.0943) (0.0762)
γ2 0.5119* 0.4309*

(0.1097) (0.1158)
Log L 24639.4 24837.7 24846.0 24846.1 24852.4 24853.1 24849.1 24867.8 24861.6 24878.7

LR Stat 396.60* 16.60* 0.20 NA 1.40 NA 37.40* NA 34.20*
BIC -3.2494 -3.2732 -3.2731 -3.2720 -3.2728 -3.2717 -3.2724 -3.2725 -3.2716 -3.2715

1980-1989
κ0 -0.0157 -0.0129 -0.0307 -0.0022 -0.0133 -0.0110 -0.0678 -0.0018 -0.0326

(0.0546) (0.0517) (0.0732) (0.0168) (0.0407) (0.0512) (0.0731) (0.0165) (0.0493)
κ1+ 0.0853 0.1120 0.0864* 0.1056 0.0783 0.1446 0.0760* 0.1282

(0.0444) (0.0902) (0.0341) (0.0728) (0.0462) (0.0947) (0.0357) (0.0845)
κ1− 0.0670 0.0767 0.0073 0.0481

(0.0706) (0.0469) (0.0646) (0.0598)
κ2 0.6741* 0.6702* 0.6777* 0.6617*

(0.1566) (0.1557) (0.1681) (0.1757)
γ0 -1.8280* -1.7839* -1.7848* -1.7891* -1.7887* -1.7515* -1.5049* -0.0407 -0.6140

(0.2053) (0.2007) (0.2006) (0.2012) (0.2011) (0.2128) (0.2418) (0.0219) (0.4645)
γ1+ 0.0591 -0.6017* 0.0510 -0.5835*

(0.0941) (0.1869) (0.0294) (0.1680)
γ1− 0.2116 0.1201

(0.1321) (0.1017)
γ2 0.9779* 0.5330*

(0.0121) (0.2576)
Log L 8190.1 8308.4 8310.1 8310.2 8312.4 8312.5 8310.3 8313.8 8314.2 8316.4

LR Stat 236.60* 3.40 0.20 NA 0.20 NA 7.00* NA 4.40
BIC -3.2268 -3.2674 -3.2650 -3.2619 -3.2628 -3.2597 -3.2620 -3.2571 -3.2573 -3.2519

This table reports the estimated parameters of λ̃ and η̃ as in equation (10), and where innovations follow a skewed
GST process as in Hansen (1994). N represents the baseline normally distributed errors case. Models M0 to M8

represent equations (14) to (21), respectively. To save space, we report estimated values for κ1 and κ1+ on the same row.
Estimated standard errors are reported in parentheses, below the estimated parameters. “Log L” represents the computed
log likelihood function. We report likelihood ratio test statistics, “LR Stat,” with respect to the preceding model. “NA”
implies that the models are non-nested, and thus the LR test statistic is not computed. All models are preferred to the
benchmark normal model, based on the likelihood ratio test. Thus, we do not report these test statistics. * represents
rejection of the null hypothesis in question at the 5% confidence level. “BIC” represents Bayesian information criteria for
the estimated models.
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Table 3: Estimation Results for the Conditional Skewness Dynamics with Generalized Student-
t Distribution (2)

N M0 M1 M2 M3 M4 M5 M6 M7 M8

1990-1999
κ0 -0.0643 -0.0582 -0.1636* -0.0090 -0.0788 -0.0527 -0.1666* -0.0022 -0.1037

(0.0515) (0.0516) (0.0769) (0.0156) (0.0538) (0.0508) (0.0770) (0.0154) (0.0533)
κ1+ 0.1503* 0.3335* 0.1488* 0.2739* 0.1572* 0.3567* 0.1614* 0.3524*

(0.0457) (0.1101) (0.0377) (0.0982) (0.0415) (0.1040) (0.0339) (0.0957)
κ1− 0.0596 0.0949 0.0686 0.0946

(0.0683) (0.0509) (0.0696) (0.0528)
κ2 0.7029* 0.6455* 0.6945* 0.5963*

(0.1141) (0.1341) (0.0990) (0.1210)
γ0 -1.5922* -1.5691* -1.5289* -1.6366* -1.6053* -1.6505* -1.1899* -0.6799* -0.1532

(0.2022) (0.2221) (0.2297) (0.2164) (0.2221) (0.2274) (0.2842) (0.1876) (0.2080)
γ1+ -0.7164* -1.1082* -0.7516* -1.1332*

