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A b s t r a c t .  Chew and Dobkin et. al. have shown that the Delaunay triangulation and 

its variants are sparse approximations of the complete graph, in that the shortest dis- 

tance between two sites within the triangulation is bounded by a constant multiple of 

their Euclidean separation. In this paper, we show that other classical triangulation 

algorithms, such as the greedy triangulation, and more notably, the minimum weight 

triangulation, also approximate the complete graph in this sense. We also design an 

algorithm for constructing extremely sparse (nontriangular) planar graphs that approx- 

imate the complete graph. 

We define a sufficiency condition and show that any Euclidean planar graph con- 

structing algorithm which satisfies this condition always produces good approximations 

of the complete graph. This condition is quite general because it is satisfied by all the tri- 

angulation algorithms mentioned above, and probably by many other graph algorithms 

as well. We thus partially answer the question posed by the title. 

From a theoretical standpoint, our results are interesting because we prove non- 

trivial properties of minimum weight triangulations, of which little is currently known. 

From a practical standpoint, the graph algorithms we consider are good alternatives 

to the Delaunay triangulation, particularly when designing a sparse network under se- 

vere constraints on the total edge length. Finally, our general approach may help in 

identifying or designing other algorithms for constructing sparse networks. 

1. I N T R O D U C T I O N  

The complete graph represents an ideal communication network between n sites. How- 

ever, to conserve resources, sparse networks are often designed which approximate the 

complete graph in some sense. This problem has also been studied from a geomet- 

ric context, where the graphs axe Euclidean. In particular, recent research [C, DFS] 

has shown that the Delaunay triangulation and its variants are good approximations 

1 This work was supported in part by the National Science Foundation under grant DCR- 
8402375. The authors' address is: Computer Sciences Department, University of Wisconsin, 
1210 West Dayton St., Madison~ WI 53706~ U.S.A. 



169 

of the complete graph, in that the shortest distance between any two sites within the 

triangulation is bounded by a constant multiple of their Euclidean separation. 

In this paper, we show that other classical triangulation algorithms, such as the 

greedy triangulation [MZ], and more notably, the minimum weight triangulation [MZ], 

also produce good approximations of the complete graph in the above sense. We define 

a sufficiency condition, and show that any algorithm for constructing Euclidean pla- 

nar graphs which satisfies this condition always produces good approximations of the 

complete graph. This condition is quite general; it is satisfied by all the three triangu- 

lation algorithms mentioned above, and by many other graph algorithms as well. We 

thus partially answer the question posed by the title. Finally, we apply this condition 

constructively to design an algorithm which generates extremely sparse (nontriangular) 

planar graphs. The length of the graph produced by this algorithm is proportional to 

the length of the minimum spanning tree between the sites. 

From a theoretical standpoint, our results are interesting because we prove some 

nontrivial properties of minimum weight triangulations, which has always been an enig- 

matic construct in computational geometry. Other than the basic definition, very few 

properties are known about it, and its computational complexity is still unknown [L, 

K]. From a practical standpoint, the graph algorithms we consider are suitable alterna- 

tives to the Delaunay triangulation, particularly when designing a sparse network under 

severe constraints on the total edge length. For instance, an example in [MZ] shows 

that  the ratio of the total edge length between a Delaunay and a greedy triangulation 

could be as large as fl(n/log n). Finally, our techniques may be useful in identifying or 

designing other algorithms that construct similar sparse graphs. 

In this paper we will restrict our attention to Euclidean planar graphs, unless 

otherwise mentioned. Throughout we adopt the following definitions. If e is a line 

segment, lel denotes its length. If E is a set of line segments, ]E] denotes the total 

length of all segments, rather than the usual notion of cardinality. S is a collection 

of n points in the plane (called sites). Let K(S) be the complete graph, containing 

all n(n - 1)/2 straight edges that join the sites in S. A triangulation is a maximal 

nonintersecting subset of K(S). A graph algorithm G takes input S, and produces 

an Euclidean planar graph G(S). A Delaunay triangulation, DT(S), is the straight 

edged Voronoi dual of S [DFS]. A greedy triangulation, GT(S), is computed by a greedy 

algorithm which iteratively inserts the next shortest nonintersecting edge into a partially 

constructed triangulation [MZ]. A minimum weight triangulation, MWT(S), is one with 

minimum total edge length [MZ]. SPa(s)(A, B) denotes the shortest path between sites 

A and B, composed of edges of G(S). Let measure( G( S) ) = maxA,BeS ISPais)(A'B)IABI . 

Intuitively, this quantity measures how badly a graph approximates the complete graph. 
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The algorithm G produces good approximations if there exists a constant c such that, 

for all S, m asu  (a(s)) < c. 

