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WHISCY: What Information Does Surface Conservation
Yield? Application to Data-Driven Docking
Sjoerd J. de Vries, Aalt D.J. van Dijk, and Alexandre M.J.J. Bonvin*
Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands

ABSTRACT Protein–protein interactions play
a key role in biological processes. Identifying the
interacting residues is a first step toward under-
standing these interactions at a structural level. In
this study, the interface prediction program WHISCY
is presented. It combines surface conservation and
structural information to predict protein–protein
interfaces. The accuracy of the predictions is more
than three times higher than a random prediction.
These predictions have been combined with an-
other interface prediction program, ProMate [Neu-
virth et al. J Mol Biol 2004;338:181–199], resulting in
an even more accurate predictor. The usefulness of
the predictions was tested using the data-driven
docking program HADDOCK [Dominguez et al. J Am
Chem Soc 2003;125:1731–1737] in an unbound dock-
ing experiment, with the goal of generating as many
near-native structures as possible. Unrefined rigid
body docking solutions within 10 Å ligand RMSD
from the true structure were generated for 22 out of
25 docked complexes. For 18 complexes, more than
100 of the 8000 generated models were correct. Our
results demonstrates the potential of using inter-
face predictions to drive protein–protein docking.
Proteins 2006;63:479–489. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

The number of known three-dimensional (3D) struc-
tures of proteins is growing faster than ever. A large
majority of those corresponds, however, to structures of
single proteins. In contrast, in the cell, proteins rarely
carry out functions on their own, but usually by interact-
ing with other proteins. Knowledge on interactions and
biological function is growing quickly, while the number of
3D structures of protein–protein complexes is only slowly
increasing. Considering the huge number of expected
protein–protein interactions, conventional NMR and X-
ray crystallography techniques will not be sufficient to
tackle this problem. In particular, structures of weakly
interacting or transient complexes are difficult to obtain.
Therefore, there is a need for computational methods that
can accurately predict the structure of a protein complex
from the structures of its unbound components. This
computational problem is known as the docking problem.

A variety of docking programs have been developed1 (for
review, see Halperin et al.2) To assess the state of the art

in docking, the Critical Assessment of Predicted Interac-
tions (CAPRI) experiment has been organized.3,4 The
results of the first CAPRI rounds have shown that there is
currently no single method that can reliably dock each and
every complex, although acceptable predictions are made
for most complexes. Recently, we introduced the docking
program HADDOCK.5 Among the docking methods that
have participated in CAPRI, HADDOCK is unusual be-
cause it is the only data-driven docking method. Many
groups have made use of (putative) protein–protein inter-
face residues to reduce the conformational search space or
filter their solutions. In HADDOCK, however, these resi-
dues are translated into highly ambiguous intermolecular
distance restraints used to directly drive the docking
process. HADDOCK has been shown to reliably dock
protein complexes provided proper information on the
interface of the two proteins is supplied. HADDOCK
results in CAPRI6 have shown that the interface needs to
be neither fully complete nor fully accurate to allow the
generation of reasonable 3D models.7 Incomplete experi-
mental data can thus be sufficient for the docking, espe-
cially if multiple sources of data are employed, such as
mutagenesis, truncation, or other biochemical data.7 How-
ever, by far the fastest and most readily available source of
restraints would be computational interface prediction
from sequence and/or structural data.

The property that is most often associated with func-
tional sites in general is sequence conservation.8 Many
residue mutations are not neutral, but negatively affect
protein function, especially near functional sites. Such
mutations are typically selected out by evolution, and as a
result, functional residues are generally more conserved
than others. This should be true for both residues within
the protein core, important for folding and/or stability, and
for residues on the surface, involved in biomolecular
interactions. Therefore, as far as protein–protein docking
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is considered, it is essential to consider the conservation of
surface residues only.

As reviewed in van Dijk et al.,7 there are a few cases in
which conservation data have been used as data in the
docking of a protein–protein complex.9–12 Their usefulness
to filter docking solutions has recently been studied for a
benchmark set13 and the interface predictor ProMate,14

which uses both conservation and biophysical properties,
has recently been applied for the same purpose.15 To the
best of our knowledge, however, no systematic study has
reported the direct use of conservation data to drive the
docking process. Here, in the context of obtaining interface
predictions for data-driven docking, we ask the following
question: What information does surface conservation
yield? We present a program named WHISCY, an acronym
of this question, which tries to answer this question. In
addition to sequence conservation, structural information
in the form of surface neighbors used for smoothing and
interface propensity is exploited as well. Our main goal is
not to correctly predict the complete interface, but rather
to obtain a few sufficiently reliable predictions for docking
purposes. The feasibility of this approach is demonstrated
by combining the WHISCY predictions with our docking
approach HADDOCK. We also show that by combining
various interface prediction methods, namely WHISCY
and ProMate,14 better results can be obtained.