(0.2075) (0.2077) (0.1571) (0.1588)
γ1− 0.2026 0.1884

(0.2201) (0.1723)
γ2 0.6061* 0.6387*

(0.0957) (0.0920)
Log L 8628.3 8687.3 8692.8 8694.6 8697.6 8698.8 8696.6 8702.7 8706.6 8714.3

LR Stat 118.00* 11.00* 3.60 NA 2.40 NA 12.20* NA 15.40*
BIC -3.3989 -3.4161 -3.4151 -3.4127 -3.4139 -3.4113 -3.4135 -3.4097 -3.4113 -3.4081

2000-2009
κ0 -0.2392* -0.2404* -0.1073 -0.1069 -0.1131 -0.2593* -0.0932 -0.0897 -0.1127

(0.0530) (0.0530) (0.0835) (0.0972) (0.1023) (0.0530) (0.0805) (0.0877) (0.1090)
κ1+ 0.0762 -0.0945 0.0818 -0.0977 0.0359 -0.1622 0.0570 -0.1522

(0.0521) (0.0983) (0.0509) (0.1025) (0.0491) (0.0904) (0.0422) (0.0935)
κ1− 0.2391* 0.2392* 0.2398* 0.2475*

(0.0952) (0.0959) (0.0820) (0.1006)
κ2 0.5504 -0.0306 0.6375 -0.1292

(0.3974) (0.2909) (0.3412) (0.2886)
γ0 -0.2152* -0.2614* -0.3293* -0.2537* -0.3307* 0.3538* 0.2914* -0.0378 -0.4276

(0.0546) (0.0560) (0.0741) (0.0625) (0.0713) (0.1140) (0.1363) (0.2236) (0.4257)
γ1+ -2.0265* -1.9913* -1.9479* -1.7840*

(0.2790) (0.2322) (0.2298) (0.2403)
γ1− 0.7292* -4.0525

(0.1026) (3.5040)
γ2 0.4158* 0.3005

(0.0875) (0.1588)
Log L 7866.4 7890.5 7891.7 7893.8 7892.1 7893.9 7910.2 7916.2 7916.5 7919.5

LR Stat 48.20* 2.40 4.20 NA 3.60 NA 12.00* NA 6.00*
BIC -3.1109 -3.1143 -3.1116 -3.1094 -3.1087 -3.1063 -3.1159 -3.1121 -3.1122 -3.1072

This table reports the estimation results for the 1990–99 and 2000–09 subsamples. Refer to the notes to Table 2 for more
information.
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Table 4: Evaluating the Conditional Relative Downside Variance with Generalized Student-t
Distribution

M0 M1 M2 M3 M4 M5 M6 M7 M8

1980-2009
β0 -3.016E-06 -1.16E-05* -1.16E-05* -1.81E-05* -1.72E-05* -1.19E-05* -1.33E-05* -1.96E-05* -1.91E-05*

(2.229E-06) (1.86E-06) (1.87E-06) (2.73E-06) (1.94E-06) (1.87E-06) (1.85E-06) (1.94E-06) (1.93E-06)
β1 2.4336* 1.5751* 1.5727* 0.9441* 1.0250 1.5274* 1.4075* 0.8826* 0.9819

(0.0839) (0.0338) (0.0345) (0.0251) (0.0277) (0.0338) (0.0304) (0.0244) (0.0497)
R2 0.1226 0.2655 0.2568 0.1905 0.1858 0.2538 0.2631 0.1788 0.1877
JT 292.89* 309.64* 295.44* 48.692* 79.044* 284.57* 231.66* 125.66* 98.71*
1980-1989
β0 -1.37E-06 -8.69E-07 -8.90E-08 -9.59E-06 -6.36E-06 -3.08E-07 -2.74E-06 -1.09E-05 -7.90E-06

(1.17E-05) (7.96E-06) (8.07E-06) (9.40E-06) (6.64E-06) (5.70E-06) (5.53E-06) (6.72E-06) (6.50E-06)
β1 2.0431* 1.7049* 1.7341* 0.8763* 1.0070 1.6928* 1.4798* 0.8189* 0.9870*