In [DFS] it was shown that,  for all S, measure(DT(S))  < 7r(1 + x/~)/2. Our 

methods are more general because we isolate a condition satisfied by many graph 

algorithms, including DT,  GT, and M W T .  (This is described in Section 3 )  ~:/.~'st we 

show, in Section 2, that  any graph algorithm satisfying this condition always produces 

good approximations of the complete graph. Finally in Section 4, we apply this condition 

in designing an algorithm for constructing general (nontriangular) graphs. 

The reader should note that  in this version of the paper, the various constants are 

roughly computed, and do not represent tight upper bounds. We feel that  to establish 

tighter bounds, it is necessary to exploit properties unique to a particular graph algo- 

rithm. Our general approach thus helps in easily identifying algorithms that  deserve 

further study. 

2. G R A P H S  W H I C H  A P P R O X I M A T E  T H E  C O M P L E T E  G R A P H  

We begin this section by defining the graph property that  will be sufficient for our first 

result. 

Defini t ion.  Let a be an angle less than re~2, d a constant, and G a graph algorithm. 

The condition P~,d(G) is defined as follows. 

P~,d(G) = true, i f  for every S, the following are true. 

i) The diamond property. For every edge e of G(S), consider the two triangular 

regions defined on either side of  e, such that e is the base of  each triangle and the 

base angles are a (see Figure 1). Then at least one of the regions contains no other 

sites of S. 

ii) The good polygon property. For every face of G(S), let A and B be any two sites 

along its boundary such that the line segment A B  ties whotly within the face (such 

segments are called chords). Then the shortest distance from A to B around the 

boundary of the face is smaller than d[AB[. 

Intuitively, this property is useful because (i) ensures that  an edge cannot act as 

a long obstacle between a pair of sites and (ii) ensures that the distance "around the 

boundary" of a graph face can not be too much longer than the distance "across" 

the face. In fact a formalization of this proves our first result. We will spend the 

remainder of this section showing that any graph algorithm satisfying this property 

always produces good approximations of the complete graph. Then in the next section 

we will show that  the Delaunay triangulation, the greedy triangulation and the minimum 
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weight triangulation satisfy the property. Finally, we will use this property to design 

an algorithm for constructing sparse nontriangular planar graphs. 

For simplicity we assume throughout that 7r is a multiple of a. 

T h e o r e m  1. For any angle a < ~r/2 and any constant d, there exists a constant 

c~,d such that, if P~,d(G) = true t'or some graph algorithm G, then for all S, 

me   re(G(S)) <_ 

Proof. Our proof has some flavor of the techniques employed in [DFS]. The latter 

exploits specific properties of Delaunay triangulations, while ours is a more general 

approach and is thus more involved. 

Let G'(S) be the graph G(S) augmented with all possible chords of faces. Clearly 

GI(S) may not be planar. We introduce the notion of pseudo paths, which are paths in 

G'(S). We also define real paths, which are paths in G(S). The good polygon property 

ensures that if there exists a pseudo path of length t between sites A and B, then there 

exists a real path between them of length at most dl. Thus our efforts will be directed 

towards constructing a short pseudo path between any pair of sites. Henceforth, all 

paths will be pseudo, unless otherwise mentioned. 

The diamond property ensures that every edge c of G(S) is the base of at least one 

empty triangular region with base angles a. (If both regions are empty, select any one). 

Let t(e) and v(e) denote this triangle and its third vertex respectively. Note that this 

vertex need not be a site in S. 

Let A and B be two sites such that AB is not in G(S). The two half planes defined 

by extending AB will be referred to as Top and Bottom respectively. (Figure 2). We 

first construct a subgraph of Gt(S) within which a short pseudo path between A and 

B resides. Let el, e2, ..., em be the sequence of edges of G(S) that intersect with AB. 

Let ui and li refer to the upper and lower sites of ei. (For simplicity we shall assume 

these edges do not share vertices). Clearly every adjacent pair of edges ei and ei+l in 

this sequence belong to the same face. Let UCi be the upper convex chain from ui to 

ui+x, such that the boundary of the face from ui to ui+l is above it. The lower convex 

chain, LCi, is similarly defined. Let Ui,lli,2 and li,lui,2 be the two common tangents 

between the two chains. Now consider the graph consisting of the edges of G(S) that 

intersect AB, along with all upper and lower chains, and all common tangents. Clearly 

this graph (denoted as G'(A, B)) is a subgraph of G'(S). We shall construct a path 

from A to B in this subgraph that is not too long with respect to AB. Sites in this 

subgraph may be classified into two groups, those that are end points of edges of G(S) 

that intersect with AB (called major sites), and those that belong to upper and lower 
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chains (called minor sites). Each group may be further classified into upper and lower 

sites in a natural manner. 