THEORY

It has been previously recognized that multiple se-
quence alignments can be mined for conservation data.
This has resulted in several different programs for inter-
face and functional site prediction using conserva-
tion.10,14,16–22 In addition, conservation is used in many
predictors that combine multiple properties to predict
protein–protein interfaces.14,22–24

To calculate conservation, a residue-specific matrix is
often used to compare sequences in an alignment. This
matrix can be either physicochemical or evolutionary.
When comparing sequences, it is beneficial to also include
the sequence distance, which is the number of mutations
between sequences, because an alignment typically con-
tains both sequences that are nearly identical and se-
quences that are very different. Evolutionary matrices
offer the possibility to use a different matrix for each
sequence distance. The direct use of evolutionary matrices
induces, however, the following artifact: when a residue
does not mutate (identity), it receives as a score the matrix
diagonal element for that amino acid, which corresponds
to the chance that the residue does not mutate. This
chance is, however, the highest for amino acids that are
known to mutate slowly; therefore, the comparison score
will be the highest for identities of residues for which
identities are most expected, violating the paradigm that
conservation occurs when residues are expected to mutate
but do not. This adverse scoring artefact is often over-
looked.

In our approach, WHISCY, conservation is calculated by
pairwise comparison of each sequence in a multiple se-
quence alignment to the master sequence only. All compari-

son scores for a surface residue are summed into a single
conservation score for that residue, hence considering each
surface residue independently. The matrix used for com-
parison is the Dayhoff matrix,25 taking into account the
sequence distance between each pair of compared se-
quences. The sequence distance is not determined by
simply counting the number of mutations per hundred
residues, because this does not take into account back-
mutations and multiple mutations at a single site. Rather,
the sequence distance is estimated using a maximum
likelihood method implemented in the program PROT-
DIST from the PHYLIP package.26 The appropriate ma-
trix for each sequence distance is computed using eigenvec-
tor decomposition.

To avoid the adverse scoring artifact, a correction is
applied to the Dayhoff matrix before calculating the com-
parison score. In general, if a residue has amino acid a in
the master sequence, only one row of the mutation matrix
is used: the row that describes all mutation probabilities
a � x, where x is any amino acid. For each comparison, the
sum of squares of all elements in this row is subtracted
from each element in the row, a quantity that differs for
each amino acid and each sequence distance:

S�ax � Sax � �
k�1

N

Sak
2

where Sax indicates an element of the distance-dependent
Dayhoff mutation matrix, S�ax the corresponding element
in the corrected matrix, and N the number of amino acids
in the matrix. Sax describes the probability of mutation of
amino acid a into x, and can take values between 0 and 1.

Applying this correction makes sure that identities in
fast mutating amino acids receive a higher score than
identities in slow mutating amino acids. Moreover, it
causes identities to receive a higher score at higher
sequence distances, as long as the distance is not too large.
This is opposite to the uncorrected matrix, which causes
identity scores to decline with increasing sequence dis-
tance. The correction also results in the property that
residues that behave as predicted by the matrix have, on
average, an overall conservation score of zero. Only resi-
dues that mutate more slowly than predicted by the matrix
will have an overall conservation score that is positive.
Hence, WHISCY is robust for the presence of sequences in
the alignment that have no functional relation to the
master sequence and are similar in sequence only by
chance, because their net effect will be zero. However, an
alignment may also contain duplicate sequences, or cer-
tain organisms may be over-represented. To correct for
this the sequences are weighted so that the whole range of
sequence distances is represented equally. To accomplish
this, the sequences are sorted from high to low sequence
distance, and the attributed weight to each sequence is
half the difference in sequence distance between the next
higher sequence and the next lower sequence. This makes
the score fully insensitive to the presence of duplicates.

The method described above was implemented and
coded into a C�� program. The scoring scheme consis-
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tently yields an average total score of zero for residues that
behave exactly according to the matrix, as demonstrated
by random (Monte Carlo) simulation (results not shown).
However, for “real” residues, the total score was found to
be consistently biased towards negative values. This is not
surprising, because only surface residues are scored, which
are generally more variable than core residues, while the
whole sequence is used for the calculation of sequence
distances. To correct this bias, the average total score over
all residues is simply subtracted from each individual total
score. Alternatively, only surface residues could be used in
deriving the sequence distances. This would, however, be
risky, because the Dayhoff matrix was not specifically
designed for surface residues.

