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Abstract A new cryptographic hash function Whirlwind is presented. We give the full
specification and explain the design rationale. We show how the hash function can be imple-
mented efficiently in software and give first performance numbers. A detailed analysis of the
security against state-of-the-art cryptanalysis methods is also provided. In comparison to the
algorithms submitted to the SHA-3 competition, Whirlwind takes recent developments in
cryptanalysis into account by design. Even though software performance is not outstanding,
it compares favourably with the 512-bit versions of SHA-3 candidates such as LANE or the
original CubeHash proposal and is about on par with ECHO and MD6.
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142 P. Barreto et al.

1 Introduction

Whirlwind is a cryptographic hash function that follows the Sponge model [5]. Its compres-
sion function is based on the repeated application of a round transformation, similar to a
block cipher, and designed according to the Wide Trail strategy [9].

The design is inspired by the Whirlpool hash function [2]. With this new design,
we want to provide a higher security, keeping the performance at the same level. Since
the selection of AES, there have been several block cipher [1], stream cipher [7] and
hash function proposals [3,6,12] based on its design principles. In this design we have
incorporated the feedback about the security level and implementation issues of AES-
based designs. This has led to some innovations which will be detailed in the following
section.

1.1 Motivation

A natural question to ask is whether it makes sense to propose a new hash function design
one year after the start of the SHA-3 competition organized by NIST in order to come up
with a new hash function standard. We have been following the competition actively and we
have seen that many of the submissions have been broken already. The methods to cryptana-
lyse hash functions have been improved very significantly since the start of the competition.
Hence it is not unthinkable that after the competition all submissions are either broken, very
slow or not acceptable because of other reasons.

The Whirlwind design takes into account the recent development in hash function crypt-
analysis, in particular the rebound attack, and adds a security margin as a precaution against
possible further improvements. We employ large S-boxes (16-bit inputs and outputs) for low-
probability differential trails. An implementation can still be very efficient due to our special
choice of basis for the finite field GF(216) which speeds up implementations that compute
the S-box entries instead of storing them in a large lookup table. The formulas that we derive
in this paper may also be useful to derive compact hardware implementations of AES and
AES-based hash functions.

The diffusion map has the same optimal diffusion properties as the Whirlpool diffusion,
but is chosen in a way that makes the algebraic description of the round transformation less
simple. This should alleviate the concerns about the applicability of algebraic attacks. Fur-
thermore, we show in this paper a potential weakness of diffusion maps based on circulant
matrices.

1.2 Overview of the paper

We fully specify Whirlwind in Sect. 2. Next, in Sect. 3, we explain our construction for
the S-box and describe how it can be implemented without large lookup tables. We discuss
the security of Whirlwind in Sect. 4. Section 5 deals with practical implementation issues
and gives some performance figures for software implementations and estimates of memory
requirements on 8-bit platforms.
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Whirlwind: a new cryptographic hash function 143

2 Specification of Whirlwind

2.1 Internal state

Whirlwind has an internal state of 1024 bits, which can be represented by an 8 × 8 array of
16-bit elements:

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7
a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ [
ai, j

]7
i, j=0 .

Each of the 16-bit elements of the state can in turn be represented by a 2 × 2 array of 4-bit
elements:

∀i, j : ai, j =
[

ai, j,0,0 ai, j,0,1

ai, j,1,0 ai, j,1,1

]
.

The i-th row of the state is denoted by ai or by ai,∗,∗,∗.

2.1.1 Representation of finite fields

Elements of GF(24) are expressed in terms of a tower field decomposition to GF(22) and
GF(2) using normal bases at each level. Let GF(22) be described by adjoining a root w of
the primitive polynomial X2 + X + 1 over GF(2) and analogously GF(24) by the adjunction
of a root x of the primitive polynomial X4 + X + 1 over GF(2). All nonzero elements of
GF(22) and GF(24) can then be expressed in terms of powers of w and x , respectively. The
elements α := w ∈ GF(22) and β := x7 ∈ GF(24) are normal, i.e. their conjugates form a
normal basis over the respective subfield. The normal bases for the tower field decomposi-
tion are then given by {α, α2} for the construction of GF(22) over GF(2) and {β, β4} for the
construction of GF(24) over GF(22). This choice of bases is further detailed and put into a
general perspective in Sect. 3.

An element of GF(24) ∼= GF(22)
2 ∼= (

GF(2)2
)2

in this normal bases representation
is identified with the integer corresponding to the sequence of its coefficients in GF(2)

and is written in hexadecimal. For example, 6x corresponds to ((0, 1), (1, 0)) which is(
0 + 1 · α2, 1 · α + 0

) = (w2, w) in GF(22)
2

and w2 · β + w · β4 = x6 in GF(24).

2.2 The round transformation

The round transformation consists of four maps, which are described below.

2.2.1 The nonlinear substitution layer γ

The nonlinear layer acts in parallel on the 64 elements of 16 bits. Each of these elements is
interpreted as an element of GF(216) and replaced by its multiplicative inverse:

123



144 P. Barreto et al.

γ : GF(216)8×8 → GF(216)8×8:
[
ai, j

]7
i, j=0 �→ [

(ai, j )
−1]7

i, j=0 ,

with the additional convention that zero is mapped to zero.

2.2.2 The linear maps θ and τ

The linear map τ acts as a transposition on the 8 × 8 matrix that represents the state:

τ : GF(216)8×8 → GF(216)8×8:
[
ai, j

]7
i, j=0 �→ [

a j,i
]7

i, j=0 .

Note that the explicit implementation of τ can be avoided by implementing two different
round transformations: one where θ acts on the rows, and one where θ acts on the columns.

The linear map θ acts in parallel on the 8 rows of the state:

θ : GF(216)8×8 → GF(216)8×8:
[
ai, j

]7
i, j=0 �→ [

λ(ai )| j
]7

i, j=0 .

We can also write this as follows:

θ(a) = b ⇔ ∀i : λ(ai ) = bi .