Any simple path in this subgraph from A to B consists of alternating portions of 

the upper and lower boundary, connected by tangents. We now construct a direct path 

of this sort as follows. Begin with A on the path. Suppose ui (a major site) is the last 

site of the partially constructed path. If v(ui+lli+l) is inside Bottom (lies below AB), 

then the path is extended to ui+l via the upper chain, UCi. If v(u~+lIi+l) is inside Top 

(lies above AB), then the path is extended to li+l as follows. The path is first extended 

via the upper chain to ui,1, then along a common tangent to li,2, and eventually along 

the lower chain to li+l. If li is the last major site, the extension is similar. We denote 

such direct paths as DP(A, B). The following claim illustrates an important property 

of direct paths. 

C la im 1: Suppose DP(A, B) is one sided, that is, the path consists entirely of the 
DP(A,B) 

upper boundary or entirely of the lower boundary of G'(A, B). Then ABI < b,~, 

where b~ 2~ : t r s i na /4"  

Proof. Without loss of generality, assume the upper boundary is the direct path. 

Let R = Bottom O t(el) O ... U t(em). Let R(A, B) denote the boundary of R from A 

to B. Since DP(A,B)  is composed of convex chains, IDP(A,B)I < IR(A,B)I. 

We now show an upper bound for IR(A, B)[. Partition the triangles t(el), ..., t(em) 

into 27r/a groups, Go, G~/2, ... , G~-~/2, where Go contains those triangles whose 

left sides make angles in the range [8, 8 + a/2] with AB. Let Re : Bottom(9 

all triangles in Ga. But R = R0 U ... U R,~-a/2, and hence 

[R(A,B)I < [R0(A,B)I + ... + IR~_~/2(A,B)I. 

Consider Figure 3, which illustrates the group Ge. Clearly Re(A, B) is inside ACB, 

and is composed of three types of line segments. Segments that go up/down/horizontal 

make angles in the range [0, 8 + a/2] / [0 + a, 0 + 3a/2] / [0, 0] with AB respectively. 
lAB I It is then easy to see that IRe(A, B)I < IACt + [BCI _< si,~/4, for any 0. Thus 

2~rIAB I IR(A, B)I < ~si. ~/4, and the claim is proved. | 

Since a direct path may not be one sided, we iterate the following modification 

exhaustively until we obtain a final path, FP(A, B), which is almost one sided. Let ul 

and u I be two upper major sites on the direct path such that the major sites in between, 

/i+1, ... , lj-1, are lower sites. Determine if a shortcut is necessary (this will be defined 

later). If not, retain the path, otherwise replace the portion of the path between uid 

and u j- l ,2 with the portion of the upper boundary of G'(A, B) between them. 

We now define when a shortcut is necessary. Recall that every edge ek intersecting 

with AB is associated with an empty triangular region t(ek). We associate another 
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empty region with each such edge, denoted as t'(ek), and defined as follows. Suppose 

v(ek) is below AB (Figure 4). Then t'(ek) is the closed empty region between AB, 

the common tangents Ik-l,lUk-l,2 and Uk,llk,2, and the path along upper chains from 

Uk-l,2 via uk to uk,1. If v(ek) is above AB, then t'(ek) is symmetrically defined. 

Partition the set of intersecting edges into two sets L and U. The edge e be- 

longs to U (respectively L) if v(e) belongs to Bottom (respectively Top). Define 

Ru = Bottom Ueev [t(e) U t'(e)]. RL is symmetrically defined. It is easy to see 

that IRu(A, B)[ and ]RL(A, B)[ are each smaller than ba[AB I. 

Let 0 be the angle between the tangents ui,ll~,2 and Ij-l , luj-l ,2,  when extended. 

It does not matter whether the extended diagonals meet in Top or Bottom. Two cases 

arise. 

Case t: 

Case 2: 

0 > ~r/3. The shortcut is not necessary. 

0 _< ~r/3. Intuitively, this means the diagonals are almost parallel. Con- 

sider Figure 5. The shaded region is bounded by the tangents ui,lli,2 and 

lj-l ,lUj-l,2, Ru(A ,B) ,  and RL(A,B),  and is empty of other sites. Let the 

upper (lower) boundary of this region be T1 (T2). We set up co-ordinate axes 

as shown in the figure. E (F) is the point on T1 (T2) with the minimum (max- 

imum) y co-ordinate, and h = y(E) - y(F). P E Q  and V F W  are parallel 

to the x axis. Let w = max([PQhIVW]). If h < 1 - 2t~n~/2, the shortcut is 

not necessary, otherwise the shortcut is taken. 