The translation of conservation into interface prediction
can be refined by taking into account additional properties.
Some amino acids are more likely to occur in interfaces
than others, resulting in different interface propensities
for each amino acid. Moreover, interface residues are not
spread over the protein surface but often form one (or
sometimes more) patches. Therefore, predicted residues
that are surrounded by other predicted residues are more
likely to be true predictions than isolated ones. To make
use of this property, the 3D structure or a good model of the
individual proteins must be available (which is anyway
required when it comes to docking). These properties were
each implemented separately to allow manual tuning of
parameters. Interface propensity can be statistically de-
rived as the frequency ratio of an amino acid to occur in
interfaces and on the surface, divided by the frequency
ratio of all interface and surface residues. Values for each
amino acid have been established in several studies.22,27–29

Considerable disagreement between these propensities
exists, as there are large differences in dataset and in
definitions of interface and surface. In WHISCY, the
interface propensities as derived by Ma et al.28 have been
used. Because the conservation score is the sum of many
comparison scores, it follows a normal distribution. This
has been verified in a standard Q–Q plot (results not
shown). Therefore, every score could be converted into a
p-value. The p-value was divided by the interface propen-
sity of the residue and converted back into a conservation
score.

After adjusting for the interface propensity the scores
were smoothed by considering surface neighbors. An opti-
mal smoothing function was computed as a function of
residue distance (see Supplementary Material). Crossvali-
dation showed that no overfitting had taken place. The
exact shape of the curve does, however, not seem to be
essential, as a simple Gaussian function with a single
parameter (Fig. 1S) caused only a slight drop in perfor-
mance (results not shown).

MATERIAL AND METHODS
Benchmark Sets

The docking benchmark assembled by Chen et al.30 has
been used as test set for the development of WHISCY.
Antibody–antigen complexes were excluded. Fourteen
chains were discarded due to lack of sequence data:

1ACBI, 1BTHP, 1CGII, 1CSEI, 1FQ1A, 1GOTB, 1KKLA,
1KKLH, 1L0YA, 1L0YB, 1PPEI, 1TABI, 1TGSI, 1UDII,
1UGHI, 2MTAA, and 2TECI. In addition, 2KAIAB and
both chains of 2PTC were excluded because the numbering
in those files prevented matching with the alignments.
This resulted in a final dataset of 57 protein chains.

Six representative complexes were chosen from this set
for testing in the context of prediction-driven docking:
1AVW, 1BRC, 1DFJ, 1WQ1, 2PCC, and 2SNI. These
complexes were chosen blindly, checking if predictions
were present for both chains but not if they were correct. In
addition, we tested all enzyme–inhibitor/enzyme–sub-
strate complexes taken from the new 2.0 benchmark set of
Mintseris et al.31 The complete docking set includes 25
complexes as listed in Table I. Unlike the development set,
unbound structures were used for prediction.

The coordinates files of the proteins were downloaded
from the Protein Data Bank32 (http://www.rcsb.org/pdb),
while the multiple sequence alignments were taken from
the HSSP database (ftp://ftp.cmbi.kun.nl/pub/molbio/data/
hssp).21

WHISCY Predictions

The first aligned sequence in the HSSP file was taken as
master sequence. Multiple sequence alignments were used
for WHISCY prediction: if there was any disagreement
between structure and master sequences about a residue
identity, the residue of the master sequence was used. The
parts of a structure that were not present in the alignment
were not predicted and ignored in the evaluation.

The protein surface was defined using NACCESS:33 a
residue was considered surface-exposed if its main chain
or side chain was more than 15% accessible. The definition
of the interface was performed with the program DIM-
PLOT, which is part of the LIGPLOT software34 using
default settings (3.9 Å heavy-atoms distance cutoff for
nonbonded contacts).

Residues were predicted to be in the interface if the
WHISCY score was higher than 0.180, corresponding to
29.4% sensitivity.