(0.2120) (0.0534) (0.0556) (0.0414) (0.0468) (0.1086) (0.0450) (0.0402) (0.0395)
R2 0.0868 0.5106 0.4988 0.3145 0.3215 0.0543 0.5254 0.2980 0.3460
JT 24.22* 174.24* 174.30* 9.974* 0.938 162.75* 113.90* 22.091* 1.585
1990-1999
β0 1.88E-06 -1.33E-05* -1.32E-05* -1.34E-05* -1.32E-05* -1.35E-05* -1.38E-05* -1.47E-05* -1.47E-05*

(4.33E-06) (3.20E-06) (3.21E-06) (3.05E-06) (2.17E-06) (2.26E-06) (2.27E-06) (2.12E-06) (2.14E-06)
β1 3.2425* 1.1276 1.1382 1.0224 1.0422 1.0847 1.0366 0.9304* 1.0414

(0.3154) (0.1386) (0.1387) (0.1015) (0.1061) (0.1355) (0.1352) (0.0964) (0.1005)
R2 0.0403 0.0256 0.0260 0.0388 0.0369 0.0248 0.0228 0.0357 0.0318
JT 50.740* 18.136* 17.94* 19.27* 37.18* 36.18* 37.25* 48.48* 47.01*
2000-2009
β0 -1.55E-06 -4.05E-06 -8.24E-06 -7.45E-06 -8.15E-06* -3.63E-07 -9.52E-06* -2.20E-06 -7.14E-06*

(5.05E-06) (4.88E-06) (4.72E-06) (4.88E-06) (3.33E-06) (3.53E-06) (3.37E-06) (3.51E-06) (3.37E-06)
β1 1.2052* 1.0808 0.9579 0.9489 0.9637 1.0791 0.8153* 1.0192 0.9872

(0.0501) (0.0426) (0.0366) (0.0394) (0.0367) (0.0428) (0.0326) (0.0410) (0.0362)
R2 0.1880 0.2046 0.2151 0.1882 0.2165 0.2023 0.2006 0.1980 0.2113
JT 16.91* 4.296 4.379 4.012 6.693* 3.422 40.18* 0.611 4.613

This table reports Mincer-Zarnowitz regression results from RV d
t+1 (h) − RV u

t+1 (h) = β0 +
β1 (V art [rt+1|rt+1 < mt]− V art [rt+1|rt+1 > mt]), where error terms in the parametric model follow a skewed
Student-t distribution. * indicates rejection of the null hypothesis that βi = i, i = 0, 1 at the 5% confidence level or
better. JT represents the value of the test statistic built under the null hypothesis that β0 and β1 are jointly equal to 0
and 1, respectively. * and † denote the rejection of this null hypothesis at the 5 and 10% confidence levels, respectively.
The critical values for this test are 5.991 and 4.605, respectively, based on χ2

df=2.
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Table 5: Estimation Results for the Conditional Skewness Dynamics with Skewed GED(1)

N M0 M1 M2 M3 M4 M5 M6 M7 M8

1980-2009
κ0 -0.1347* -0.1317* -0.1355* -0.0450* -0.0764* -0.1316* -0.1370* -0.0449* -0.0997*

(0.0293) (0.0270) (0.0346) (0.0150) (0.0257) (0.0268) (0.0277) (0.0150) (0.0273)
κ1+ 0.1218* 0.1281* 0.1234* 0.1717* 0.1221* 0.1244* 0.1236* 0.1944*

(0.0211) (0.0402) (0.0186) (0.0393) (0.0185) (0.0293) (0.0151) (0.0305)
κ1− 0.1188* 0.0948* 0.1195* 0.0751*

(0.0314) (0.0323) (0.0129) (0.0274)
κ2 0.6347* 0.6226* 0.6355* 0.5666*

(0.0830) (0.0714) (0.0799) (0.0936)
γ0 0.3199* 0.3215* 0.3216* 0.3174* 0.3168* 0.3221* 0.4620* 0.3184* 0.3730*

(0.0070) (0.0071) (0.0071) (0.0071) (0.0070) (0.0225) (0.0229) (0.0573) (0.0454)
γ1+ 0.0034 -0.2414* -0.0024 -0.2345*

(0.0186) (0.0373) (0.0216) (0.0386)
γ1− 0.1280* 0.1268*

(0.0177) (0.0216)
γ2 -0.0053 0.2492*

(0.1669) (0.1053)
Log L 24639.4 24824.0 24838.7 24838.7 24848.1 24848.9 24838.7 24859.0 24848.1 24869.7

LR Stat 369.20* 29.40* 0.00 NA 1.60 NA 40.60* NA 43.20*
BIC -3.2494 -3.2714 -3.2722 -3.2710 -3.2722 -3.2711 -3.2710 -3.2713 -3.2698 -3.2704

