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ABSTRACT

We present the Whirlpool Routing Protocol (WARP), which effi-
ciently routes data to a node moving within a static mesh. The key
insight in WARP’s design is that data traffic can use an existing
routing gradient to efficiently probe the topology, repair the routing
gradient, and communicate these repairs to nearby nodes.

Using simulation, controlled testbeds, and real mobility experi-
ments, we find that using the data plane for topology maintenance
is highly effective due to the incremental nature of mobility up-
dates. WARP leverages the fact that converging flows at a desti-
nation make the destination have the region of highest traffic. We
provide a theoretical basis for WARP’s behavior, defining an “up-
date area” in which the topology must adjust when a destination
moves. As long as packets arrive at a destination before it moves
outside of the update area, WARP can repair the topology using
the data plane. Compared to existing protocols, such as DYMO
and HYPER, WARP’s packet drop rate is up to 90% lower while
sending up to 90% fewer packets.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Mobile Routing, Sensor Network, Collection Protocol

1. INTRODUCTION
Unlike their wired brethren, wireless nodes can move freely and

untethered. This flexibility introduces significant complications to
networking. While the past decade of research on mobile routing
has generated a large number of elegant and intellectually interest-
ing protocols and proposals [13, 25, 17], making them work well
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in real networks has remained frustratingly difficult [8]. In prac-
tice, the most notable successful deployments of mobile ad-hoc
protocols involve no mobility at all! Examples include variants
of dynamic source routing (DSR) in MIT’s Roofnet [8] and Mer-
aki [4], as well as extensions to OLSR in Athens [1], Berlin [2],
and Leipzig [3].

This paper seeks to take a next step towards bridging the gulf
between algorithms and practice in mobile wireless routing. It ex-
amines a limited form of mobility: routing data to a mobile node
as it moves through a static wireless mesh infrastructure. Towards
this end, it presents the Whirlpool Routing Protocol (WARP).

A broad range of wireless sensor network applications moti-
vate WARP’s design considerations. Vineyard workers [7], biol-
ogists [23], geologists [30], engineers [18], and tracking robots [28]
all use sensor data in real-time while operating in remote and sparse-
ly populated areas. These applications rely on self-built infrastruc-
tures, which need to minimize cost and power requirements: rout-
ing to a stationary sink and relying on an IP infrastructure to com-
municate to a mobile user is unattractive. Consequently, timely data
collection to a mobile sink is an important system service, driven
by interests in both the scientific community and industry.

The key insight behind WARP is that, when a destination moves,
the existing distance vector tree can quickly find its new location.
While a particular one-hop neighbor may no longer have connec-
tivity, at least some other such neighbors still do. WARP uses the
existing topology to search around the destination’s old location for
nodes that still have routes: when it finds such a node, it quickly re-
pairs the local topology.

WARP builds on recent work in efficient distance vector proto-
cols [15] and the long history of research on local repair [9, 20, 27].
Specifically, WARP extends these algorithms by speculatively rout-
ing data packets when it detects the destination has moved rather
than triggering a discovery operation. Speculative routing sends
packets along a spiral trajectory around the last known position of
the destination. These spirals are based on the existing distance
vector gradient. They require neither geographic information nor
controlling how a node moves, yet can quickly and efficiently find
routes. When a destination is stationary, WARP defaults to its un-
derlying distance vector protocol, imposing no overhead.

The rest of this paper presents WARP’s design (Section 2), pro-
vides theoretical bounds on its supported mobility (Section 3), de-
scribes a TinyOS-based wireless sensor network implementation
(Section 4), and evaluates the implementation in simulation, con-
trolled testbeds, and real mobility experiments (Section 6). The
paper concludes with a discussion of WARP’s relationship to the
long history of mobile wireless routing research (Section 7) and
future work (Section 8).



2. THE WHIRLPOOL ALGORITHM
This section overviews WARP’s design. It describes four mecha-

nisms WARP uses for routing efficiently to mobile destination: fast
mobility detection, speculative routing, local repair, and in-band
signaling. It walks through an example of WARP’s operation.

2.1 Overview
As a routing protocol, WARP’s responsibility is to determine a

packet’s next hop to a destination. It provides a best-effort data-
gram service. WARP is a distance vector protocol: nodes maintain
a measure of “distance” to a destination. This builds a routing tree
around a destination. In the context of this paper, we only consider
a single destination, as this is the typical sensor network traffic pat-
tern. Generalizing WARP to multiple destinations simply involves
using its mechanisms on each destination’s distance vector.

When a destination is stationary, WARP operates as a standard
routing protocol. Nodes estimate link costs, compute route costs,
and send packets along the minimum cost path to a destination.
WARP is a reactive protocol, as it changes how a distance vec-
tor protocol reacts when a node detects a destination has moved.
Rather than flood route requests or emit other control traffic, WARP
uses data packets to probe the network topology, using whirlpool

routing to quickly and efficiently find the destination.
By default, a WARP destination sends frequent beacons to ad-

vertise its presence to nearby nodes. However, as this can have
a high cost, WARP suppresses these beacons when unnecessary.
Whenever a destination receives a data packet, it suppresses its next
beacons. When there is active data traffic, WARP uses this traffic
to validate the topology. In the absence of data traffic or routing
failure, WARP falls back on rapid beacons.