ProMate Predictions

ProMate predictions were obtained making use of the
Web interface of ProMate (http://bioportal.weizmann.ac.il/
promate/), using default settings. The file containing the
quantitative, per-residue scores was parsed, and the top
10% scores were taken as prediction, as done in the
original work of Gottschalk et al.15

Combining WHISCY and Promate

The WHISCY and ProMate predictions were combined
in two different ways: (1) by addition (the Added score): a
residue was predicted if it fulfilled either the WHISCY or
the ProMate criterion; (2) by combination (the WHISCY-
MATE score): a residue was predicted if its ProMate score
was higher than or equal to 98.520 or its WHISCY score
higher than or equal to 0.371 or if its ProMate and
WHISCY scores were both higher than or equal to 55.420
and 0.107, respectively. (See Supplementary Material for
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TABLE I. Evaluationa of Interface Predictions for the Test Set Selected from the Docking Benchmarks30,31

Complex

WHISCY ProMate WHISCYMATE Added

correct p value correct p value correct p value correct p value

1ACB
E (13/162) 6/16 4.0 � 10�04 8/16 1.3 � 10�06 7/17 4.6 � 10�05 9/22 1.5 � 10�06

I (10/61) 5/7 7.6 � 10�04 3/6 0.050 8/15 7.6 � 10�05 6/9 2.6 � 10�04

1AVW
A (19/144) 8/10 7.8 � 10�07 10/14 9.3 � 10�08 9/14 2.3 � 10�06 12/18 6.6 � 10�09

B (11/119) 0/3 1 5/12 1.5 � 10�03 1/9 0.6 5/15 4.8 � 10�03

1AVX
A (18/143) 5/6 1.0 � 10�04 12/14 1.6 � 10�11 7/13 1.7 � 10�04 12/14 1.6 � 10�11

B (9/124) 0/2 1 6/12 1.5 � 10�05 0/5 1 6/13 2.8 � 10�05

1AY7
A (10/78) 0/2 1 0/8 1 2/11 0.429 0/9 1
B (9/68) 6/7 5.1 � 10�06 4/7 4.5 � 10�03 7/8 2.9 � 10�07 7/10 4.1 � 10�06

1BRC
E (14/140) 6/10 5.4 � 10�05 6/10 5.4 � 10�05 7/14 4.7 � 10�05 7/14 4.7 � 10�05

I (8/49) 2/3 0.065 1/7 0.738 4/5 1.5 � 10�03 3/10 0.197
1BVN

P (19/276) 6/17 3.6 � 10�04 2/28 0.597 3/10 0.024 7/42 0.014
T (14/62) 4/4 1.9 � 10�03 4/6 0.020 5/8 0.011 5/7 4.9 � 10�03