1980-1989
κ0 -0.0767 -0.0525 -0.0193 -0.0202 -0.0030 -0.0419 -0.0958 -0.0199 -0.0761

(0.0513) (0.0505) (0.0695) (0.0176) (0.0294) (0.0382) (0.0724) (0.0144) (0.0392)
κ1+ 0.1111* 0.0717 0.1146* 0.0881* 0.0856* 0.1085* 0.0962* 0.1565*

(0.0395) (0.0559) (0.0255) (0.0241) (0.0399) (0.0430) (0.0237) (0.0421)
κ1− 0.1424* 0.1263* 0.0279 0.0334

(0.0518) (0.0279) (0.0434) (0.0506)
κ2 0.5797* 0.5741* 0.5613* 0.5535*

(0.1352) (0.1435) (0.1610) (0.2190)
γ0 0.3210* 0.2508* 0.2507* 0.2527* 0.2510* 0.2743* 0.3873* 0.1348 0.2560*

(0.0113) (0.0090) (0.0089) (0.0090) (0.0090) (0.0377) (0.0499) (0.1313) (0.0941)
γ1+ 0.0648* -0.1384* 0.0423 -0.1223*

(0.0290) (0.0662) (0.0259) (0.0645)
γ1− 0.1563* 0.1291*

(0.0379) (0.0355)
γ2 0.5072 0.4137

(0.4725) (0.2611)
Log L 8190.1 8290.8 8295.3 8295.6 8299.0 8299.2 8298.3 8303.6 8301.3 8305.8

LR Stat 201.40* 9.00* 0.60 NA 0.40 NA 10.60* NA 9.00*
BIC -3.2268 -3.2604 -3.2591 -3.2561 -3.2575 -3.2544 -3.2572 -3.2531 -3.2522 -3.2478

This table reports the estimated parameters of λ̃ and η̃ as in equation (11), and where innovations follow a skewed
GED. N represents the baseline normally distributed errors case. Models M0 to M8 represent equations (14) to (21),
respectively. To save space, we report estimated values for κ1 and κ1+ on the same row. Estimated standard errors are
reported in parentheses, below the estimated parameters. “Log L” represents the computed log likelihood function. We
report likelihood ratio test statistics, “LR Stat,” with respect to the preceding model. “NA” implies that the models are
non-nested, and thus the LR test statistic is not computed. All models are preferred to the benchmark normal model,
based on the likelihood ratio test. Thus, we do not report these test statistics. * represents rejection of the null hypothesis
in question at the 5% confidence level. “BIC” represents Bayesian information criteria for the estimated models.
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Table 6: Estimation Results for the Conditional Skewness Dynamics with Skewed GED (2)

N M0 M1 M2 M3 M4 M5 M6 M7 M8

1990-1999
κ0 -0.0767 -0.0845* -0.1917* -0.0121 -0.0977* -0.0827 -0.1934* -0.0123 -0.1486*

(0.0518) (0.0462) (0.0571) (0.0182) (0.0435) (0.0469) (0.0650) (0.0097) (0.0347)
κ1+ 0.1631* 0.3541* 0.1614* 0.3099* 0.1632* 0.3862* 0.1607* 0.4361*

(0.0387) (0.0571) (0.0374) (0.0722) (0.0346) (0.0673) (0.0142) (0.0385)
κ1− 0.0757 0.1046* 0.1095* 0.1175*

(0.0582) (0.0381) (0.0456) (0.0282)
κ2 0.7051* 0.5881* 0.7141* 0.4931*

(0.1130) (0.1464) (0.0617) (0.0656)
γ0 0.3210* 0.3154* 0.3218* 0.2896* 0.2987* 0.3054* 0.4211* 0.5355* 0.2802*

(0.0123) (0.0121) (0.0124) (0.0116) (0.0117) (0.0390) (0.0512) (0.0743) (0.0592)
γ1+ -0.0412 -0.2250* -0.0459* -0.2925*

(0.0388) (0.0692) (0.0212) (0.0609)
γ1− 0.0791 0.1180*

(0.0624) (0.0428)
γ2 -0.8665* 0.5614*

(0.0555) (0.1392)
Log L 8628.3 8684.1 8692.9 8695.4 8699.5 8701.1 8693.4 8699.5 8702.2 8710.0