Furthermore, λ acts in parallel on the 4-bit subcomponents of the ai, j :

λ(ai ) = bi ⇔

⎧⎪⎪⎨
⎪⎪⎩

λ0(ai,∗,0,0) = bi,∗,0,0

λ1(ai,∗,0,1) = bi,∗,0,1

λ1(ai,∗,1,0) = bi,∗,1,0

λ0(ai,∗,1,1) = bi,∗,1,1

The maps λ0, λ1 are defined as follows:

λ0: GF(24)1×8 → GF(24)1×8: ai,∗,k,k �→ ai,∗,k,k · M0

λ1:GF(24)1×8 → GF(24)1×8: ai,∗,k,1−k �→ ai,∗,k,k · M1

with

M0 = dyadic (5x ,4x ,Ax ,6x ,2x ,Dx ,8x ,3x ) and

M1 = dyadic (5x ,Ex ,4x ,7x ,1x ,3x ,Fx ,8x ) ,

where dyadic (s) denotes the dyadic matrix S corresponding to the sequence s over GF(24),
i.e. Si, j = si⊕ j . For example, writing out M0 in full gives:

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5x 4x Ax 6x 2x Dx 8x 3x

4x 5x 6x Ax Dx 2x 3x 8x

Ax 6x 5x 4x 8x 3x 2x Dx

6x Ax 4x 5x 3x 8x Dx 2x

2x Dx 8x 3x 5x 4x Ax 6x

Dx 2x 3x 8x 4x 5x 6x Ax

8x 3x 2x Dx Ax 6x 5x 4x

3x 8x Dx 2x 6x Ax 4x 5x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this approach for constructing a linear diffusion layer is novel. The functions λ0, λ1

act on elements of GF(24) and have a very simple and elegant description. The functions
λ, θ inherit the optimal diffusion properties of the λi maps. However, if they are described
as acting on elements of GF(216), like the other components of the round transformation,
then this requires the use of a linearized polynomial, rather than a simple matrix multiplica-
tion. This feature should alleviate concerns about the abuse of simple descriptions to mount
algebraic attacks.
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Whirlwind: a new cryptographic hash function 145

2.2.3 The affine layer σ r

The affine layer adds a round-dependent constant cr to the state, in order to break the sym-
metry between different positions in the state.

σ r : GF(216)8×8 → GF(216)8×8:
[
ai, j

]7
i, j=0 �→

[
ai, j + cr

i, j

]7

i, j=0
,

with cr = γ (sr ) and

sr
0, j = 8(r − 1) + j, 0 ≤ j ≤ 7,

sr
i, j = 0, 1 ≤ i ≤ 7, 0 ≤ j ≤ 7.

Here, the integer value defining sr
0, j corresponds to the element of GF(216) obtained by inter-

preting the sequence of its binary representation according to the normal bases decomposition
of GF(216) described in Sect. 3.6.

2.3 The compression function

The compression function ϕ takes as input a 512-bit chaining variable h and a 512-bit mes-
sage block m. It outputs the updated chaining variable g. Both the chaining variable and the
message blocks are represented by 8 × 4 arrays of 16-bit elements.

ϕ: GF(216)8×4 × GF(216)8×4 → GF(216)8×4: (h, m) �→ g = ϕ(h, m).

The updated chaining variable is computed as follows.

1. Initialize the state a:
{

ai, j = hi, j

ai+4, j = mi, j
, 0 ≤ i < 4, 0 ≤ j < 8.

2. Apply 12 iterations of the round transformation, which consists of the sequence
γ, θ, τ, σ r :

b = (©r=12
1

(
σ r ◦ τ ◦ θ ◦ γ

))
(a).

Here, the notation ©r=n
m fr , with m ≤ n, denotes fn ◦ fn−1 ◦ · · · ◦ fm+1 ◦ fm for a

sequence of functions fm, fm+1, . . . , fn−1, fn .
3. Truncate and add the feed-forward:

gi, j = bi, j + hi, j , 0 ≤ i < 4, 0 ≤ j < 8.

Figure 1 illustrates the compression function.

2.4 Output transformation

An output transformation is required in order to avoid trivial length extension attacks. The
output transformation of Whirlwind consists of an extra application of ϕ, with the message
block equal to the 8 × 4 null matrix.

2.5 Truncation encoded in the initialization vector

Whirlwind outputs a digest of 512 bits. Some applications explicitly truncate digests to a
smaller size. Other applications take the digest as an encoding of an integer number, and use
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Fig. 1 ϕ(h, m), the compression
function of Whirlwind h m

12 rounds

g

this number in an operation modulo N . This corresponds to an implicit ‘truncation’ of the
digest to a value between 0 and N − 1.

In order to avoid certain attacks based on explicit or implicit truncation [30], Whirlwind
uses a mechanism to derive adaptable initialization vectors (IVs). The derivation works as
follows. Assume that the output of Whirlwind will be truncated to log2(N ) bits, or reduced
to an integer value between 0 and N − 1. Then N is converted to an 8 × 4 array of 16-bit
elements and the initialization vector h0 is computed as follows:

h0 = ϕ(0, N ).

An application can compute h0 at the start of the digest computation, or it can store the
initialization vectors for the N -values that it expects to meet most frequently.

2.6 Computing a digest

The full algorithm to compute a message digest is as follows.

Input: message m of bit length L <
√

N , L , truncation/reduction value N
Algorithm:
1. Pad m by adding a 1-bit, then as few 0-bits as necessary to obtain a bit string whose
length is an odd multiple of 256, and finally with the 256-bit right-justified binary
representation of L .
2. Split the padded message in t = �(L + 257)/512� blocks of 512 bits, denoted
by mi , i = 0, . . . , t − 1.
3. Compute the Initialization Vector:

h0 = ϕ(0, N ).
4. Process the t message blocks:

hi+1 = ϕ(hi , mi ), i = 0, . . . , t − 1.
5. Apply the output transformation

ht+1 = ϕ(ht , 0).
6. Output ht+1 mod N .
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Table 1 Test vectors for Whirlwind

Digest size in bits Hash value of the empty string (L = 0)

256 23b61b32a3b2abe0475e6e7585dd300d

3643f9c36da9c22e42dace50d01d0012

512 4dfe5a37c81711cdb9abe7aaffd81727

215801642b88eca606214277d1b3ba11

5220d074d153965e692e991326e508af

365cb9aaba97b36b2116c156012b1397

2.6.1 Test vectors

Input–output pairs for the common digest sizes of 256 and 512 bits are provided in Table 1.