1CGI
E (22/161) 7/15 1.1 � 10�03 12/16 2.2 � 10�09 9/15 9.6 � 10�06 12/21 2.5 � 10�07

I (11/43) 1/6 0.851 3/4 0.046 4/11 0.284 4/10 0.214
1D6R

A (12/145) 4/11 6.7 � 10�03 7/15 1.7 � 10�05 6/18 9.3 � 10�04 7/19 1.2 � 10�04

I (8/53) 0/1 1 0/5 1 2/31 0.994 0/6 1
1DFJ

I (15/274) 3/9 9.2 � 10�03 10/27 3.4 � 10�08 3/5 1.3 � 10�03 12/34 6.7 � 10�10

E (16/98) 3/12 0.306 2/10 0.512 3/12 0.306 5/19 0.165
1E6E

A (19/302) 13/52 3.6 � 10�07 0/30 1 4/15 9.9 � 10�03 13/70 1.8 � 10�05

B (19/79) 11/20 4.7 � 10�04 5/8 0.017 11/22 1.5 � 10�03 11/20 4.7 � 10�04

1EAW
A (15/149) 7/15 9.8 � 10�05 7/15 9.8 � 10�05 8/21 1.4 � 10�04 8/18 3.6 � 10�05

B (7/48) 1/1 0.157 4/5 8.5 � 10�04 2/2 0.019 4/5 8.5 � 10�04

1EWY
A (6/197) 5/28 2.3 � 10�04 1/20 0.479 2/7 0.015 5/43 2.1 � 10�03

C (7/73) 4/12 0.012 2/7 0.132 4/12 0.012 4/13 0.016
1EZU

A (15/215) 8/19 3.5 � 10�06 2/11 0.173 1/8 0.445 9/24 1.9 � 10�06

C (23/144) 6/11 2.4 � 10�03 6/14 0.011 6/20 0.071 8/18 2.0 � 10�03

1F34
A (20/204) 4/10 9.8 � 10�03 3/20 0.31 4/5 3.2 � 10�04 5/27 0.104
B (21/103) 0/0 — 5/10 0.028 0/1 1 5/10 0.028

1HIA
A (15/140) 3/3 1.0 � 10�03 8/14 4.8 � 10�06 4/8 4.8 � 10�03 9/15 4.4 � 10�07

I (10/46) 1/2 0.395 1/5 0.725 5/18 0.33 2/7 0.48
1MAH

A (12/296) 1/11 0.371 7/30 3.1 � 10�05 1/5 0.188 7/39 2.0 � 10�04

F (12/56) 0/3 1 0/6 1 0/4 1 0/8 1
1PPE

E (15/146) 5/11 1.9 � 10�03 10/15 8.6 � 10�09 7/17 3.0 � 10�04 10/19 2.3 � 10�07

C (9/29) 1/1 0.376 0/3 1 5/19 0.88 1/4 0.796
1TMQ

A (19/273) 4/12 5.9 � 10�03 5/27 0.028 1/4 0.252 9/38 2.6 � 10�04

B (14/87) 2/5 0.181 3/9 0.155 3/6 0.05 5/14 0.045
1UDI

E (12/147) 4/10 4.2 � 10�03 4/15 0.022 2/7 0.102 7/19 1.1 � 10�04

I (13/66) 0/0 — 5/7 2.4 � 10�03 2/6 0.337 5/7 2.4 � 10�03

1WQ1
G (13/213) 5/6 2.1 � 10�06 0/21 1 0/0 — 5/27 0.014
R (14/113) 9/22 9.1 � 10�05 5/11 4.3 � 10�03 7/16 5.9 � 10�04 9/23 1.4 � 10�04
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the optimization of the parameters for the combined
score.)

Prediction-Driven Docking

The information content of our interface predictions in
the context of docking was evaluated by rigid body docking
only using a development version (2.0) of our data-driven
docking program HADDOCK.5 Predicted residues were
defined as active. Surface residues (accessibility larger
than 40%) within 6.5 Å of any active residue (distance
between the closest nonhydrogen atoms) were defined as
passive.

To account for the presence of false positives in our
predictions, for each docking trial, 50% of the predictions
were randomly discarded. The nonbonded intermolecular
interactions were calculated with an 8.5 Å cutoff. The
dielectric constant epsilon was set to 10. In each docking
run, 2000 rigid body docking solutions were written to
disk; for each, five trials were performed and only the best
solution was kept according to the HADDOCK rigid body
score, calculated as: Evdw � 0.2 � Eelec � 0.01 � EAIR �

Edesolv � 0.05 � BSA; where Evdw and Eelec are the van der
Waals and electrostatic energies, EAIR the ambiguous
interaction restraint energy, Edesolv an empirical desolva-
tion energy,35 and BSA the buried surface area upon
complex formation in Angstroms. For each set of interface
predictions (WHISCY, ProMate, WHISCYMATE, and
WHISCY � ProMate added predictions), a separate dock-
ing run was performed.

RESULTS AND DISCUSSION
WHISCY Performance on the Test Set

WHISCY was initially tested on the docking benchmark of
Chen et al.30 This benchmark consists of heterodimer com-
plexes classified as enzyme–inhibitor, antibody–antigen, other

complexes, and difficult complexes. All proteins were tested
except the antibody–antigen complexes. Sequence align-
ments from the HSSP database were used. Because WHISCY
is robust in respect to alignment errors, no further processing
was necessary. However, some proteins were discarded be-
cause there were too few sequences available (see Materials
and Methods).

To evaluate the performance of WHISCY, our predic-
tions were compared with the “true” interface from the
known 3D structures of the selected complexes. There are,
however, multiple ways in which an interface can be
defined. We have followed for this purpose a rather strict
definition based on contact analysis using the program
DIMPLOT.34 This resulted, on average over all protein
structures, in only 9.4% of all surface residues being
defined as interface residues.

Our purpose has been to use WHISCY for restraint
definition in HADDOCK. However, the output of WHISCY
is a continuous range of scores for all surface residues
supplied as input. This requires the definition of a cutoff
for a binary classification of the scores into predicted and
nonpredicted residues. The optimal cutoff depends not
only on the reliability of the data, but also on the docking
method and the protein complex. We therefore chose to
evaluate the WHISCY performance in a cutoff-indepen-
dent manner using a modified Receiver Operating Charac-
teristic (ROC) plot.36 We define the following quantities:
(a) NTP the number of correct interface predictions (true
positives), (b) NFP the number of wrong interface predic-
tions (false positives), and (c) NI total number of real
interface residues as defined from the complex.