These spiral packets use the existing routing gradient to “whirlp-
ool” around the old location of the destination in order to pass near
its new location. When a destination overhears a spiral packet, it
immediately responds with a beacon. Receivers hearing a beacon
exit the whirlpooling state and quickly inform their neighbors that
they have a new route, making nearby nodes reconfigure their rout-
ing tables and stop whirlpooling as well. This simple epidemic of
route updates causes nodes in the update area – the area whose dis-
tance vectors need updates – come to quickly reach a consistent
view of the topology.

WARP’s spirals require neither global nor geographic informa-
tion, as the existing distance vector tree contains useful network
topology information. Figure 1 shows an example of how this
works. Intuitively, sending packets to nodes with a similar cost
in the tree forms a path around the old position. This path might
not be a circuit, but nonetheless it tries to cover the space around
the prior position, maximizing the chances of covering the update
area and finding the new position.

2.2 Fast Mobility Detection
WARP uses link layer reliability to quickly and reactively detect

mobility. When a link to the destination fails, a node assumes the
destination has moved and begins speculative routing.

2.3 Speculative Routing
WARP uses speculative routing to proactively search for a desti-

nation’s new location. This section first explains speculative rout-
ing in terms of an idealized topology, then presents the algorithm
WARP uses in practice.

Consider Figure 2, which makes the idealized assumption that
radios have a fixed radio range r. In this network, nodes around the
old position S forms a set of concentric rings R1, R2, . . . , Rn with
radii r, 2r, . . . , nr. The centers of the rings form circles with radii

(a) Normal collection mode. (b) Repairing mode.

Figure 1: When links to a destination break, nodes enter re-

pairing state (white). Repair nodes speculatively route packets

along the old gradient (question marks). When the destination

overhears a data packet, it immediately initiates repair. Num-

bers show the routing gradient.

Figure 2: Uniformly distributed random topology. Nodes in the

second and third rings route packets to children 3 and 5 times

less likely than center nodes.
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r, and circumference πr, 3πr, . . . , (2n−1)πr.
These circles approximate spiral loops around the old position. As-
suming one-hop distance is r, a space-filling trajectory must take
at least ⌈π⌉ = 4 hops along R1, ⌈3π⌉ = 10 hops along R2, and in
general, ⌈(2n− 1)π⌉ hops along Rn.

These values are for a perfect space-filling trajectory that moves
in a circle along the center of a ring. In practice, nodes do not
have sufficient state to construct such a trajectory. In real network
topologies, nodes do not have locations of other nodes, so they can
not choose a proper next hop to follow the ideal trajectory and there
are asymmetric as well as irregular communication links. Conse-
quently, spirals may not be centered at the old location and their
radii may not increase at all. WARP overcomes these challenges
by increasing the radii probabilistically and by randomly selecting
one of the available siblings (or children) to forward the data.

A speculatively routing WARP node picks a random node from
the neighbors in its routing table who have similar costs and good
link qualities. This is effectively a random walk along the gra-
dient contour, which is less efficient than the perfect space-filling
trajectory. Therefore, WARP overestimates the number of hops at
the n-th level as 8n (space-filling spirals in real networks require
≈ (2n − 1)π hops at the n-th level which 8n slightly overesti-
mates). We use the following algorithm for speculative routing,
where H is defined as the number of hops that a packet was for-
warded in the spiral mode:



find n(≥ 1) such that

n−1∑

k=1

8k < H <

n∑

k=1

8k

rnd = random_integer() mod 8n;

if (rnd == 1)

send to a child;

else

send to a sibling;

Using this algorithm has an expectation of approximately one
WARP node at a given radius forwarding packets to a child. As the
destination can snoop on these packets, a space-filling spiral with
this property has a high probability of finding the destination. Us-
ing a probabilistic and randomized approach means that WARP’s
behavior may not be theoretically optimal, but makes it robust to
unforeseen edge cases and degenerate topologies, thus enabling it
to work in practice.

2.4 Local Repair
When a speculatively routing node hears a beacon from the des-

tination, it immediately updates its routing table and stops routing
speculatively. In some cases this is a bad decision, as the link to
the destination may be poor. However, nodes detect this through
the underlying routing protocol’s standard mechanisms and adapt
to use other routes. Eventually some nodes will have good one-hop
routes to the destination. The key property is that the node stops
whirlpooling and begins to refine its route.

After a node finds a new route, it forwards data packets along the
new route, breaking spirals. These packets inform neighbors that
the sender has found a new route: neighbors in turn update their
routing tables. Section 4 describes how nodes distinguish distinct
mobility events in practice. Incremental updates with route refining
make the routing tree to converge the minimum-cost tree over time.

2.5 In-band Signaling
WARP uses data traffic as active topology probes: they detect

mobility, find a lost destination, and convey a new route. WARP
requires four fields in the packet header: a spiral hopcount, a bit
describing whether the packet is spiraling, the parent ID of the
transmitter, and the routing gradient cost of the transmitter. As the
parent ID (or a next hop node) and cost are typically fields in col-
lection data packet headers, WARP only needs to add the spiraling
bit and the spiral hopcount field.

Furthermore, WARP uses data packets to implicitly signal desti-
nation locations in-band. As Section 2.1 mentioned, a WARP des-
tination suppresses its beacons if it receives data packets. Nodes
overhearing those data packets assume that the destination is not far
away, relying on mobility detection through their own data plane as
needed. Therefore, a destination sends a beacon only when

• it has not received a data packet within the beacon period or

• it snoops a spiraling packet.

As we show in Section 6, this aggressive suppression causes WARP
to send fewer control packets than CTP despite our implementa-
tion’s use of a beacon timer with relatively small intervals such as
125ms or 2s.