LR Stat 111.60* 17.60* 5.00 NA 3.20 NA 12.20* NA 15.60*
BIC -3.3989 -3.4148 -3.4151 -3.4131 -3.4147 -3.4122 -3.4123 -3.4085 -3.4096 -3.4064

2000-2009
κ0 -0.2635* -0.2622* -0.1409 -0.1136 -0.1457 -0.2552* -0.1326* -0.0878 -0.1361

(0.0492) (0.0455) (0.0767) (0.0951) (0.0924) (0.0508) (0.0661) (0.0650) (0.1137)
κ1+ 0.0798 -0.0695 0.0857 -0.0713 0.0536 -0.1378* 0.0779 -0.1522*

(0.0451) (0.0791) (0.0478) (0.0617) (0.0668) (0.0337) (0.0615) (0.0531)
κ1− 0.2265* 0.2271* 0.1903* 0.2181*

(0.0997) (0.0922) (0.0734) (0.0667)
κ2 0.5586 -0.0239 0.6498* -0.1111

(0.3577) (0.2454) (0.2383) (0.1505)
γ0 0.4713* 0.4646* 0.4589* 0.4655* 0.4588* 0.4678* 0.6886* 0.2559* 0.6867*

(0.0199) (0.0197) (0.0193) (0.0197) (0.0193) (0.0418) (0.0403) (0.1258) (0.0939)
γ1+ -0.1262* -0.4590* -0.1286* -0.4716*

(0.0515) (0.0624) (0.0474) (0.0640)
γ1− 0.2288* 0.2476*

(0.0297) (0.0277)
γ2 0.4427 0.0302

(0.2648) (0.1816)

Log L 7866.4 7893.4 7895.0 7896.9 7895.6 7896.9 7898.1 7919.5 7899.9 7919.6
LR Stat 54.00* 3.20 3.80 NA 2.60 NA 42.80* NA 39.40*

BIC -3.1109 -3.1154 -3.1130 -3.1106 -3.1101 -3.1075 -3.1111 -3.1134 -3.1056 -3.1072

This table reports the estimation results for the 1990–99 and 2000–09 subsamples. Refer to the notes to Table 5 for more
information.
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Table 7: Evaluating the Conditional Relative Downside Variance with Skewed GED

M0 M1 M2 M3 M4 M5 M6 M7 M8

1980-2009
β0 -2.99E-06 -2.36E-06 -2.44E-06 -9.72E-06* -7.80E-06* -2.41E-06 4.17E-06* -9.80E-06* 2.02E-06

(3.25E-06) (2.79E-06) (2.80E-06) (2.80E-06) (2.03E-06) (1.97E-06) (2.09E-06) (1.98E-06) (2.26E-06)
β1 1.0033 0.9702 0.9614 0.7091* 0.6974* 0.9694 0.6680* 0.7071* 0.9604

(0.0380) (0.0226) (0.0226) (0.0186) (0.0191) (0.0225) (0.0167) (0.0186) (0.0423)
R2 0.1037 0.2352 0.2320 0.1948 0.1811 0.2359 0.2100 0.1942 0.1376
JT 0.856 2.468 3.698 256.62* 265.82* 3.343 399.22* 273.80* 0.886
1980-1989
β0 -1.65E-06 1.61E-05† 1.63E-05† 1.21E-06 6.81E-06 1.59E-05* 3.54E-05* 1.07E-06 3.91E-05*

(1.23E-05) (8.85E-06) (8.90E-06) (9.65E-06) (6.99E-06) (6.24E-06) (6.75E-06) (6.84E-06) (1.17e-05)
β1 0.84525 1.2084* 1.2036* 0.7324* 0.7736* 1.2065* 0.9007* 0.9928 1.0314

(0.1094) (0.0447) (0.0450) (0.0357) (0.0391) (0.0444) (0.0358) (0.0357) (0.0311)
R2 0.0577 0.4285 0.4226 0.3013 0.2860 0.4306 0.3930 0.2996 0.2199
JT 2.021 25.07* 23.80* 56.20* 34.49* 28.16* 32.19* 0.066 12.18*
1990-1999
β0 2.58E-06 -7.73E-06* -7.66E-06* -8.75E-06* -7.50E-06* -7.80E-06* -4.78E-06 -8.76E-06* -1.94E-06