The pooled WHISCY performance over the test set is
shown in Figure 1(A): the sensitivity S defined as
NTP/NI is plotted on the X axis, while the Y axis shows the
normalized number of wrong predictions W, defined as

TABLE I. Continued

Complex

WHISCY ProMate WHISCYMATE Added

correct p value correct p value correct p value correct p value

2MTA
L (11/280) 2/4 8.1 � 10�03 7/28 1.2 � 10�05 2/3 4.1 � 10�03 7/30 2.0 � 10�05

A (9/77) 3/5 0.01 4/8 5.2 � 10�03 4/7 2.7 � 10�03 4/10 0.014
2PCC

A (4/192) 0/5 1 1/19 0.343 0/7 1 1/19 0.343
B (6/81) 0/10 1 0/8 1 0/14 1 0/12 1

2SIC
E (17/161) 6/9 3.9 � 10�05 3/16 0.229 4/5 4.1 � 10�04 8/24 7.8 � 10�04

I (12/85) 0/10 1 7/9 5.1 � 10�06 2/14 0.63 7/19 3.9 � 10�03

2SNI
E (15/162) 7/11 3.5 � 10�06 5/16 8.1 � 10�04 5/6 2.0 � 10�05 9/24 2.2 � 10�05

I (6/53) 2/3 0.031 1/5 0.465 2/4 0.059 3/8 0.038
7CEI

B (10/98) 0/4 1 0/10 1 0/2 1 0/13 1
A (12/71) 1/3 0.431 4/7 0.013 1/4 0.532 4/9 0.039

Predications were made on the unbound forms of the respective proteins.
aComplex predictions: list of all docked complexes with their respective chains with the number of interface and surface residues indicated
between parentheses (see Material and Methods for the definition of interface residues). Correct: number of correct predictions and total number
of predictions for each predictor. p value: chance of obtaining a prediction of at least the same quality by random selection of the same number of
residues (hypergeometric distribution).
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NFP/NI. This allows any chosen cutoff to be defined by its
corresponding sensitivity S, and evaluated by its corre-
sponding accuracy A, which is NTP/(NTP � NFP) and can be
evaluated from the plot as S/(S � W).

Figure 1(A) clearly demonstrates that the WHISCY
performance (black curve) is much better than a random
predictor (dashed line). Using WHISCY with cutoff corre-
sponding to a 10% sensitivity, 43% of the predictions are
correct. For a cutoff of 30% sensitivity, one-third (33 %) of
the predictions are correct according to our strict interface
definition. The normalized number of wrong predictions
made by WHISCY within a given minimum distance from
the interface as a function of the sensitivity is presented in
Figure 1(A) as well. When only noninterface residues

further than 5 Å away from the protein partner are
considered, the number of errors decreases somewhat.
Note that the CAPRI4,37 committee considers all residues
within a 5 Å threshold as interface residues. Wrong
predictions at longer distances can be analyzed by further
increasing the distance threshold. Considering the entire
surface, residues further than 15 Å away from the partner
protein form the majority of the residues: for each inter-
face residue, there are 9.6 noninterface residues, 5.5 of
which are further than 15 Å away. These residues are,
however, underrepresented in the WHISCY predictions,
especially at strict score cutoffs. This is most clear from
Figure 1(B), in which the predicted residues have been
classified based on their distance from the partner protein;
shown are the respective percentages for the 10 and 30%
sensitivity cutoffs and for all residues. For both cutoffs, the
interface fraction is the largest fraction.

The statistical significance of these results can be tested
using the hypergeometric distribution. At 30% sensitivity,
this test shows with high significance that the WHISCY
predictions are better than a random selection (interface
vs. noninterface residues: p � 1.1 � 10�74) Moreover, if
only the noninterface residues are considered, the category
of residues closest to the interface are overrepresented
(residues �5 Å vs. residues �5 Å: p � 4.6 � 10�8 ). If only
the residues further than 5 Å are considered, the category
closest to the interface is again overrepresented (residues
5–10 Å vs. residues �10 Å: p � 0.00028), and this is also
true for residues further than 10 Å (residues 10–15 Å vs.
residues �15 Å: p � 1.1 � 10�8). This indicates that the
WHISCY predictions do not only contain a large overrepre-
sentation of the true interface, but also of residues close to
the interface, which causes the large majority of the
predictions to be at or near the interface. If all residues
within 15 Å of the partner protein would be counted as
correct, the accuracy would be 79 and 72%, even though
those residues cover only 45% of the total surface.