3. MOBILITY SUPPORTED BY WARP
Higher data and beacon rates speed topology repair. This section

derives bounds on the data rate required to sustain a routing tree as
a function of the destination speed.

Figure 3: A line topology: the destination moves from S to S’.

The update area is between S and S’. The flow of data and em-

bedded control information is indicated by black and gray ar-

rows, respectively. A larger arrow means higher traffic.

We analyze two different topologies under the same scenario: N
nodes generate data at a constant rate (p packets/sec) and a desti-
nation moves at h hops/sec. One hop is the communication range
of a node. This analysis makes two simplifying assumptions. First,
it models mobility as a series of discrete steps, as the mobile node
stays at each location for a certain time (wait time t), jumping to a
new location D = ht hops away. Second, it assumes there are no
packet losses. We calculate routing cost in terms of hops.

Let the destination change its location from S to S′. A node m

needs to be repaired if its next hop towards the destination is a node
further away from S′ than m. The update area is a space around
the destination containing all nodes that need to be repaired. The
basic trade-off is between the time required to repair nodes inside
the update area and the mobility of the destination.

3.1 One Dimensional Case
We first consider a simple line topology in Figure 3. The update

area includes nodes between the new and the old locations of the
destination, including the old location. The following theorem de-
rives a bound on the data rate required to support a given speed and
wait time of the destination.

THEOREM 1: Let the destination S be at the center of the N

nodes as in Figure 3. Given the beacon interval b, the speed of the
destination h and wait time t, WARP supports the mobility if the
data rate p satisfies the following inequality:

p >
2(D − 1)

{N − 2(D − 1)}(t− b)
, where D = ht.

PROOF: The routing state of the nodes located in the update area
is repaired via beacons from the destination and subsequently trans-
mitted data packets. The time that is required to wait for a control
or data packet to be transmitted is the inverse of the outgoing con-
trol or data rate at a given node. Let P be the aggregate data rate
of the network (P = Np). Consider node m that is k hops away
from S (see Figure 3). Since S was a central node, the aggregate
data rate that is pushed towards m is P

2
− kp and the outgoing rate

at this node is P

2
− (k − 1)p. The time required to repair all nodes

in the update area is then

b+ 1
P

2
−(D−2)p

+ · · ·+ 1
P

2
−2p

+ 1
P

2
−p

+ 1
P

2

< b+ 2
p
{ 1
N

+ 1
N−2∗1

+ 1
N−2∗2

+ · · ·+ 1
N−2∗(D−2)

}

< b+ 2
p
{ D−1
N−2(D−2)

} < b+ 2
p
{ D−1
N−2(D−1)

} < t

⇔ p >
2(ht−1)

{N−2(ht−1)}(t−b)
.



Figure 4: A grid topology. Data and embedded control flows

between old and new locations of a destination node (S and S’,

respectively), represented by black and gray arrows, with sizes

proportional to traffic. The gray half-disk denotes the update

area.

3.2 Two Dimensional Case
We now consider a two dimensional topology with a uniform

node distribution, as shown in Figure 4. We overestimate the update
area by a half-disk centered at the new location of a destination with
a radius equal to the distance between the new and the old location:
For each node (e.g., node N2) that is outside the update area, the
next hop node towards S is closer to S′ than N2. This is because
S is inside circle centered at S′, with radius |S′N2| (the dotted
half-circle shown in Figure 4).

THEOREM 2: Let the destination S be at the center of the grid
topology. Given the beacon interval b, the speed of the destination
h and wait time t, WARP supports mobility of S, if the data rate p

satisfies the following inequality:

p >
2π

t− b
{

(D − 1)2

N − π(D − 1)2
},

where t, b and D are wait time, beacon interval, and displacement
after a pause time(=ht) respectively.

PROOF: The repair time is constrained by the longest path in the
update area (see Figure 4). Let node m be k hops away from the
destination S and the node density be 1 for simplicity. Total outgo-
ing data rate at node m can be estimated as the total traffic gener-
ated outside the k-hop neighborhood of S, divided by the length of
the k-hop boundary. The k hop neighborhood has an area of πk2

and a circumference of 2πk. Given uniform node density, the rate
of traffic crossing the k-hop boundary is P−πk2p. Hence, the out-

going traffic rate at m is P−πk2p

2πk
. The repairing process is similar

to 1D case:

b+ 2π(D−1)

P−π(D−1)2p
+ 2π(D−2)

P−π(D−2)2p
+ · · ·+ 2π·1

P−πp

< b+ 2π(D−1)

P−π(D−1)2p
(D − 1)

= b+ 2π
p
{ (D−1)2

N−π(D−1)2
} < t

⇔ p > 2π
t−b

{ (D−1)2

N−π(D−1)2
}.

Figure 5: WARP data packet header. Grey fields are stan-

dard CTP headers. WARP adds two headers (white) in the re-

served portion of a CTP header: the spiral bit S and the spiral

time-has-lived STHL, which counts how many hops a spiraling

packet has taken.

Figure 6: WARP state machine.