The following claims lead to the final stages of the proof of the theorem. We again 

remind the reader that in this version of the paper, the calculations are rough, and the 

resulting value of ca,d is not a tight upper bound. 

C la im 2: If the shortcut is taken, then the length of the new portion of the 

path, which is the upper boundary of G'(A,B) from U~,l to uj-l,2, is smaller than 

b.(lTl] + [T2I). 
Proof. Let the lower convex hull of the upper boundary of G'(A, B) from ui,1 to 

uj-l,2 be ui,1 = Zl, z2, ... ,  zk = Uj-l,2. Clearly [ZlZ2[ + [z2z3[ + ... + Izk_lzkl 

is smaller than IT1 [. We also observe the following. If H and I are any two points 

above T1, and J is any point below T2, such that H J  and I J  intersect the shaded 

region, then the angle H,JI is smaller than a, because of the shortcut condition. Due 

to this, for 1 <_ q <_ k, DP(zq, zq+l) is one sided (where DP(zq, Zq+l) is defined within 

Gt(zq, zq+l)), and the concatenation of all these direct paths is the upper boundary 

of G'(A,B)  from ui,1 to u j-l,2. Thus the length of the new portion is smaller than 

b,([T~l) , which is smaller than b,(IT1 ] + IT2I). ! 

C la im 3: If the shortcut is not taken due to case 1, then the length of the old 

portion of the path between ui,1 and Uj_l, 2 is smaller than 3([Tll + IT2]). 
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Proof. Clearly, the lower boundary of G'(A,B) is smaller than IT21. We now 

compute the total length of the two tangents, uijti,2, and uj-l,21j-lj .  Let C be the 

meeting point of their extensions. Since O > 7r/3, if C is in Top (Bottom), their 

total length is smaller than 21T21 (21T11). Thus their total length is always smaller than 

2(IT1[ + [T2I), and the claim is proved. | 

C la im 4: If the shortcut is not taken due to case 2, then the length of the old por- 
5 tion of the path between ui and uj is smaller than a~(ITll + IT I), where as = ~ .  

Proof. As before, the lower boundary of G'(A,B) is smaller than IT21. We n o w  

compute the total length of the two diagonals. Since 8 < 7r/3, we see that 

lui,ael + I/i,2Yl + luy-l,2QI + Ily-~,~Wl ~ 2(ITll + IT~I) 

irrespective of where C lies. Also, 

2 
IPVI + IQWt _ 4h <_ tan~/2(IT~l + IT21). 

The claim follows after some manipulations. 1 

Thus, whichever case occurs, the length of FP(A, B) from ui,1 to u j-l,2 is smaller 

than [max(b~, 3, a~)](IT1 ] + ]T21) = b~(ITll + IT21). Summing over all such 
s'r2d and modifications, we conclude that ]FP(A,B)I <_ 2b~IAB I. Thus C~,d = ~2sin2~/4, 

the theorem is proved. | 

3. L A Y O U T  P R O P E R T I E S  OF C E R T A I N  T R I A N G U L A T I O N S  

In this section we investigate the algorithms, Delannay triangulations, greedy triangula- 

tions, and minimum weight triangulations, and show that all three satisfy the property 

of the previous section. Then in the next section, we consider more general graph 

algorithms. 

T h e o r e m  2. P~/4j(DT) = true. 

Proof. Notice that condition (ii) of the property is trivially holds for any triangu- 

lation. As for condition (i), it is known that the circumscribing circle of any triangle in 

a Delaunay triangulation is empty of other sites. Thus every edge is the chord of two 

empty circles. If we select any one circle of any edge, it will wholly contain at least one 

of the triangular regions regions. Thus condition (i) holds. | 

The next theorem describes a similar result for greedy triangulations. We first 

present a lemma. 
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L e m m a  1. Let A and B be any two sites such that A B  is not an edge in GT(S) .  Let 

e be the shortest edge of GT(S)  that intersects AB. Then [e[ < lAB t. 

Proof Suppose all edges of GT(S)  intersecting A B  are longer. Consider the state 

of the algorithm just before the first of these edges is added to GT(S) .  Clearly A B  

should be selected instead, because it is shorter, leading to a contradiction. | 

Despite its simplicity this lemma is useful in the proof of the following theorem. 

T h e o r e m  3. P,r/s,I(GT) = true. 