This suggests that interface conservation is a low-
resolution phenomenon: biomolecular interactions induce
residue conservation up to quite a long distance from the
interface. Alternatively, this could be an artefact of either
our smoothing procedure or of our tight definition of the
interface.

WHISCY Compared to ProMate

Figure 2 shows a comparison of prediction quality
between WHISCY and ProMate14 for the same test set.
This figure shows that the performances of WHISCY and
ProMate are comparable. This is remarkable, because
WHISCY is based on conservation whereas ProMate is
based on many properties, most of them biophysical, with
only a simple form of conservation implemented. Below
15% sensitivity, both methods are highly accurate and
show a similar performance. Between 15 and 55%,
WHISCY is clearly superior. If a very high sensitivity is
required, beyond 60% of the interface predicted, ProMate
is the most accurate method. However, this is merely an
average over the test set, and the two approaches differ
widely in their performance for individual proteins. Visual

Fig. 1. WHISCY’s performance on the test set. (A) Plot of the
sensitivity S versus the normalized number of incorrect predictions W,
considering all incorrect residues (black curve), considering only the
incorrect residues �5 Å away (dashed black curve), �10 Å away (gray
curve), and �15 Å away from the interface (dashed gray curve). S is
defined as NTP/NI, where NTP is the number of correct predictions and NI

the total number of real interface residues, and W is defined as NFP/NI,
where NFP is the number of incorrect predictions. Note that for a random
predictor, this would be a straight line in the plot (dashed thin line). (B)
Predicted interface residues classified according to their distance from the
interface, for 15% sensitivity cutoff (left), 30% sensitivity cutoff (middle),
and all residues (right). White bars: interface residues; light gray bars:
residues within 5 Å of the interface; gray bars: residues between 5 and 10
Å; dark gray bars: residues between 10 and 15 Å; black: residues further
away than 15 Å.
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inspection of the predictions for each individual protein
indicates that both ProMate and WHISCY outperform the
other in about half of the cases. The better performance of
WHISCY in Figure 2 merely indicates that WHISCY
shows a better ability to determine the number of predic-
tions that can be done at high confidence. Indeed, in using
ProMate we did not use a cutoff but selected the top 10%
ranking scores as was done in Gottschalk et al.15 Note that
in the original ProMate article14 the authors also suggest
to select instead the top ranking patch for prediction.

Overall, these results indicate that WHISCY and Pro-
Mate perform equally well in predicting protein interfaces.
Both methods give accurate results if the required sensitiv-
ity is not too high. However, the large differences in
performance for individual proteins indicate that a combi-
nation of the two may give even better results.

Combined Predictions with WHISCY and ProMate

We developed a procedure to combine the WHISCY and
ProMate scores into a new predictor. The general model is
that a residue score should be either very high for ProMate
OR WHISCY; or moderately high for ProMate and
WHISCY. Hence, this model is described by four threshold
parameters: two that define “very high” for ProMate OR
WHISCY, and two that define “moderately high.” These
parameters can be optimized for any desired sensitivity.
The result of the procedure was 100 sets of these four
parameters, roughly corresponding with cutoffs of 1 to
100% sensitivity (see Supplementary Material). To pre-
vent overfitting of the data, crossvalidation was used.
Together, these sets define the ProMate-WHISCY com-
bined score, which we will refer to in the following as the
WHISCYMATE score.

Figure 2 shows the performance of the WHISCYMATE
score compared to WHISCY or ProMate alone. For a 10%

sensitivity cutoff, the number of errors is halved, causing
an accuracy increase from 43% to over 60%. For the 30 and
50% sensitivity cutoffs, the accuracy becomes 44 and 30%,
respectively. This is comparable with the WHISCY accu-
racy for 10 and 30% sensitivity, respectively. Hence, by
using the WHISCYMATE score, either the accuracy for a
given number of predictions can be much increased, or a
much larger number of predictions can be made at the
same accuracy.

For the higher sensitivity region in the plot, the effect is
substantial as well. Although ProMate performs better
than WHISCY in this region, the performance difference
between ProMate and the WHISCYMATE score is much
larger. At 70% sensitivity, the WHISCYMATE score makes
16% less errors than ProMate, increasing the accuracy
from 16.7 to 19.4%.