4. WARP IMPLEMENTATION
We have implemented WARP as a simple modification to the

version of CTP packaged as part of TinyOS 2.1. The CTP data
header, shown in Figure 5, has six unused bits in its control field.
WARP uses these unused bits for its two additional fields, the “S”
bit (spiraling bit) and STHL (the spiral hopcount)

For each spiral packet, WARP initializes STHL and increments it
on each hop. WARP drops a packet when STHL exceeds a thresh-
old to prevent congestion. To make sure the center of the spiral
stays at the last known location of the destination, direct children
of the destination initialize STHL to zero, and other nodes to STHL
of the most recently forwarded spiral packet. In addition to STHL,
WARP uses a single bit, the S (spiral) bit, to distinguish whether a
packet is spiraling or not.

4.1 Packet Types
WARP uses STHL and S bit values to distinguish three data

packet types: tree, spiral, and update. All are data packets which
are sent as unicasts to a next hop. STHL is five bits, so the WARP
header takes six bits, which can be placed in the 6 reserved bits of
the CTP packet header, shown in Figure 5.

A tree packet is the same as a standard collection packet. A node
sends to the next hop which provides the minimum cost route. A
tree packet has a cleared S bit and STHL = 0. A spiral packet is
a packet being sent in a spiral. It has the S bit set and a non-zero
STHL. Nodes forward spiral packets according to the algorithm in
Section 2.3. An update packet is sent up a collection tree like a tree
packet. However, it also communicates that the sender has stopped
spiraling because it has found a new, valid route. An update packet
has a cleared S bit and STHL = 1.

4.2 Routing State
WARP has three states: settled (normal operation), repairing

(mobility detected), and settling (destination discovered). Figure 6
shows the WARP state machine. Inheriting from CTP, WARP main-
tains a neighbor table with routing cost information, and chooses
the neighbor with minimum cost as its default parent.

Nodes are in the settled state when the current collection tree
is stable. Nodes mark incoming data packets as tree packets and



forward them to their parents. While in the settled state, WARP
behaves like a standard collection routing protocol.

Nodes enter the repairing state when they detect that the destina-
tion has moved enough to break the existing topology. This occurs
when a child of the destination detects its link has broken or when
a node is asked to forward a spiral packet. Nodes remain in the
repairing state until they hear a beacon from a destination or an up-
date packet. In this state, nodes mark data packets as spiral packets
and forward them along spiral trajectories described in Section 2.3.

Nodes enter the settling state from the repairing state when they
hear a beacon from a destination or when they overhear an update
packet. Nodes in the settling state mark data packets as update
packets and send them towards the destination. Nodes transition
from the settling state to the settled state after a fixed time interval.
This time interval needs to be long enough, so that the nodes in the
settling state can update their routing tables with valid routes to a
destination. In practice, using the same interval as the destination’s
beacon interval works well.

Our WARP implementation adds an additional 2.8kB of code
over CTP’s 5.5kB (a total of 8.3kB) and an additional 33 bytes of
RAM over CTP’s 1kB.

5. EXPERIMENTAL METHODOLOGY
Our evaluation examines three parameters: the network topol-

ogy, the destination’s speed, and the data rates to the destination.
Generally speaking, data rates involve continuous traffic well be-
low saturation. Sensor nodes are deployed with a neighbor count
between five and eight. Only the destination moves, at a rate repre-
sentative of a person’s walking or jogging speed. All other nodes,
while stationary, have real-time link dynamics from the surround-
ing environment, such as burstiness and external interference.

5.1 Metrics
Sensor networks are often deployed in remote places and have

to rely on a self built infrastructure. Scarcity of resources, par-
ticularly energy, demands that network protocols are implemented
efficiently with a minimum overhead. Consequently, the two main
metrics we use to evaluate WARP are routing cost and reliability.
We also measure number of hops that data packets take when deliv-
ered to the sink, as a rough estimate of the packet delivery latency.

Reliability. One of the main performance indicators of routing pro-
tocols is reliability of packet delivery to its destination. Lossy radio
links, network congestion, and mobility of nodes all negatively in-
fluence reliability. We measure reliability as a fraction of packets
successfully delivered to the destination. A trade-off exists between
control packet overhead and reliability, that is, better reliability can
be achieved if more control packets are utilized.

Cost. Cost is the number of packets the network transmits divided
by the number of unique packets a destination receives. Cost is a
direct measure of efficiency of routing algorithms and an estimate
of their energy requirements.

PL. Path length counts the number of hops a packet has taken to a
destination and is a rough measure of packet latency as well as how
much work it took to deliver a packet. Analyzing the PL distribu-
tion helps verify the correctness of spiral looping because loops, if
not controlled, would lead to very high PLs.

5.2 Comparison Protocols
We compare WARP to two sensor network protocols: CTP and

Hyper. The Collection Tree Protocol (CTP) [15], the standard col-
lection protocol used in sensor networks today, serves as the pri-
mary point of comparison. As CTP is highly optimized for station-

ary networks, it allows us to quantify the cost of mobility. Ideally,
WARP for a mobile destination should approach the reliability and
the cost of CTP for a static sink. CTP also illustrates how even very
slow sink speed affects performance of the existing data collection
protocols. Anecdotally, other protocols, such as MultihopLQI [29],
perform worse than CTP.

We selected Hyper [26] as a representative sensor network mo-
bile routing protocol. Hyper supports fast neighborhood assess-
ment and efficient tree convergence to quickly reconfigure networks.
Its two essential mechanisms are a fast link convergence algorithm
that estimates link qualities of one hop neighbors of a destination
and a fast tree building algorithm that builds a minimum cost tree
rooted at the destination. Whenever a destination enters a new re-
gion, Hyper triggers the rapid building of a collection tree using the
newly estimated connectivity parameters (i.e., the ETX metrics) of
the destination’s neighbors.