Proof. Consider Figure 6. A B  is an edge of some GT(S) .  CAB,  D A B  are triangles 

with base angles ~r/8. O is the center of AB. E A F  and K B L  are portions of circles 

centered at B and A respectively. We havc to show that either C A B  or D A B  is empty 

of other sites. 

Consider the left half of the figure. Let a site M be inside CAB.  Draw a perpendic- 

ular M N  onto AB. Let the triangles of GT(S)  that intersect with N M  be tl,  t2, ..., tk, 

ordered from right to left along N M .  Thus tl is the triangle immediately to the left 

of AB. Let ti be the f i r s t  triangle in the sequence such that one of its three sites, V, 

lies inside the region G A B I C .  Without loss of generality, assume V lies in the bottom 

half, O B I C .  Consider the polygonal region P = tl U t~ U ... U t~. The portion of P 's  

boundary from V to A (V to B) is the upper chain (lower chain). 

We observe that the lower chain degenerates into a single edge, VB.  If this was 

not so, then all edges of GT(S)  intersecting V B  would be longer, contradicting Lemma 

1. Two cases arise for the upper chain. 

Case 1: 

Case 2: 

The upper chain is a single edge, VA. 

The upper chain is not a single edge. 

Let the sites along the upper chain be V = uo, ul,  . . .  , urn, Um+l = A. 

Since IVAI < [ABI, by Lemma 1 at least one of these sites is inside EAG. 

We next observe that in fact Um is inside EAG. If this was not so, let up be 

the last site along the upper chain to lie inside EAG, 1 <_ p < m. Clearly 

all edges intersecting upA are longer, contradicting Lemma 1. 

Now consider the right half of the figure, and assume that D A B  also contains a 

site. A symmetric argument leads to the existence of a site, Q, which corresponds to V 

of the left half. Clearly Q is inside H A B J D .  Unlike the previous argument however, 

we shall surrender generality if we assume that Q lies in the bottom half of H A B J D .  

Consequently four cases arise. 

Case 3: Q lies in the bottom half, and the upper and lower chains are single edges, QA 

and QB. 
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Case 4: Q lies in the top half, and the upper and lower chains are single edges, QA 

and QB. 

Case 5: Q lies in the bottom half, and the upper chain is not a single edge. 

Case 6: Q lies in the top half, and the lower chain is not a single edge. 

We are now ready to prove the theorem, by showing that any combination of the 

left half cases and right half cases leads to a contradiction. In this version of the paper, 

only two of the combinations are discussed, the others being similar. 

Case I and Case 4: AB is the only edge intersecting VQ, and lAB[ > IVQh 

which contradicts Lemma 1. 

Case 2 and Case 6". All edges intersecting umQ are longer, which contradicts 

Lemma 1. 

A full analysis of all the combinations proves the theorem. | 

The next theorem describes a similar result for minimum weight triangulations. 

Here the proof is more involved because we do not have a tool as powerful as Lemma 1. 

First we present some definitions. A triangulation of a n-site simple polygon P is the 

set of n - 1 boundary edges along with n - 3 nonintersecting diagonals that partition 

the interior into n - 2 triangles. A minimum weight triangulation of P, MWT(P) ,  is 

a triangulation with the minimum total edge length. Let v be some direction vector. 

A plane sweep triangulation of P is a triangulation constructed by the following plane 

sweep algorithm. The sweep line is oriented perpendicular to v, and moves in the 

direction v. On visiting a site, the algorithm constructs all possible nonintersecting 

diagonals between it and the previously encountered sites. 

T h e o r e m  4. P,/s , I (MWT) = true. 

Proof. The proof is very similar in structure to that of Theorem 3. Consider Figure 

6 again, and let AB be an edge of some MWT(S) .  We have to show that either CAB 

or DAB is empty of other sites. 

Consider the left half of the figure, and let a site M be inside CAB. The same 

argument of Theorem 3 leads to the existence of a polygon P, which has a site V inside 

OBIC. Let the sites along the upper (lower) chain be V = u0, ul, ..., urn, Um+l = A 

(Y = /0, 11, . . . ,  Ip, lp+l = B). The following two claims lead us to conclude that 

the lower chain degenerates into a single edge, VB. 

Cla im 5: Either the upper or lower chain is a single edge. 

Proof. Suppose this was false. Clearly M W T ( P )  is a subset of MWT(S) .  An 

example is in Figure 7. We now construct a different triangulation of P,  called T(P) 

(see Figure 8). First insert the diagonals VA and VB. Then construct the plane sweep 

triangulation of the polygon enclosed by the upper chain and VA (lower chain and 
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VB), with the sweep line moving in the direction C G  (CI). We will now show that 

IT(P)I < IMWT(P)I, thus proving the claim. 