3 Efficient implementations by using normal basis arithmetic

Here we briefly summarize some properties of normal bases over finite fields. The finite field
GF(2mp) is isomorphic to a p-dimensional vector space over GF(2m). This implies that it is
possible to construct a basis for GF(2mp). A basis consists of p elements β0, β1, . . . , βp−1 ∈
GF(2mp) such that all elements of GF(2mp) can be written as a linear combination of the
elements β j , with all coefficients elements of GF(2m). As in all vector spaces, there are many
different choices possible for the basis, and the choice of basis may influences the complexity
to describe transformations on the vector space.

3.1 Normal bases

A normal basis is constructed by choosing an element v ∈ GF(2mp) and setting v2mj
, 0 ≤

j ≤ p − 1. Not all elements of GF(2mp) result in a basis over GF(2m), but there exist always
some suitable elements. Let now

x =
p−1∑
j=0

c jv
2mj

, c j ∈ GF(2m).

We raise both sides to the power 2m . This operation is linear over GF(2mp) and corresponds
to the identity transformation for all elements in GF(2m). Then we obtain

x2m =
p−1∑
j=0

(c j )
2m

(v2mj
)2m =

p−1∑
j=0

c jv
2m( j+1) =

p−1∑
j=0

c j−1v
2mj

.

In words, this corresponds to the following property.

Property 1 ([19]) If the elements of the finite field GF(2mp) are represented by p-dimen-
sional vectors over GF(2m) using a normal basis, then raising an element to the power 2m

corresponds to rotating the coordinates of the element by one position.

Let now m = 1 and consider any power map power : x → xn . For example the inversion
map used in the AES S-box i.e. s(x) = x−1 in GF(28) or equivalently s(x) = x254. Clearly,
power(x2) = (power(x))2. Hence we obtain the following property.

123



148 P. Barreto et al.

Property 2 ([24]) If the elements of the finite field GF(2mp) are represented in a normal
basis, then any power map power(x) is rotation invariant:

rot (power(x)) = power(rot (x)).

We use another property of normal bases.

Property 3 ([27]) If v is a normal element of GF(qmp) with respect to (w.r.t.) GF(q), then
w = T rGF(qmp)/GF(qm )(v) is a normal element of GF(qm) w.r.t. GF(q).

Proof Recall that w = T rGF(qmp)/GF(qm )(v) = ∑p−1
i=0 vqmi

. We will show that the conju-

gates wq j
( j = 0, . . . , p − 1) are linearly independent. Indeed

wq j =
⎛
⎝

p−1∑
i=0

vqmi

⎞
⎠

q j

=
p−1∑
i=0

(vqmi
)q j =

p−1∑
i=0

vqmi+ j
,

so each of the conjugates of w is a sum of p different conjugates of v, and all the mp conju-
gates of v appear exactly once in the m sums of p summands each. Since v was chosen to be
a normal element of GF(qmp) over GF(q), the conjugates of v are linearly independent over
GF(q). Consequently, w is a normal element of GF(qm) w.r.t. GF(q). ��
3.2 Normal bases in Whirlwind

For the rest of this section, we set p = 4. We need two elements v2 and v4 as follows. Let v2

be an element of GF(22m), such that

– {v2, v

1
2 } with 
1 = 2m be a normal basis of GF(22m) over GF(2m). Define:

– q2 = T rGF(22m )/GF(2m )(v2) = v2 + v

1
2 , so q2(�= 0) ∈ GF(2m) and

– g2 = q−1
2 v2

2 + v2 = q−1
2 v


1+1
2 , i.e. g2(�= 0) ∈ GF(2m).

Let v4 be an element of GF(24m) such that

– {v4, v

2
4 } with 
2 = 22m be a normal basis of GF(24m) over GF(22m). Define:

– q4 = T rGF(24m )/GF(22m )(v4) = v4 + v

2
4 , so q4(�= 0) ∈ GF(22m) and

– g4 = q−1
4 v2

4 + v4 = q−1
4 v


2+1
4 , i.e. g4 ∈ GF(22m).

The elements v2 and v4 can be chosen independently or we can choose a normal element
v4 ∈ GF(24m) and then derive v2 = T rGF(24m )/GF(22m )(v) ∈ GF(22m). Using Property 3 it

follows that v2 is a normal element in GF(22m). Note that in this case we have q4 = v2 and
q2 = T rGF(22m )/GF(2m )(v2) = T rGF(24m )/GF(2m )(v) (using trace transitivity) and hence
q4, q2 �= 1 (Property 3 implies that q2 is a normal element in GF(2m)).

We show now (analogously to [24]) that the use of a normal basis leads to simple formulas
for products and inverses of elements.
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3.3 Multiplication

Let (a, b) and (c, d) be the coordinates of two elements of GF(22m). Therefore coordinates
of the product are given by the following formula:

(e, f ) = (a, b) × (c, d) ⇔ ev2 + f v

1
2 = acv2

2 + (ad + bc)v
1+1
2 + bdv

2
1
2

⇔ ev2 + f v

1
2 = q2acv2 + (ac + ad + bc + bd)v


1+1
2 + q2bdv


1
2

⇔ ev2 + f v

1
2 = q2acv2 + (a + b)(c + d)v


1+1
2 + q2bdv


1
2

⇔ ev2 + f v

1
2 = q2acv2 + (a + b)(c + d)(g2v2 + g2v


1
2 )

+q2bdv

1
2

⇔
{

e = (a + b)(c + d)g2 + q2ac
f = (a + b)(c + d)g2 + q2bd

Let now (a, b) and (c, d) be the coordinates of two elements of GF(24m), the product in this
case is given by the following formula:

(e, f ) = (a, b) × (c, d) ⇔
{

e = (a + b)(c + d)g4 + q4ac
f = (a + b)(c + d)g4 + q4bd

3.4 Inversion

Let (a, b) be the coordinates of an element of GF(22m). The coordinates of the inverse element
are given by the following formula:

(c, d) = (a, b)−1 ⇔ 1 = (av2 + bv

1
2 )(cv2 + dv


1
2 )

⇔ q−1
2 v2 + q−1

2 v

1
2 = ((a + b)(c + d)g2 + q2ac)v2

+((a + b)(c + d)g2 + q2bd)v

1
2

⇔
{

q−1
2 = (a + b)(c + d)g2 + q2ac

q−1
2 = (a + b)(c + d)g2 + q2bd

⇔
{

0 = q2(ac + bd)