We also tested TYMO, the TinyOS implementation of DYMO,
a MANET distance vector routing algorithm [11]. We found that
its packet delivery ratio drops below 10% under load or even slight
mobility. This is due to the fact that MANET protocols route among
possibly all mobile nodes and thus are overly pessimistic. This re-
sults in significant routing overhead and long delays in delivering
packets to a destination under our mobility and data rate param-
eters. Correspondingly, while we have experimentally compared
WARP with DYMO, DYMO’s performance is so poor that it does
not represent a fair comparison. While we think it is possible to
implement versions of DYMO with good performance, that is itself
a subject of a separate research effort.

5.3 Topologies
We evaluate WARP on three topologies:

Mirage Testbed: 60 motes at Intel Research Lab, (Figure 7). A
transmission power of -10dBm creates a network 5 to 6 hops across.
These experiments use 802.15.4 channel 26, CTP Noe [15], and the
standard TinyOS CSMA/CA protocol.

TOSSIM continuous topology: an 8x8 grid topology simulated
by TOSSIM, the standard TinyOS simulator [21]. Nodes have a
2-3 grid cell communication range, depending on TOSSIM’s node
hardware variations.

TOSSIM discontinuous topology: 109 randomly placed nodes in
a 9000m2 region based on the floor plan of a building at Stanford.
The building enforces a U-shaped network (Figure 7b). 21 trajec-
tory nodes along a bridge form a synthetic mobility trace (this will
be explained in Section 5.4). Nodes at the opposite sides of the
bridge cannot communicate directly: crossing the bridge requires
all data packets be significantly re-routed (discontinuous topology
in this sense).

5.4 Mobility Models

Synthetic mobility. Motion along a predefined trajectory is simu-
lated by having different physical nodes take turns being the desti-
nation node. The destination node resides at precisely one trajec-
tory node at any time. After some time, called the wait time, the
destination discretely jumps to the next trajectory node. The inter-
nal state of the destination is also copied to the next trajectory node.
This simulated mobility model allows repeatable experiments and
does not require physical presence at the testbed.

Real mobility. In this model, a researcher carries a destination
node around the Mirage testbed, moving continuously. Unlike the
synthetic model, this movement pattern reflects obstacles such as
walls, and is independent of the underlying network topology. It



(a) Mirage testbed (b) Discontinuous TOSSIM topology

Figure 7: Data source and trajectory nodes are denoted by circles and rectangles, respectively. A destination node moves along the

boundary as depicted by arrows.

Figure 8: Aggregate data rates P to support mobility h for

three different beacon intervals in a grid topology. The top line

is for a TOSSIM experiment where data rates giving 80% reli-

ability are plotted.

is a true movement speed, rather than an estimated one from hops
per second. Furthermore, the presence of a user introduces a highly
dynamic and directional source of signal attenuation.

We test speeds that correspond to slow, regular, and fast walk-
ing (0.7 m/s, 1.5 m/s, and 2.9 m/s). In TOSSIM, this translates
to 2, 4, 6, and 8 second wait times per hop (0.5, 0.25, 0.17, and
0.125 hop/s). In both simulation and testbed experiments, we let
the network initialize for 400 seconds before the destination starts
moving. Each node generates 100 data packets at a constant rate.
Due to the different number of nodes in simulation and on the
testbed, we have slightly different overall data rates: 4.3, 7.1 and
21.3 packets per second (pps) in simulation and 3.3, 5.4 and 16.3 pps
in the testbed.

6. EVALUATION
We evaluate WARP in simulation and experimentally. The TOS-

SIM simulator [21] allows us to validate a simple, controlled net-
work topology as well as a challenging, discontinuous topology a
testbed cannot easily create or control. Testbed experiments on the
Intel Mirage testbed [12] verify WARP’s behavior in a real network
and with real mobility tests.

6.1 Theoretical Validation
Figure 8 shows plots for the theoretical bounds described in Sec-

tion 3, using the grid topology with a 4s wait time and three dif-
ferent beacon intervals. This shows that a higher mobility can be

supported by a higher data rate as well as a smaller beacon interval.
The TOSSIM simulations verify this trend.

6.2 Synthetic Mobility in Mirage
Figure 9 shows WARP’s performance under synthetic mobility in

the Mirage testbed. With a stationary destination, WARP defaults
to CTP’s performance. Across all data rates and even the highest
tested speed, WARP’s reliability stays above 83%.

Mobility decreases reliability while increasing cost and path len-
gth. WARP speculatively routes data packets to a mobile destina-
tion, increasing path length. However, WARP adapts rapidly, intro-
ducing less than one additional hop on average. Discovering and
repairing routes increases WARP’s cost under mobility. The cost
increase is partially due to longer path lengths and partially due
to a lower delivery ratio. Many of the lost data packets are spiral
packets which do not find the destination in time. Figure 9(b) is the
path length of only delivered packets.

WARP’s performance improves with higher data rates. As long
as the aggregate data rate prevents the destination node from mov-
ing outside the update area without being contacted, WARP can
quickly and efficiently deliver packets.

6.3 Simulated Discontinuous Network
We examine how WARP performs when a topology is discon-

tinuous, when successive next hops of the destination node cannot
communicate directly. For this experiment, we use the discontinu-
ous topology shown in Figure 7(b). We test three different speeds
at an overall data rate of 3 packets/second. WARP performs very
well, achieving 93%, 87%, and 82% reliability at speeds of 0.8m/s,
1.6m/s, and 3.3m/s, respectively. The destination node crosses the
bridge 15 times for the slowest speed and almost 50 times for the
fastest speed.