Consider Figure 7. MWT(P) has m + p diagonals, and each connects an upper 

chain site with a lower chain site. Consider any site in ul, ... , u m  and/1, -.. , lp. The 

rightmost diagonal terminating at the site is said to belong to the site. Thus in our 

example u~I2 belongs to u2, while AI3 belongs to 13. 

Consider Figure 8. T(P) too has m + p diagonals. We classify the sites ul,  ..., u,,  

and ll, . . . ,  Ip into three types, peaks, troughs, and ordinary. If both neighbors along the 

upper (lower) chain of some ui (/j) are encountered earlier by the sweep line, ui (/j) is a 

peak. If both neighbors are encountered later, it is a trough, otherwise it is an ordinary 

site. Thus in our example, ul is ordinary, 13 is a peak, while 12 is a trough. We observe 

that in each chain, there is one more of peaks than troughs, and if we ignore the other 

sites, the peaks and troughs alternate. Now consider all diagonals other than VA and 

VB. The polygon P is such that, during the plane sweeps, exactly 2/1/0 diagonals are 

added on encountering a trough/ordinary site/peak respectively. The diagonal inserted 

on encountering an ordinary site belongs to the site. The left of the two diagonals added 

on encountering a trough belongs to the trough, while the right diagonal is donated to 

the next peak along the chain. Thus in our example, ulA belongs to ul, VI2 belongs to 

12, while Bl2 belongs to I3. Note that the first peaks of each chain (in our case u2 and 

ll) do not possess any diagonals of T(P). 

We now consider MWT(P) and T(P) together and observe the following. First, 

IVAI + IVBI is smaller than the sum of the lengths of the two diagonals of MWT(P) 

that belong to the first peaks of each chain. In our example, 

]VA] + IVBI < lu2121 + luflll. 

Second, every site in ul, ..., Um and 11, ..., Ip other than the first peaks has a diagonal 

of MWT(P) and a diagonal of T(P) of smaller length. In our example, for the site ls, 

IBl21 < IAtsl. Clearly IT(P)I < IMWT(P)I , and thec ta imisproved.  I 

Cla im 6: In fact, the lower chain is a single edge, VB. 

Proof. Recall that V lies inside OBIC of Figure 6. Suppose the claim was false. By 

Claim 5, the upper chain is a single edge, VA, and MWT(P) has p diagonals, connecting 

each of ll, ... , tp with A. As in Claim 5, we construct a different triangulation, T(P). 

First insert VB, then perform a plane sweep triangulation of the region enclosed by VB 

and the lower chain, with the sweep line moving in the direction CI. Now VB is shorter 

than the diagonal in MWT(P) which connects the first peak with A. The proof is now 

similar to that in Claim 5. I 

As in Theorem 3, two cases arise for the upper chain. 
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Case 1: The upper chain is a single edge, VA. 

Case 2: The upper chain is not a single edge. In this case M W T ( P )  has ra diagonals, 

connecting each of ul, ... , um with B. We show that all of us, ... , u,n 

lie within EAG. Suppose some were outside EAG. Then u lB  is the longest 

diagonal, because if uiB was the longest diagonal for some ui in u2, ... , u,, ,  

then within the quadrilateral Ui-lUiUi+aB, [ui-lUi+ll < luiBI, which is a 

contradiction. Now consider a different triangulation, T(P),  by first inserting 

VA, then triangulating the region enclosed by V A  and the upper chain by a 

sweep line moving in the direction CG. Clearly us is the first peak. Since 

IVAI < tuiBh the proof follows as in claim. We next observe that at any 

site ui in u2, ... , urn, the angle Ui-lUiUi+l internal to P is greater than pi, 

otherwise within the quadrilateral Ui_lUiUi+lB , [tti_lUi+ll < [uiB[, which is 

a contradiction. 

Now consider the right half of the figure, and assume that D A B  also contains a site. 

The same argument of Theorem 3 leads to the existence of a site, Q, which corresponds 

to V of the left half. Similarly four cases for the right half arise. We are now ready 

to prove the theorem, by showing that any combination of the left half cases and right 

half cases leads to a contradiction. In this version of the paper, only the most complex 

combination is discussed. 

Case 2 and Case 6: Consider Figure 9. V, ul, . . . ,  um,A (Q,/1, . . . ,  Iv, B) are the sites 

along the left (right) upper (lower) chain. Consider the polygonal region 

R = BumAQll ... I v. 

We construct a different triangulation of R by inserting BQ, umQ, and liQ for each 

li in 12, ... , I v. Since IBQI < IABh I mQI < lASh and for each Zi in t2, . . . ,  tp, 

II~QI < II,AI, we have a contradiction. 