1 = (a + b)(c + d)g2q2 + q2
2 bd

⇔
{

c = ba−1d
1 = (a + b)(c + d)g2q2 + q2

2 bd

⇔
{

c = ba−1d
1 = (a + b)(ba−1 + 1)g2q2d + q2

2 bd

⇔
{

c = ba−1d
a = (a + b)(b + a)g2q2d + q2

2 abd

⇔
{

c = ba−1d
d = ((a + b)2g2q2 + q2

2 ab)−1a

⇔
{

c = ((a + b)2g2q2 + q2
2 ab)−1b

d = ((a + b)2g2q2 + q2
2 ab)−1a
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Analogously let (a, b) be the coordinates of an element of GF(24m). The coordinates of the
inverse element in this case are given by the following formula:

(c, d) = (a, b)−1 ⇔
{

c = ((a + b)2g4q4 + q2
4 ab)−1b

d = ((a + b)2g4q4 + q2
4 ab)−1a

(1)

In this way we can decompose the inversion map from GF(24m) → GF(22m) → GF(2m). For
the Whirlwind proposal m = 4 so we get the decomposition GF(216) → GF(28) → GF(24).

3.5 Inversion and multiplication in GF(16)

A normal basis is called optimal normal basis (ONB) [22], when the complexity of the mul-
tiplication formula in this basis is minimal, i.e. equal to 2n − 1 = 7 [15]. In the non-optimal
normal basis (NB), the complexity of the multiplication formula equals 9 [26]. In these two
cases multiplying x = (x0, x1, x2, x3) with y = (y0, y1, y2, y3) results in z = (z0, z1, z2, z3),
where

NB: z3 = x2 y3 + x3 y2 + x1 y3 + x3 y1 + x3 y0 + x0 y3 + x2 y2 + x0 y1 + x1 y0.

ONB: z3 = x3 y1 + x0 y1 + x0 y2 + x1 y3 + x1 y0 + x2 y0 + x2 y2.
(2)

As noted by Paar [26] the multiplication in any normal basis is rotation symmetric, so the
rest of the output bits z0, z1 and z2 can be computed by rotating the input bits.

Table 2 gives the inverses in both cases (in normal and optimal normal basis). One way to
obtain the values in the table is to use the formulas derived in [24]. Denote ( f3, f2, f1, f0) =
s(x3, x2, x1, x0), due to the rotational symmetry of s, the other output bits f3, f2 and f1 can
be computed by rotating the input bits. The Algebraic Normal Form (ANF) of each output
bit f0 is given by:

NB: f0 = x0 + x3 + x0x1 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3

ONB: f0 = x1 + x0x3 + x0x2 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3
(3)

Table 2 The inversion s(x) in
normal basis and in optimal
normal basis

x NB ONB

0000 0000 0000

0001 0011 0100

0010 0110 1000

0011 0001 1110

0100 1100 0001

0101 1010 1010

0110 0010 1101

0111 1101 1001

1000 1001 0010

1001 1000 0111

1010 0101 0101

1011 1110 1100

1100 0100 1011

1101 0111 0110

1110 1011 0011

1111 1111 1111

123



Whirlwind: a new cryptographic hash function 151

Table 3 Overview of the normal bases decomposition in Whirlwind

(a) Field representations used for unique reference

Field Defining polynomial

GF(216) ∼= GF(2)(z) X16 + X5 + X3 + X2 + 1

GF(28) ∼= GF(2)(y) X8 + X4 + X3 + X2 + 1

GF(24) ∼= GF(2)(x) X4 + X + 1

GF(22) ∼= GF(2)(w) X2 + X + 1

(b) Normal basis decomposition

Field Normal element qi gi

GF(216) v4 = z101 – –

Basis over GF(28): {v4, v256
4 }

GF(28) v2 = y101 q4 = v2 g4 = 1

Basis over GF(24): {v2, v16
2 }

GF(24) v1 = x7 q2 = v1 g2 = x4

Basis over GF(22): {v1, v4
1}

GF(22) v0 = w q1 = v0 g1 = 1

Basis over GF(2): {v0, v2
0}

GF(2)

3.6 Basis choice for Whirlwind

In Whirlwind, GF(216) is recursively decomposed into smaller subfields according to Sect. 3.2
by choosing a normal element of GF(216) and using the traces of this element into the sub-
fields to construct the normal bases. This decomposition is employed uniformly at each level,
so that all individual field extensions have degree two:

GF(216) → GF(28) → GF(24) → GF(22) → GF(2).

In order to describe our choice for the normal bases unambiguously, we use the field repre-
sentations given in Table 3a as a reference. The normal bases used in Whirlwind, together
with the elements qi , gi used for the field arithmetic are summarised in Table 3b.

4 Security analysis

Designing a provably secure hash function is still beyond the state of the art. Reductionist
security arguments provide provable guarantees, but do not exclude attacks outside the model,
the algorithm VSH being a prominent example [8,29].

Recently some reduced-round versions of Whirlpool were cryptanalyzed [18,21]. In this
section, we argue that Whirlwind is secure against the currently known cryptanalytic attacks
by applying the most important state-of-the-art methods of cryptanalysis and investigating
their complexity.
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4.1 Resistance against basic differential attacks

The resistance of hash functions against differential attacks is typically analyzed by studying
the expected differential probability (EDP) of the differential trails through the compression
function. There are a number of theoretical problems associated with using the EDP to say
something about hash functions. However, to date the EDP of differential trails is the only
measure known that can be used to assess the security of a primitive against differential
cryptanalysis and that can be computed efficiently. In this section, we bound the EDP of dif-
ferential trails through the compression function of Whirlwind and we explain what meaning
can be attributed to this number.

4.1.1 Terminology

Let B(x) denote a function over GF(2n) composed of r steps f i (x):

B(x) = (
f r ◦ · · · ◦ f 1) (x).

A differential trail through B(x) is a vector Q = (b0, b1, . . . , br ) such that

f 1(x + b0) = f 1(x) + b1

...(
f r ◦ · · · ◦ f 1

)
(x + b0) = (

f r ◦ · · · ◦ f 1
)
(x) + br .

(4)

The differential probability DP(Q) of a characteristic Q with respect to B(x) is defined as

DP(Q) = 2−n#
{

x ∈ GF(2n) | x satisfies (4)
}
.