This experiment is a worst-case situation for WARP: when the
destination node moves across the bridge, WARP has to reconfigure
the entire network. To measure the effect of this, we approximate
throughput by counting how many packets the destination receives
in 100ms-time intervals. We low-pass filter this value with a 2.5sec-
window for legibility.

Figure 10 plots the throughput when it moves at 0.8 m/s. There
are two classes of network reconfiguration events. Long periods
of low throughput correspond to bridge crossings that require ma-
jor topology changes. Short periods of slightly reduced throughput
correspond to regular movements of the destination node where lo-
cal reconfiguration is sufficient. Figure 10 shows the long events as
gray areas 1 and 2; the short events are too transient to be visible
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Figure 9: Mirage experiments. Performance of WARP for a mobile destination is compared to that of CTP with a static sink. For a

comparison to CTP with a mobile sink, see Section 6.5.

Figure 10: Data throughput at the destination moving along a

predefined trajectory, averaged over 15 experiments. Data rate

was 3 pps and the average achieved throughput was 2.8 pps

(92.6%). Two gray areas in the graph show when the destina-

tion node crossed the bridge in two directions.

(they averaged < 0.2sec). Despite large, discontinuous movement
of the destination node, WARP achieves good reliability through
buffering and retransmission of data packets.

6.3.1 Real Mobility in Mirage

Table 1 shows WARP’s performance as a researcher carries the
destination through the Mirage testbed. Each data point is the result
of 3 experiments of 8 minutes. The results in Table 1 show that
WARP performs similarly to the synthetic mobility experiments,
validating our simulation results. At normal walking speed (1.5
m/s), WARP maintains a reliability of 93% while suffering from
only a 10% increase in path length and a 57% increase in cost.

We decompose WARP’s cost into control, spiral, and data pack-
ets in Table 2. Spiral packets, which actually discover positions of a
destination, are a small fraction – between 4% and 7% – of the total
load. Using speculative routing, the cost of finding a mobile desti-
nation is quite small: WARP spends much more effort optimizing
its routing topology than discovering it.

6.4 Individual Mechanisms
Prior sections evaluated WARP’s mechanisms together in a com-

plete protocol. This section examines how each of the specific
mechanisms contributes to WARP’s performance.

6.4.1 Mobility detection

We measure how the beacon interval affects WARP’s perfor-
mance. The trade-off is between proactively detecting mobility
through beacons or reactively through transmission failures. In the

Speed Reliability Path Length Cost

0m/s 99.2% 3.66 4.59

1m/s 94.4% 3.97 6.19

1.5m/s 93.0% 4.05 7.23

Table 1: Real mobility at 8.1pps in the Mirage testbed. Relia-

bility stays above 90% and cost increases by 55%.

0m/s 1m/s 1.5m/s

Data 90.8% 83.2% 81.2%

Spiral 1.7% 6.2% 5.8%

Control 7.5% 10.6% 13.0%

Table 2: Cost Breakdown of WARP with real mobility in Mi-

rage experiments: the data rate is 5.4pps, and speeds are in

meters/second. Even at high mobility, the control overhead is

below 15%.

Interval Reliability PL Cost Drop Trigger

125ms 90.6% 3.8 10.1 441 2%

1s 93.6% 4.9 9.2 258 70%

2s 97.6% 5.3 9.1 90 45%

Table 3: Effect of beacon interval under synthetic Mirage mo-

bility (1.5 m/s and 5.4 pps). Drop is spirals lost to TTL, and

Trigger is the percentage of beacons that were triggered by a

spiral packet.



Figure 11: Performance of a simple beaconing scheme with no

spiral packets or beacon suppression. The destination moved

at 0.5 hops/s and the data rate was 7.1 pps. Reliability is below

70% and the lowest cost is 18.

Reliability Queue Drop Loops/s

No-Spiral 75.6% 34% 23.8

WARP 90.5% 0% 5.1

Table 4: Comparison of WARP with No-Spiral protocol of

Fig 11 with 250 ms-beacon interval. Compared to a simple link

repair strategy, WARP drops fewer packets and has fewer rout-

ing loops.

former case, WARP’s routing state is reconfigured rapidly, allowing
for lower latency of packet delivery. In the latter, WARP’s beacon
suppression leads to low routing overhead.

Table 3 shows WARP with three different beacon intervals. A
small beacon period reduces path length, but leads to more packet
drops. Collisions by frequent beacons cause more false-positive
mobility events generating unnecessary spiral packets. As more
spiral packets route speculatively, they have lower reliability.

6.4.2 Speculative Routing and Local Repair

We quantify the benefit of speculative routing and local repair
by disabling spiraling and beacon suppression. We call this simple
link-repair protocol No-Spiral.

We first find the best beacon interval for a given topology and
workload. Figure 11 shows that, for 7.1 pps and 0.5 hops/s, a
250 ms interval is a good trade-off point between cost and reliabil-
ity. We compare No-Spiral at this beacon rate to WARP in Table 4.
No-Spiral has lower reliability with many of the losses being due
to queue overflows: the protocol is slow in adapting to topology
changes and so queues overflow as it retries failed links. WARP’s
ability to proactively find a destination leads to much better relia-
bility than repairing links through simple beaconing.