A full analysis of ail the combinations proves the theorem. | 

4. A G E N E R A L  P L A N A R  G R A P H  A L G O R I T H M  

Part of the motivation for designing Euclidean planar graphs is because their total edge 

length is small. Consider the set of all Euclidean planar graphs over some S. Although 

triangulations are planar, they are usually the longest graphs in this set. Thus it is 

motivating to look for extremely short (possibly nontriangular) planar approximations 

of the complete graph. However, a limiting factor is that the length of a minimum 

spanning tree (MST(S) )  is a lower bound on the length of such graphs, for at the least 

these graphs should be connected. 
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We now introduce the following heuristic for constructing such graphs. We start 

with a triangulation of our choice, for example GT(S). We then select some constant d 

which specifies the good polygon property of Theorem 1. Now the algorithm removes 

edges from the triangulation, while retaining both properties as required by Theorem 1. 

At any iteration, the triangulation has been reduced to some planar graph. All faces of 

the graph satisfy the good polygon property, and trivially all edges satisfy the diamond 

property. An edge may be removed if the new face formed by merging its two adjacent 

faces satisfies the good polygon property. The algorithm terminates if no such edge can 

be found. 

Unfortunately, though this may perform well in practice, in theory we do not know 

exactly how short the graph is bound to become. To facilitate a more quantitative 

analysis, we have modified the heuristic into a more complicated algorithm, called A, 

which is as follows. The first step is to construct MST(S), as well as the convex hull of 

S (denoted as CH(S)). This partitions the plane into empty polygons, and the sum of 

all edges is at most 3[MST(S)[. The next step is to perform a greedy triangulation of 

each polygonal face. After that, a constant d is selected (whose value will be specified 

later) for the good polygon property. Finally, only the greedy triangulation edges are 

examined for possible removal, in descendin 9 order of edge length. 

The following theorems and lemmas prove that A(S) approximates the complete 

graph, and also lead to a quantitative upper bound on its length. Specifically, we prove 

that tA(S)] = O(]MST(S)]). 

T h e o r e m  5. P~/s,d(A) = true. 

Proof. During edge removal, this property is maintained by the algorithm. Thus we 

only have to ensure that the edges of MST(S), CH(S), and the greedy triangulations 

of the polygonal faces satisfy the diamond property. It is known that if e is an edge of 

MST(S), then the circle with e as diameter is empty of other sites. Thus all such edges 

satisfy the diamond property. If e is an edge of CH(S), the exterior triangular region 

is empty, thus satisfying the diamond property. 

Let e = AB be a greedy triangulation edge. As in Theorem 3, consider the left 

half of Figure 6, and let a site M be inside CAB. This leads to the existence of a 

polygon P,  which has a site V inside OBIC. It is easy to see that none of the diagonals 

of P belong to CH(S). Similarly, none of them belong to MST(S) either, otherwise the 

circle with the diagonal as diameter will contain M, which is a contradiction. Thus the 

diagonals are greedy triangulation edges, and so the proof of the theorem is identical to 

Theorem 3. | 
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The above theorem ensures that the output of the algorithm indeed approximates 

the complete graph. We now turn our attention to estimating the length of A(S). 

Clearly the MST(S)  and CH(S) edges add up to O(IMST(S)[). We have to show that 

that the greedy triangulation edges remaining in A(S) also add up to O([MST(S)D. 

Recall that the former edges are first added, which results in a planar graph with 

polygonal faces, hereafter referred to as regions. The greedy triangulation edges that 

are later added can be considered as diagonals, which split regions into subregions. Note 

that subregions are essentially faces of A(S). We will consider each region in isolation, 

and it will be sufficient to prove that the length of all the diagonals is proportional to 

the length of its boundary. The following lemmas will be useful for the purpose. They 

describe local properties of A(S), in particular how an edge relates to its neighboring 

subregions. 

L e m m a  2. Let e be a diagonal of some region R. Then there exists a pair of sites A 

and B along ~he boundaries of i~s two adjacent subregions respectively, such that if e 

is removed, (i) AB will be a chord of the merged subregion, (ii) the shortest distance 

between A and B along the merged subregion boundary will be greater than d[AB[, 

and (iii) lAB I > le[. 

Proof. The merged subregion clearly violates the good polygon property. Consider 

all pairs of sites where the violation occurs. Let A and B be the pair with the largest 

separation, lAB[ (Figure t0). To contradict the lemma, let us assume that [AB[ < [e I. 