Assume that the functions f i are parameterized by keys ki and denote by K the space
of the vectors k = (k1, k2, . . . , kr ). This leads in a straightforward way to the definition
of a parameterized probability DP[k](Q) of a differential trail. The expected differential
probability (EDP) of a differential trail Q is defined as the mean value of DP[k](Q):

EDP(Q) = E(DP[k](Q); k) = 2−|K| ∑
k∈K

DP[k](Q).

Here, k is assumed to be a uniformly distributed random variable taking values in K. In block
cipher design papers, it is usually assumed that the variance of DP[k](Q) is small, such that

DP[k](Q) ≈ EDP(Q), ∀k. (5)

4.1.2 Implications for Whirlwind

The compression function of a hash function like Whirlwind (barring the feed-forward) can
be considered as a block cipher with all the round keys set to zero. Hence, by (5), the fraction
of pairs that follow a Q is given by

DP[k = (0, . . . , 0)](Q) ≈ EDP(Q).

The design of Whirlwind follows the Wide Trail design strategy [9]. The linear maps θ

and τ ensure that a differential trail over R rounds contains at least �R/4�B2 active S-boxes,
where B is the differential branch number of θ , i.e. 9. The expected differential probability
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(EDP) of a differential trail Q through 4 rounds of Whirlwind can be upper bounded as
follows:

EDP(Q) ≤ (
2−14)B2 = 2−1134.

If the fact that only a very small fraction of pairs follows a given differential trail implies that
it is difficult to find such a pair, then the bound given here implies that it is very difficult to
find such pairs for Whirlwind.

4.2 Why θ uses dyadic matrices instead of circulant matrices

Since the designs of Square and Rijndael [9] have been published, the use of circulant matri-
ces in diffusion layers has become widespread, with some exceptions though [1]. We explain
here why we prefer dyadic matrices.

Although (5) is often used as a starting assumption, it has never been demonstrated that
there exist block ciphers for which it holds. On the contrary, several counterexamples have
been found. For instance, in [10] it was shown that for AES reduced to four rounds, there is a
significant fraction of differential trails, plateau trails, for which the distribution of DP[k](Q)

is bimodal, and has a large variance. The larger the variance of DP[k](Q) is, the higher the
risk that DP[0](Q) will differ significantly from EDP(Q), and hence the less useful a bound
on EDP(Q) becomes.

In [11] it was shown that the existence of plateau trails is due to the existence of related
differentials in the linear diffusion layer. Let m be a linear map

m: (GF(2n))4t → (GF(2n))4t : x �→ m(x).

Let a, b ∈ (GF(2n))4t . The differentials (a, m(a)), (b, m(b)), (a + b, m(a) + m(b)) are
related differentials over m if and only if

a j b j (a j + b j ) = 0, ∀ j

m(a)| j m(b)| j
(
m(a)| j + m(b)| j

) = 0, ∀ j.

We prove below that related differentials always exist in diffusion layers that consist of
the multiplication by an 8 × 8 circulant matrix. That is the reason why we chose to use in
Whirlwind a dyadic matrix instead.

Theorem 1 A linear map

m: (GF(2n))4q → (GF(2n))4q : x �→ m(x) = x M

with M a circulant matrix of dimensions 4q × 4q, has related differentials.

Proof Let M be defined by mi, j = α j−i mod 4q . Define a, b:

a j = α j if j is even, else a j = 0

b j = 0 if j is even, else b j = α j .

Then obviously a j b j (a j + b j ) = 0,∀ j .
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Secondly, denote c = aM and d = bM . It follows that:

c j =
4q−1∑
t=0

at mt, j =
2q−1∑
u=0

α2u mod 4qα j−2u mod 4q (6)

d j =
4q−1∑
t=0

bt mt, j =
2q−1∑
v=0

α2v+1 mod 4qα j−1−2v mod 4q . (7)

We now consider three different cases:

j = 2i + 1: We apply a change of variable in (7): w = i + 2q − v. Since

α2v+1 mod 4q = α2i+1−2w+4q mod 4q = α2i+1−2w mod 4q

α2i−2v mod 4q = α2w−4q mod 4q = α2w mod 4q

v = 0 ⇔ w = i + 2q

v = 2q − 1 ⇔ w = i + 1,

we obtain:

d j =
i+2q∑

w=i+1

α2w mod 4qα j−2w mod 4q

This sum contains the same terms as (6) but in a different order. Hence we
have c j = d j when j is odd.

j = 4s + 2: We rewrite (6) as follows:

c4s+2 =
q−1∑
f =0

α4 f mod 4qα4s+2−4 f mod 4q +
q−1∑
g=0

α4g+2 mod 4qα4s−4g mod 4q

In the second sum, we replace s − g by a new variable h and obtain:

c4s+2=
∑

f

α4 f mod 4qα4(s− f )+2 mod 4q +
∑

h

α4(s−h)+2 mod 4qα4h mod 4q = 0

Both sums are equal and hence c j = 0 when j = 4s + 2.
j = 4s: We rewrite (7) as follows:

d4s =
q−1∑
f =0

α4 f +1 mod 4qα4(s− f )−1 mod 4q +
q−1∑
g=0

α4g+3 mod 4qα4(s−g)−3 mod 4q

Both sums are equal, and hence d j = 0 when j = 4s.

It follows that c j d j (c j + d j ) = 0,∀ j . ��
4.3 Rebound attacks

In this section, we analyze the applicability of the rebound attack to Whirlwind. The rebound
attack [21] is a new cryptanalytic attack on hash functions where the attacker attempts to
fulfill the low-probability part of a truncated collision differential by exploiting available
freedom in choosing concrete differences and values in this part first and then propagating
those outwards through the parts with higher probability.
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The rebound attack particularly lends itself to analyzing algorithms designed according
to the wide trail design strategy where parts with very low probability cannot be avoided in
differential trails at a certain length or above. In a rebound attack, such a part, where the
full state is active, is then chosen to be in the middle of a multi-round truncated differential
trail. Concrete differences and (pairs of) values propagating through this fully active state
are efficiently found by matching inputs and outputs of the nonlinear layer for all S-boxes
(the match-in-the-middle step). For the propagation of the obtained differences and values
to the beginning and the end of the trail, it then has to be ensured that the patterns of active
S-boxes follow the specified truncated differential. This implies that the probability of the
outbound phase is completely determined by the propagation characteristics of the linear
diffusion layer. For more details on the rebound attack, we refer to the original paper [21].