(4.61E-06) (3.58E-06) (3.58E-06) (3.31E-06) (3.43E-06) (5.05E-06) (4.13E-06) (3.31E-06) (4.59E-06)
β1 1.3910† 0.7908† 0.7889† 0.7286* 0.7109* 0.7880* 0.9537 0.7280* 0.9849

(0.2051) (0.1210) (0.1209) (0.097) (0.0970) (0.1210) (0.0950) (0.0970) (0.0690)
R2 0.0353 0.0323 0.0327 0.0432 0.0413 0.0325 0.0259 0.0432 0.0244
JT 3.946 7.636* 7.622* 14.87* 13.74* 7.820* 1.575 14.95* 0.228
2000-2009
β0 -1.35E-06 -1.17E-05* -1.19E-05* -1.56E-05* -1.58E-05* -1.18E-05* -6.39E-06 -1.57E-05* -8.05E-06

(5.24E-06) (4.89E-06) (4.90E-06) (4.85E-06) (4.92E-06) (4.89E-06) (5.13E-06) (4.85E-06) (5.34E-06)
β1 1.0932 0.7952* 0.7859* 0.6909* 0.6314* 0.7942* 1.0512 0.9156 0.9531

(0.0705) (0.0500) (0.0500) (0.0460) (0.0440) (0.0500) (0.0517) (0.0465) (0.0520)
R2 0.1612 0.1654 0.1636 0.1549 0.1414 0.1653 0.1535 0.1548 0.1606
JT 1.814 22.22* 24.14* 56.33* 80.56* 22.49* 3.505 13.89* 3.085

This table reports Mincer-Zarnowitz regression results from RV d
t+1 (h) − RV u

t+1 (h) = β0 +
β1 (V art [rt+1|rt+1 < mt]− V art [rt+1|rt+1 > mt]), where error terms in the parametric model follow a skewed
Student-t distribution. * indicates rejection of the null hypothesis that βi = i, i = 0, 1 at the 5% confidence level or
better. JT represents the value of the test statistic built under the null hypothesis that β0 and β1 are jointly equal to 0
and 1, respectively. * and † denote the rejection of this null hypothesis at the 5 and 10% confidence levels, respectively.
The critical values for this test are 5.991 and 4.605, respectively, based on χ2

df=2.
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Table 8: Estimation Results for the Conditional Skewness Dynamics with Binormal Distribu-
tion

N M0 M1 M2 M3 M4

1980-2009
κ0 -0.2435* -0.1853* -0.1989* -0.0955* -0.1127*

(0.0329) (0.0299) (0.0438) (0.0237) (0.0380)
κ1+ 0.2055* 0.2342* 0.1819* 0.2143*

(0.0272) (0.0729) (0.0252) (0.0607)
κ1− 0.1948* 0.1687*

(0.0375) (0.0338)
κ2 0.4187* 0.4128*

(0.0960) (0.0953)
Log L 24639.4 24667.0 24692.3 24692.4 24697.8 24698.1

LR Stat 55.20* 50.60* 0.20 NA 0.60
BIC -3.2494 -3.2530 -3.2552 -3.2540 -3.2547 -3.2536

1980-1989
κ0 -0.2022* -0.1182* -0.0595 -0.0689* 0.0071

(0.0543) (0.0482) (0.0766) (0.0306) (0.0543)
κ1+ 0.2709* 0.1556 0.2291* 0.0922

(0.0436) (0.1211) (0.0400) (0.0910)
κ1− 0.3230* 0.2883*

(0.0758) (0.0633)
κ2 0.3750* 0.4270*

(0.1203) (0.1180)
Log L 8190.1 8197.5 8213.7 8214.2 8216.7 8218.0

LR Stat 14.80* 32.40* 1.00 NA 2.60
BIC -3.2268 -3.2296 -3.2330 -3.2301 -3.2311 -3.2285

1990-1999
κ0 -0.2211* -0.1529* -0.3460* -0.0864 -0.2925*

(0.0579) (0.0524) (0.0799) (0.0446) (0.0880)
κ1+ 0.2079* 0.6721* 0.1861* 0.5903*

(0.0440) (0.1424) (0.0432) (0.1516)
κ1− 0.0626 0.0683

(0.0712) (0.0658)
κ2 0.3643 0.1669

(0.2108) (0.1573)
Log L 8628.3 8635.7 8644.7 8649.8 8646.0 8650.4

LR Stat 14.80* 18.00* 10.20* NA 8.80*
BIC -3.3989 -3.4018 -3.4023 -3.4012 -3.3997 -3.3983