6.4.3 Control Traffic Suppression

To evaluate the effect of control traffic suppression on cost, we
decompose WARP’s cost in the Mirage testbed. As shown in Ta-
ble 2, the packets can be divided into data, spiral, and control pack-
ets. Control packets can be further divided into WARP beacon and
CTP beacon packets (WARP does not modify control mechanisms
of the underlying protocol). We compare the expected number of
beacons, based on the beacon timer, to the number of beacons that
the mobile destination actually transmits. WARP suppresses 78-
82% of beacons from the destination node, and beacons from the
destination node correspond to less than 10% of the total control
cost. WARP’s control suppression enables it to introduce only a
small overhead on top of the control traffic of its underlying rout-
ing protocol.

Reliability PL Cost Ingress

4.3pps 84.2% 12.0 43.7 83

7.1pps 88.7% 13.1 72.1 824

21.3pps 48.8% 10.3 96.0 8146

Table 5: TOSSIM grid with high mobility (2 hops/s). Ingress

denotes packets dropped due to ingress drops.

6.5 CTP and Hyper
Figure 12(a) shows reliability of WARP, Hyper, and CTP in the

TOSSIM grid topology. We use this topology because its regularity
and density is the simplest case for a mobile routing protocol. For
example, it does not penalize Hyper for Mirage’s quirks.

When the destination is stationary, all three protocols have a re-
liability above 90%: WARP simply defaults to CTP and Hyper per-
forms very well. Reliability decreases as the destination moves
faster. WARP maintains above 89% reliability even at the highest
speed. Hyper’s reliability drops to below 60% under high mobility.

Hyper’s poor performance at high mobility is because it was de-
signed for discrete, rather than continuous mobility. Hyper expects
users to rarely switch transmission domains and does not maintain
connectivity during motion. In our evaluation, we have a stream of
data coming from sensors at all times. This causes Hyper to back-
log a significant amount of data for later transmission, congesting
the network after the new routing tree becomes available. In con-
trast, WARP speculatively routes packets to the destination while
updating its routing state and does not accumulate many data pack-
ets for later delivery. Consequently, Hyper’s reliability decreases
with higher speeds while WARP maintains high reliability.

The difference in the cost metric shown in Figure 12(c) is even
bigger (note that the Y-axis is logarithmic). As the destination
changes the transmission domain every few seconds in our case,
Hyper incurs an order of magnitude larger routing cost than WARP.
Finally, Figure 12(b) shows the average path length for packets de-
livered to the destination. As these results are only for successfully
delivered packets and there are few delivered packets for Hyper at
high mobility, the PL of Hyper decreases with higher mobility.

6.6 WARP limitations
Finally, to understand WARP’s limitations, we evaluate its per-

formance at very high speeds and data rates.
The results shown in Table 5 illustrate that WARP techniques

become inefficient when the destination moves very fast relative to
the underlying topology. Both the path length and routing overhead
increase dramatically: spiral whirlpool packets fail to find the new
location. Consequently, the network topology does not reconfigure
and WARP drops data packets due to overflowing queues. If the
destination moves so quickly that it exits the update area before the
topology can repair, then WARP is unable to operate well.

Previous results showed that WARP’s performance improves at
higher data rates. However, this is only true as long as the data rate
does not saturate the network. If the destination is moving very
fast, the high degree of speculative routing increases cost and path
length. If the data rate is high, this higher number of transmissions
causes nodes to drop data packets before they can distribute signal-
ing information. Higher speeds lower the data rate which WARP
can support.

Table 6 examines how mobility rates affect performance at a very
high data rate of 64 pps. In this case, path length, cost and reliabil-
ity remain stable. The high data rate allows WARP to quickly find
and repair the topology.
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Figure 12: TOSSIM grid experiments over varying speeds and at 21.3pps data rate. CTP, Hyper (HYP), and WARP (WR) results

are shown.

Speed Reliability PL Cost

0hop/s(CTP) 36.1% 6.36 29.7

0.13hop/s 44.8% 6.56 27.6

0.17hop/s 46.4% 6.84 26.2

0.25hop/s 45.9% 6.85 27.3

0.5hop/s 42.1% 6.85 30.0

Table 6: TOSSIM grid: evaluation of WARP for high data rate

(64 pps).

6.7 Summary
WARP is able to route packets to a highly mobile destination,

even when its motion is not continuous with the underlying connec-
tivity. In continuous scenarios, simulation and testbed results show
WARP’s delivery ratios as high as 99.7%, and do not drop below
80%. WARP is able to quickly detect mobility through a com-
bination of proactive (beacons) and reactive (data) mechanisms,
but suppresses unnecessary beacons (roughly 80%) to reduce its
overhead. WARP’s in-band signaling allows data packets to pass
the few bits of needed control information, reducing control traf-
fic needs further: WARP’s beacons constitute less than 10% of the
control cost. WARP’s speculative routing quickly finds new routes,
while spiral packets constitute only a small portion of the over-
all data traffic. Finally, collaborative and localized reconfiguration
means that once new routes are found, spirals stop quickly.

7. RELATED WORK
Routing in mobile ad-hoc networks (MANETs) has been an ac-

tive area of research for the past 15 years [25, 24, 13, 11]. These
algorithms, however, failed to achieve widespread adoption in real
world deployments. The complexity of the MANET problem –
every node is mobile – is one reason for this disconnect: instead,
MANET protocols are used in static meshes [3, 1, 2]. Perhaps a
more significant factor in achieving high performance outside the
simpler world of simulation is the basic challenges of wireless by
itself [6]. Even though mechanisms that improve reliability of wire-
less communications are relatively well known, few protocols im-
plement them in practice. Routing in a static mesh is a challenging
enough problem by itself which has only begun to be solved effec-
tively in the past few years [8, 15]: fully mobile ad-hoc networks
remain an open and difficult problem.