Before applying the rebound attack to Whirlwind, we discuss some preliminaries.
Finding a match for γ . The match-in-the-middle step of the inbound phase is commonly

making use of a precomputed table to determine values actually following the chosen differ-
ential through the S-boxes. For each a and b, this table contains the solutions to the equation
s(x) ⊕ s(x ⊕ a) = b. In case of the inversion mapping, either two or four solutions exist
for each possible differential (a, b) and the probability that a particular differential exists is
about 1/2.

For Whirlwind’s 16-bit S-box, the size of this table is 237 bits, which is not always practical.
However, the storage requirement can be lowered without significant increase in computa-
tional cost by using a lookup table of 216 × 216 bits just specifying whether a particular
differential exists or not. Once a differential match for all S-boxes has been found, only the
solutions for the up to 64 different S-box differentials that are actually present have to be
calculated. Doing this by brute force takes 222 time, which is negligible since this immedi-
ately yields 264 combinations of the two solutions found per individual S-box. In total, 264

values of the state following the differential are expected to be found in 264 + 222 time, so
the average cost for one match is still about 1.

In comparison with the designs using 8-bit inversion S-boxes, it is interesting to note
that merely doubling the size of an individual S-box does not contribute significantly to the
average cost of the match-in-the-middle step.

Propagation characteristics of θ . As stated before, the probability of the outbound phase
essentially depends on the propagation of truncated differentials through θ . Since each λi

is an MDS mapping, the sum of active and inputs and outputs is at least equal to 9. Any
admissible transition of a active inputs and b active outputs (denoted a → b) in fixed posi-
tions requiring b0 of the b components to be zero occurs with a probability of about 2−4b0 .
Consequently, the probability of a a → b transition of θ with b0 zero components in fixed
positions is lower bounded by 2−16b0 .

4.3.1 The basic differential trail

In what follows, we are using the description of the round function where the explicit calcu-
lation of τ is replaced by alternatingly applying θ to the rows (denoted θR) and the columns
(denoted θC ). Also note that in terms of differences, σ r can be neglected and is therefore
omitted from the sequence of operations.

In order to obtain a collision for the compression function of Whirlwind, we have to find
a differential mapping differences only in the right half of the state (i.e. differences in the
message) to a zero difference in the left half of the state (i.e. the output chaining value).
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Fig. 2 Basic truncated differential trail covering 4 rounds

Fig. 3 The collision attack on 4.5 rounds

The basic trail of truncated differentials has the following pattern of active S-boxes which
is also illustrated in Fig. 2:

4
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8. (8)

While this trail does not have the minimum number of active S-boxes according to the
wide trail strategy, it minimizes the cost of the outbound phases of the attacks.

4.3.2 Semi-free-start collision on 4.5 rounds

The differential trail (8) can be directly used in a rebound attack to obtain a semi-free-start
collision for Whirlwind reduced to 4.5 rounds. The attack (see also Fig. 3) goes as follows.

Inbound phase. The inbound phase of the attack covers the expensive fully active state in
the middle of the trail. First, we choose a random difference for the 8 cells of the first row at
the input of θC in the second round. By the MDS property, we obtain a fully active state at
the beginning of round 3. Analogously, we choose another random difference of 8 cells for
the fifth column at the output of θR in round 3 and propagate backwards to obtain another
fully active state at the output of γ in round 3.

Using the procedure described above, now a match-in-the-middle is performed to obtain
values at the input and output of the S-box layer in round 3 matching the differential. After
trying about 264 differences, we can expect to find one existing differential and 264 conform-
ing values.

Outbound phase. The differences and state values obtained in the previous step are now
propagated outwards through the γ layers. From now on, we require those to follow certain
truncated differential trails. In the backward direction, we require θR of round 1 to propagate
the 8 active cells of the first row to 4 active cells in the right half of the row. The probability
of this is lower bounded by 2−64, since four out of eight cells in specific positions must have
a zero difference. In the forward direction, θC needs to propagate a fully active column into

a fully active column, which happens with a probability of at least 1 −
(∑7

i=1 2−16i
)

, which

is about 1. At the end, half a round (consisting of γ ) can be appended for free since this does
not change the activity pattern of the truncated differential.

Summarizing, we need to fulfill one 8 → 4 transition in the backward direction. The prob-
ability of the outbound phase is thus 2−64 so that the 264 values provided by 264 iterations
of the inbound phase are just sufficient to get one pair following the trail. A semi-free-start
collision for 4.5 rounds can hence be found with complexity 264.
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4.3.3 Semi-free-start near-collision on 5.5 rounds

The semi-free-start collision attack on 4.5 rounds of Whirlwind can be extended to a semi-
free-start near-collision attack on 5.5 rounds (see Fig. 4). Instead of the 8 → 8 transition in θC

of round 4, we require a propagation of 8 to 1 active S-box in the first row. After θR in round
5, this expands to a fully active first row with probability 1 due to the MDS property. Since
the output chaining value consists of the left half of the state, we obtain a near-collision on
448 of the 512 bits. The inbound phase and the backwards propagation part of the outbound
phase are exactly the same as in the attack on 4.5 rounds, but the probability of the forwards
propagation part decreases: It is now lower bounded by 2−112 since we require seven out of
eight cells to have a zero difference.

In total, the outbound phase has a probability of 2−176 and the complexity of obtaining a
near-collision pair for 5.5 rounds is 2176, which is already quite close to a generic birthday
attack on 448 bits.

4.3.4 Extension to 5.5/6.5 rounds

Both the collision and near-collision attacks previously described can be extended by
prepending one round. In this round, θ is operating on the columns, so that the four active
cells in the right half of the first row propagate to four fully active columns in the backwards
part of the outbound phase with probability 1. The complexities of the previous attacks hence
do not change when extended by one round at the beginning. Note however that such attacks
only apply when starting at even round numbers, since we require a zero difference in the
left half of the state, a constraint which is violated by having θ operate on rows in the first
round. The near-collision attack on 6.5 rounds is illustrated in Fig. 5.