2000-2009
κ0 -0.3209* -0.3029* -0.1736 -0.1140 -0.1826

(0.0618) (0.0593) (0.0947) (0.0855) (0.1288)
κ1+ 0.0881 -0.1279 0.0919 -0.1307

(0.0640) (0.1402) (0.0556) (0.1451)
κ1− 0.2270* 0.2279*

(0.1026) (0.1034)
κ2 0.5806* -0.0325

(0.2780) (0.3113)
Log L 7866.4 7879.6 7880.6 7882.1 7881.3 7882.1

LR Stat 26.40* 2.00 3.00 NA 1.60
BIC -3.1109 -3.1162 -3.1135 -3.1109 -3.1106 -3.1078

This table reports the estimated parameters of λ̃, where λ̃ = − ln[
√
π/2− 1λ + 1] and innovations follow a binormal

distribution. N represents the baseline normally distributed errors case. Models M0 to M4 represent equations (14) to
(17), respectively. To save space, we report estimated values for κ1 and κ1+ on the same row. Estimated standard errors
are reported in parentheses, below the estimated parameters. “Log L” represents the computed log likelihood function.
We report likelihood ratio test statistics, “LR Stat,” with respect to the preceding model. “NA” implies that the models
are non-nested, and thus the LR test statistic is not computed. All models are preferred to the benchmark normal model,
based on the likelihood ratio test. Thus, we do not report these test statistics. * represents rejection of the null hypothesis
in question at the 5% confidence level. “BIC” represents Bayesian information criteria for the estimated models.
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Table 9: Evaluating the Conditional Relative Downside Variance for Binormal Distribution
M0 M1 M2 M3 M4

1980-2009

β0 -2.30E-06 -1.06E-05* -1.09E-05* -1.36E-05* -1.35E-05*
(3.13E-06) (2.66E-06) (2.67E-06) (2.72E-06) (1.93E-06)

β1 1.5177* 1.1317 1.1199 0.9262* 0.9371
(0.0502) (0.0849) (0.0752) (0.0229) (0.0435)

R2 0.1320 0.2549 0.2474 0.2133 0.2096
JT 107.11* 18.03* 19.19* 35.17* 50.93*

1980-1989

β0 5.70E-06 -9.84E-06 -1.05E-05 -1.06E-05 -1.30E-05
(1.11E-05) (8.08E-06) (7.86E-06) (9.04E-06) (6.53E-06)

β1 2.0913* 1.2928* 1.2435* 0.9860 0.7991*
(0.1570) (0.0423) (0.0386) (0.0419) (0.0362)

R2 0.1537 0.4884 0.5148 0.3620 0.3334
JT 48.58* 49.38* 41.57* 1.488 34.86*

1990-1999

β0 9.24E-07 -1.44E-05* -1.85E-05* -1.34E-05* -1.79E-05*
(4.24E-06) (3.10E-06) (2.93E-06) (3.07E-06) (2.09E-06)

β1 2.2048* 0.8565 0.5137* 0.9437 1.1143
(0.2150) (0.1029) (0.0806) (0.0975) (0.0856)

R2 0.0401 0.0268 0.0158 0.0359 0.0182
JT 31.46* 23.52* 76.39* 19.43* 75.47*

2000-2009

β0 -1.26E-06 -3.28E-06 -5.06E-06 -6.55E-06 -4.97E-06
(5.05E-06) (4.90E-06) (4.76E-06) 4.88E-06 (3.36E-06)

β1 1.1713* 1.0719 0.9981 0.9395 1.0034
(0.0485) (0.0424) (0.0374) (0.0385) (0.0374)

R2 0.1888 0.2037 0.2217 0.1919 0.2231
JT 12.54* 3.327 1.134 4.270 2.192

This table reports Mincer-Zarnowitz regression results from RV d
t+1 (h) − RV u

t+1 (h) = β0 +
β1 (V art [rt+1|rt+1 < mt]− V art [rt+1|rt+1 > mt]), where error terms in the parametric model are binormally
distributed. * indicates rejection of the null hypothesis that βi = i, i = 0, 1 at the 5% confidence level or better. JT
represents the value of the test statistic built under the null hypothesis that β0 and β1 are jointly equal to 0 and 1,
respectively. * and † denote the rejection of this null hypothesis at the 5 and 10% confidence levels, respectively. The
critical values for this test are 5.991 and 4.605, respectively, based on χ2

df=2.
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