Clearly AB intersects e. Thus AB does not belong to the original greedy triangula- 

tion. But by Lemma 1, in the original greedy triangulation, there existed an edge f 

intersecting AB such that [f[ _< [AB[. Thus If[ < [e t, But since the candidates for 

removal were in decreasing length, while e was being examined, f was present in the 

graph. However, at that point f itself separated A and B into different subregions, so 

they could not have been a violating pair during e's examination. This contradiction 

proves the lemma. | 

The next lemma describes how an edge relates to its next-to-adjacent subregions. 

Let e -- AB be a diagonal of some region R. Consider any side of e, and let the 

polygon P be the union of its adjacent subregion and next-to-adjacent subregions on 

that side (Figure 11). Let P 's  boundary without the edge AB be denoted as P(A, B). 

It is composed of diagonals, as well as boundary edges of R. Let the set of diagonals 

along P(A, B) be referred to a s  diag(A, B). 
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L e m m a  3. Suppose algorithm A is designed with a (suitably large) constant d > 1 

specifying ~he good polygon proper~y. Then there exist constants b > 1 and c > 1 

such tha~ for any S, and any diagonal e = AB, 

A B  
~ _< cimplies ai~g(A,S) _> b. 

Proof (sketch). The lemma in words is, if P(A, B) is very close in length to AB, 

then the contribution to its length from diagonals is small. We shall give an intuitive 

sketch of the proof. Details are in [D J]. 

Assume the contrary, that is even though P(A, B) is short, most of it is formed by 

diagonals. Let Q(A, B) refer to the boundary of the subregion adjacent to AB, apart 

from AB itself. Q(A, B) is shorter than P(A, B), and even more of its length is due 

to diagonals. Let the length of all its diagonals be I. By Lemma 2, every diagonal e 

on Q(A, B) is associated with a portion of P(A, B) of length at least d[e[. If each such 

portion is disjoint, we can conclude that P(A, B) is at least as long as dl. By selecting 

a large enough d, we can arrive at a contradiction, because P(A, B) is initially assumed 

to be small. 

The complication is due to the fact that the above portions are not disjoint. How- 

ever, we show in [D J] that the overlap is not too much. | 

We assume henceforth that the algorithm A is designed with the constant d as in 

Lemma 3. We are now ready for the final theorem. 

T h e o r e m  6. Let R be a region. Then the length of all diagonals is of the order of the 

length of R's boundary. 

Proof (sketch). The details are in [D J]. Figure 12 shows a region with all its 

subregions. Consider a subregion which has only one diagonal, PQ, along its boundary. 

We remove this subregion from R. Construct the accounting tree of edges as follows. 

Each node contains an edge, and PQ is at the root. The boundary edges are at the 

leaves, and the diagonals are at the internal nodes. The tree may be built conceptually 

in a top down manner by "exploring" subregions (Figure 13). First, the subregion 

adjacent to PQ is explored, and all its edges (other than PQ itself) are made children 

of PQ. Nodes containing diagonals are expanded in a natural manner, by exploring 

their adjacent subregions. 

Our objective is to show that the total length of all edges is of the order of the 

total length of leaf edges. The internal nodes may be classified into two types, (a) and 

(b). Consider an internal node e -- AB. If we start from e and explore two levels 

below into the tree, we shall effectively come across its adjacent and next-to-adjacent 

subregions. The leaf nodes at the first level along with all nodes at the second level 
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compose P(A,  B), as in Lemma 3. If the condition before the implication in Lemma 3 

is false, then e is a type (a) node, otherwise e is a type (b) node. 

We omit further details and claim that such a condition throughout the tree is 

sufficient to prove the theorem. As an intuition, the theorem is easily seen to be true if 

the tree had only one of either type of nodes. | 

5. C O N C L U S I O N S  

We have identified a sufficiency condition such that, graph algorithms satisfying it pro- 

duce good approximations of the complete graph. We have shown that this condition is 

quite general because it is satisfied by Delaunay triangulations, greedy triangulations, 

and minimum weight triangulations. We also use it to design an algorithm for construct- 

ing sparse nontriangular graphs. In network design this has some significance because 

these algorithms can sometimes be better alternatives to the Delannay triangulation. 

Furthermore, we have increased our knowledge of minimum weight triangulations, of 

which little is currently known. 

Since the upper bounds in our general results are not tight, our future research is 

aimed at improving them, possibly by discovering additional properties of the specific 

algorithms considered. An intriguing open problem is to design an algorithm which 

produces graphs with the least measure. It may be that Delaunay triangulations is the 

answer here. Finally, other sparse Euclidean graphs need to be investigated, including 

graphs that are not even planar. 
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