4.3.5 Extensions to more rounds

Rebound attacks on other wide-trail hash functions have basically used two strategies to
extend attacks beyond the basic trail. Either a key or message schedule was used to afford
more fully active states by exploiting the freedom available from there (e.g. Whirlpool [21])
or multiple independent inbound phases were efficiently connected by exploiting insufficient
diffusion, for instance between parallel states (e.g. Lane [20]).

Both strategies seem inapplicable to Whirlwind due to the absence of influence on inter-
mediate rounds via a key schedule and due to the fact that diffusion is performed according
to the wide trail strategy on the whole state and not only on less interconnected parts of it.

Fig. 4 The near-collision attack on 5.5 rounds

Fig. 5 The near-collision attack on 6.5 rounds
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5 Performance figures and practical implementation considerations

The square shape of its state and the fact that it is designed according to the wide trail strategy
imply that Whirlwind can be implemented using approaches developed for the AES [9] and
especially Whirlpool [2]. We briefly recall the techniques here and discuss how to apply them
to Whirlwind.

5.1 Software implementation on standard microprocessors

The standard approach to implement the linear layer θ is to use lookup tables containing
all scalar products with each of the rows, where the S-box application is integrated on the
scalars.

For Whirlwind, θ consists of the parallel application of four matrix multiplications over
GF(24)8×8 on the rows of the state. Combining their contribution to one output row into a
single table, both γ and θ can be implemented with eight table lookups. Denote by Mi k the
k-th row of the dyadic matrices M0 and M1 and define the table Tk, 0 ≤ k ≤ 7 by

Tk

[(
x0,0 x0,1

x1,0 x1,1

)]
= s

[(
x0,0 x0,1

x1,0 x1,1

)]
·
((

M0k,0 M1k,0
M1k,0 M0k,0

)
, . . . ,

(
M0k,7 M1k,7
M1k,7 M0k,7

))
. (9)

Each row bi of b = (θ ◦ γ )(a) is then equal to

bi =
7⊕

k=0

Tk[ai,k]. (10)

Due to the larger S-box, the memory requirements of each table is 216 · 128 bits, i.e. one
megabyte.

5.1.1 Impact of τ

In practice, each of the 2 × 2 submatrices comprising one element of the state will be iden-
tified by the vector

(
x0,0, x0,1, x1,0, x1,1

)
and both a row of the state and the entries of the

Tk will be organized in machine-sized words. For Whirlwind, each row then comprises two
64-bit or four 32-bit words. However, this layout of the state implies that operations across
rows become significantly more efficient than operations across columns.

In designs using cyclic shifts to diffuse across second dimension, this operation can be
implemented by a simple reordering of indices in (10), so that only row operations need to
be performed. This is however not possible for a matrix transposition.

As noted in Sect. 2.2.2, the calculation of τ can be avoided by letting θ operate on rows
and columns of the state alternatingly. The normal description of Whirlwind’s round trans-
formation:

b = (σ r ◦ τ ◦ θ ◦ γ )(a)

then turns into

b =
{ (

(σ r )T ◦ θ ◦ γ
)
(a) for odd r,

( σ r ◦ θC ◦ γ ) (a) for even r

where (σ r )T denotes the application of the transpose of the r -th round constant and θC is θ

operating on the columns.
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In a state layout representing a row using machine words, the computation of θC still
involves one matrix transposition, but the tables for θ can be reused and the number of
transpositions is reduced to R/2, with R being the total number of rounds.

The transpose can for example be efficiently implemented using a recursive decompo-
sition of the 8 × 8 transpose into transpositions of 4 × 4 and 2 × 2 matrices using SIMD
instructions such as shuffle and unpack in Intel’s SSE instruction set.

5.1.2 Performance of the table-based approach

While arguably being an efficient method to implement Whirlwind in theory, the memory
required to store all eight lookup tables is 8 MB, which exceeds the L2 cache size available
to a single core in most contemporary processors. As a result, parts of the table are constantly
cached in and out, resulting in a significant performance penalty. As indicated in Table 4,
the performance greatly varies with the size of the L2/L3 cache. A significant speedup is
expected on CPUs with 12 or 16 MB of cache such as Intel’s Xeon 7400 series.

5.1.3 Using smaller tables

In order to avoid L2/L3 cache pressure, the Whirlwind round transformation can also be
implemented using smaller lookup tables. In these cases, γ has to be implemented by sepa-
rate table lookups requiring a table of 216 · 2 bytes. Since the λi are applied independently,
the approach described in equation (9) can be generalized to lookup tables for one, two or
four λi mapping scalars of 4, 8 or 16 bits to complete 128-bit rows with the individual contri-
butions shifted to the final location. Then an output row can be obtained by XOR-ing 4, 2 or
1 partial rows together eight times. The best trade-off for contemporary machines is offered
by combining two λi per table. In total, this implementation needs 217 + 216 bytes (192 kB)
of lookup tables, which easily fits in most L2 caches.

As seen in Table 4, this implementation (“medium lookup tables”), albeit needing three
times as many lookups per round transformation as in the big tables approach, improves
performance especially on CPUs with smaller cache size. The speedup this implementation
receives on the machines with bigger cache sizes are explained by them also featuring more
recent microarchitectures.

Table 4 Performance figures for software implementations of Whirlwind. All numbers are given in cycles
per byte (cpb)

Intel Xeon E5540 Intel Core 2 X9650 Intel Xeon E5335
2.53 GHz, 8 MB
L3 cache (cpb)

3 GHz, 6 MB
L2 cache (cpb)

2 GHz, 4 MB
L2 cache (cpb)

Large lookup tables 151.31 210.32 217.86

Compressed inverse 129.43 135.61 207.74

Medium lookup tables 99.58 124.35 145.18

Bitsliced (2 blocks) 63.22 63.14 67.79

Whirlpool 54.60 38.15 56.31
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5.1.4 Using the symmetry of the inverse

The use of normal bases in Whirlwind permits another implementation variant based on the
following symmetry property: If (a, b)−1 = (c, d), then (b, a)−1 = (d, c) and (a, a)−1 =
(c, c). This can be directly verified by Eq. 1 and suggests the following procedure for com-
puting the inverse of (a, b) in GF(24m):

(a, b)−1 =
⎧⎨
⎩

S[a, b] if a < b,

(S[a, a], S[a, a]) if a = b,

S[b, a] if a > b;
with a table S storing only the inverses (c, d)of (a, b)with a < b and the value c for the inverse
of (a, a)−1 = (c, c). This table then only requires 22m ·(22m −1)/2·4m+2m ·22m = 2m ·24m

bits of memory, which is half the size of the full lookup table. For Whirlwind, m = 4, so this
implies a table of 64 kB instead of 128 kB.