WARP carefully monitors wireless links over time and rapidly
adapts to changes in the underlying network topology. It improves
reliability of the links by using unicast packet transmissions and
link layer acknowledgments and reliability of multi-hop routes by
using ETX as opposed to the hopcount metric. WARP limits net-

work congestion by meticulously keeping packet transmission over-
heads down. It uses data traffic statistics to estimate link qualities,
suppresses majority of control beacons, and repairs the routing state
locally rather than by an uncontrolled network-wide flood.

Clearly, WARP benefits by considering the narrower case of a
mobile node moving through a static mesh. However, in our expe-
rience, existing protocols [11] fail entirely in these static mesh ex-
periments with even a limited mobility of the sink. WARP is able
to use very simple mechanisms to achieve high packet delivery and
low cost in real as well as controlled mobility experiments.

One notable exception of wireless routing protocols used in prac-
tice is OLSR [13]. It is used in community wireless mesh networks
in Athens [1], Berlin [2], and Leipzig [3]. These are, however, not
mobile ad-hoc networks as they consist of stationary nodes [22].
Furthermore, these successful deployments change OLSR to use
ETX as the routing metric, rather than hopcount, an extension that
is part of the in-progress OLSRv2 specification [5].

WARP’s approach of using the datapath to maintain a routing
topology is similar to CTP’s datapath validation [15]. WARP takes
CTP’s approach one step further. Where CTP uses data packets to
detect when control plane updates are needed, WARP uses them to
replace control messages whenever possible through suppression.

WARP combines the ideas from AODV-LL [9] and MicroRout-
ing [14] as a way to achieve both low cost and fast mobility detec-
tion. It borrows the idea of link-layer feedback to detect destination
mobility from AODV-LL and proactive mobility discovery through
beacons from MicroRouting.

WARP builds on the long history of local recovery research [14,
20, 27, 10]. Like many of these local recovery schemes, WARP de-
tects broken links, retrieves previously cached alternate routes, and
invalidates stale routes. Similar to AODV-BR [20], SLR [27], and
query localization [10], WARP limits the range over which nodes
search for a route. However, WARP differs from these approaches
in that it actively probes and incrementally builds new routes with-
out relying on a source or a destination to initiate route recovery.

WARP has intellectual similarities to consensus routing [16],
which uses the notion of network-wide consensus to detect incon-
sistencies and resort to backup routing schemes when needed. But
unlike consensus routing, which uses a controlled or periodic con-
sensus mechanism, WARP is entirely decentralized and distributed,
as its repairs are local.

In a similar vein, failure carrying packets [19] propose an ex-
tension to link-state routing where packets contain routing failure
information. Gateways route around failures through a periodic up-
date of consensus on network state.

Finally, Hyper [26] is perhaps the most similar protocol to WARP,
as it routes data from a static network to a mobile node. But unlike
WARP, which is designed for continuous mobility, HYPER is in-



tended for discrete mobility events. As our evaluation in Section 6
shows, this causes HYPER to have highly degraded performance
when a destination’s movement is continuous.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the Whirlpool Ad-hoc Routing Pro-

tocol (WARP), a data collection protocol for a mobile destination.
WARP maintains high reliability at varying data rates and mobility
speeds. WARP achieves these results by rapidly detecting mobility
and locally repairing topology using the existing tree topology. The
key insight is speculatively sending data packets around the last
known location of a destination. WARP carefully monitors wire-
less links over time and rapidly adapts to changes in the underlying
network topology. It improves reliability of the links by using uni-
cast packet transmissions and link layer acknowledgments and re-
liability of multi-hop routes by using ETX as opposed to hopcount
metric. WARP limits network congestion by meticulously keeping
packet transmission overheads down. It uses data traffic statistics
to estimate link qualities, suppresses majority of control beacons,
and repairs the routing state locally rather than by an uncontrolled
network-wide flood.

WARP weakens the separation between the control and data plan-
es, using data packets to probe and repair the topology. Conse-
quently, WARP can deliver data and maintain routing state simulta-
neously, allowing it to aggressively suppress control packets. These
techniques cause WARP to remain efficient while improving per-
formance as the data rate increases.

In our future work, we would like to investigate three areas of
study. The first is the importance of the beacon period in WARP.
Our results indicate that lower beacon periods improve WARP’s
performance, as fast beacons can reduce the efficacy of whirlpool-
ing. However, this rate depends on the data rate; if there are few
packets to whirlpool, then WARP might need more control packets.
There is a tension between local topology repair and speculative
routing; having WARP automatically adapt its rates accordingly
seems beneficial.

The second is the trade-off between data and control traffic in
topology maintenance. Data traffic can quickly find new routes and
detect broken routes, but can only use entries in a node’s neighbor
table; WARP might benefit greatly from opportunistic reception,
more so than its current spiral packet snooping affords.

Finally, we would like to study how to dynamically adjust the
range of local repair. WARP currently uses a fixed range value,
even though the optimal value depends on many dynamic factors,
such as mobility, the beacon rate and the data rate. We believe
that dynamic adjustment and tuning could decrease routing main-
tenance cost while increasing mobility responsiveness.
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