However, this reduction comes at the expense of conditional processing. So while this
technique can also be used to halve the size of the tables described by (9), the cost of the
additional processing practically compensates for this, as seen in Table 4. On the other hand,
table-based implementations on platforms where memory is the primary concern will benefit
from the reduction provided by this technique (see also Sect. 5.2).

5.1.5 Bitslicing

In order to obtain a constant-time implementation resistant to side-channel attacks, Whirlwind
can also be implemented in a bitsliced manner. Similar to the recent very fast bitsliced imple-
mentation of the AES [17], the normal basis decomposition of the field arithmetic presented in
Sect. 3 leads to compact formulations on the level of individual bits. The current implementa-
tion is using Intel’s SSE3 instruction set and processes two blocks of two independent hashing
operations in parallel to fully utilize the register width. Improving this implementation and
deriving a representation for single block hashing that still leads to efficient computations is
currently work in progress.

5.2 Embedded platforms and hardware

At the moment, there are no implementations for 8-bit processors or in hardware. However,
by making use of the tower field decomposition employed in Whirlwind, the implementation
techniques described in [24] can be applied. Also, we expect the compactness estimations
from this paper to carry over proportionally, resulting in competitive implementations for
resource-constrained platforms.

5.2.1 Memory requirements on 8-bit platforms

For implementations on 8-bit microcontrollers, the requirements in terms of RAM and ROM
are generally a far greater concern than execution speed. We estimated those requirements
for Whirlwind according to the criteria mentioned in [14], which in particular implies that the
IV is stored in ROM and that the memory used for the message block is considered external
to the hash algorithm and hence not taken into account.

An implementation of Whirlwind needs 512 bits of ROM for the IV and at least 512 bits
of RAM to store the previous chaining value for the feed-forward and 1,024 bits of RAM
for the internal state. The round constants can either be implemented using 768 bits of ROM
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or via a counter using 8 bits of RAM. As described in Sects. 3.3 and 3.4, the finite field
arithmetic can be recursively decomposed down to binary operations. While this comes at
a performance penalty on 8-bit platforms, it eliminates the need for lookup tables. Alterna-
tively, the technique from Sect. 5.1.4 can be used to speed up the implementation at the cost
of 216 bytes of ROM for a lookup table of the compressed inverse. Combined approaches are
possible, for instance using the normal basis arithmetic for the first level of decomposition
and then employing lookup tables for the smaller subfields.

Summarising, we estimate that Whirlwind can be implemented on 8-bit platforms using
either 192 bytes of RAM and 160 bytes of ROM, or 193 bytes of RAM and 64 bytes of ROM.
Compared to the SHA-3 candidates analyzed in [14], this places Whirlwind in the “Middle”
class of algorithms with regard to memory requirements, for instance being significantly
smaller than the Round 2 candidates ECHO and SIMD, comparable to BMW, Shabal and
Keccak, and larger than BLAKE, Hamsi and Luffa.

6 Conclusion

Whirlwindis a hash function based on and improving on the Whirlpool design. It employs
large S-boxes (16 bits) which still allow efficient and flexible implementations on a wide
variety of platforms due to the normal bases decomposition. During the design, recent refine-
ments of the understanding of the wide-trail strategy have been taken into account, improv-
ing the differential behavior and the complexity of algebraic descriptions. Arguments are
provided for resistance to attacks, including conventional differential cryptanalysis and recent
improvements, in particular the rebound attack.

In comparison to the algorithms submitted to the SHA-3 competition, Whirlwind takes
recent developments in cryptanalysis into account by design. While current software imple-
mentations are not exceptionally fast, they compare favourably with the 512-bit versions of
SHA-3 candidates such as LANE [16] or the original CubeHash proposal [4] and are about
on par with ECHO [3] and MD6 [28].

Acknowledgments We would like to thank the referees for their comments which improved the paper. This
work was sponsored by the Research Fund K. U. Leuven, by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy) and by the European Commission through the ICT Programme under
Contract ICT-2007-216676 (ECRYPT II). Elmar Tischhauser is a research assistant of the F.W.O., Fund for
Scientific Research—Flanders.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Barreto P., Rijmen V.: The Anubis block cipher. First open NESSIE Workshop, Leuven, November
13–14 (2000).

2. Barreto P., Rijmen V.: The Whirlpool hashing function. First open NESSIE Workshop, Leuven, Novem-
ber 13–14 (2000).

3. Benadjila R., Billet O., Gilbert H., Macario-Rat G., Peyrin T., Robshaw M., Seurin Y.: SHA-3 Proposal:
ECHO. Submitted to NIST (2008).

4. Bernstein D.J.: CubeHash Specification. Submitted to NIST (2008).
5. Bertoni G., Daemen J., Peeters M., Van Assche G.: On the Indifferentiability of the Sponge Construction.

EUROCRYPT, LNCS, vol. 4965, pp. 181–197 (2008).

123



162 P. Barreto et al.

6. Biham E., Dunkelman O.: The SHAvite-3 Hash Function. Submitted to NIST (2008).
7. Biryukov A.: Design of a New Stream Cipher—LEX. New Stream Cipher Designs, LNCS, vol. 4986,

pp. 48–56 (2008).
8. Contini S., Lenstra A.K., Steinfeld R.: VSH, an Efficient and Provable Collision-Resistant Hash Func-

tion. EUROCRYPT, LNCS, vol. 4004, pp. 165–182 (2006).
9. Daemen J., Rijmen V.: The Design of Rijndael: AES—The Advanced Encryption Standard. Springer

(2002).
10. Daemen J., Rijmen V.: Plateau characteristics and AES. IET Inf. Secur. 1(1), March 2007, 11–17.
11. Daemen J., Rijmen V.: New criteria for linear maps in AES-like ciphers. Cryptography and Commu-

nications Discrete Structures, Boolean Functions and Sequences, vol. 1, no. 1. Springer, pp. 47–69
(2009).

12. Gauravaram P., Knudsen L.R., Matusiewicz K., Mendel F. Rechberger C., Schläffer M., Thomsen S.S.:
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