Figure 2 also shows the performance of the three meth-
ods for enzymes, inhibitors, and other proteins. Due to the
low number of proteins in each class and the high homol-
ogy between some of those proteins, a quantitative analy-
sis cannot be performed. However, it is clear that in all
three classes, the WHISCYMATE score performs as least
as good as the best of ProMate and WHISCY. By far the
best predictions are made for enzymes, and WHISCY is
superior to ProMate in this class. Interfaces for inhibitors
are much harder to predict, although the ratio of interface
to noninterface is much better. WHISCY seems to be
better at strict cutoffs, but ProMate is able to correctly
eliminate a large percentage of the surface from the
potential interface. The proteins that are not from an
enzyme–inhibitor complex are the most difficult to predict.
However, predictions are still much better than random.
ProMate and WHISCY perform about equally here.

Using WHISCY and ProMate with HADDOCK

Our main purpose in developing WHISCY was to obtain
interface predictions that could be used in data-driven
docking.7 Therefore, the predictions were used to define
ambiguous interaction restraints for HADDOCK.5 This
requires the choice of a cutoff, which is not a trivial task.
Choosing a cutoff that is too strict may cause too few
restraints to be defined to drive the docking, whereas a
more generous cutoff may introduce so many errors that
only wrong solutions will be generated. An important
criterion here is that at least one interface residue should
be correctly predicted for the large majority of the proteins,
whereas the number of proteins with at least one wrong
prediction (�15 Å from the partner) should be minimized.
A plot of these statistics as a function of the cutoff was
generated (results not shown). The optimal cutoff was
manually determined at 29.4% sensitivity: 75.4% of the
proteins have at least one correct prediction, whereas
66.7% have one wrong prediction or more. The accuracy of
the predictions at this cutoff is 33.3%. This is over three
times the random score of 9.4%. The overall quality of the
predictions is very similar to the 30% cutoff shown in
Figure 1(B). The actual WHISCY score cutoff, correspond-
ing to 29.4% of the true interface selected, is 0.180.

Fig. 2. Performance of interface prediction. Plot of the sensitivity S

versus the normalized number of incorrect predictions W (see caption of
Fig. 1 for definition). Main figure: comparison of WHISCY (black curve),
ProMate (gray curve), and WHISCYMATE (dotted gray curve). Insets:
WHISCY (black curve), ProMate (gray curve), and WHISCYMATE (dotted
gray curve) for (A) enzyme interface prediction (21 test cases), (B)
inhibitor interface prediction (11 test cases), and (C) nonenzyme/inhibitor
interface prediction (25 test cases).
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For ProMate, the best results are obtained if a top
ranking percentage of the residues are predicted.14 We
selected the top 10% as interface prediction, as used by
Gottschalk et al.15 The cutoff for the WHISCYMATE score
was chosen at 35.4% sensitivity, to obtain on average the
same number of predictions as for WHISCY. Finally, a
fourth set of predictions was obtained by simply adding the
predictions for ProMate and WHISCY. This will be re-
ferred to as the Added predictions.

For testing the predictions in docking, we assembled a
test set of 25 proteins, consisting of six representative
complexes from the benchmark 1.0 used in WHISCY
development,30 and all enzyme–inhibitor/enzyme–sub-
strate complexes from the recently published docking
benchmark 2.0.31 The latter set contains several com-
plexes that have no equivalent in benchmark 1.0, and
hence, have not been used in the development of WHISCY.
For the selection of the six representative complexes from
the 1.0 benchmark, the only criterion was that at least one
WHISCY residue score passed the cutoff for each partner.
It was not examined in advance to what extent the
predictions were correct.

The performance of the interface residue predictions for
the 25 selected complexes is evaluated in Table I. Each
predictor performs better than random for the large major-
ity of the proteins using the chosen cutoffs (see above).
62.5% of the predictions are significant at the 5% level. The
Added prediction, which predicts the largest number of
residues, performs best in terms of significance, followed
by WHISCYMATE. Because the Added score combines
WHISCY and ProMate in a nonoptimized way but usually
predicts the largest number of residues, this suggests that
the currently used cutoffs might be too conservative. The
predictions mapped onto the surface of the proteins for the
six representative complexes from the 1.0 benchmark are
shown in Figure 3.

Note that neither WHISCY nor ProMate nor their
combination is fully insensitive to the 3D structure used in
the prediction: a comparison of predictions obtained from
the bound and unbound 3D structures reveals small
variations but no trend towards a performance gain or loss
(data not shown). This is in agreement with previous
results that have shown that interface prediction is robust
for switching from bound to unbound predictions.14,22

However, in individual cases, there might be small differ-
ences, especially if conformational changes are occurring
between the unbound and bound forms.

Successful docking requires the tackling of two prob-
lems: the generation of correct structures and subse-
quently their identification by scoring. As an initial test of
the inclusion of interface predictions to drive the docking
and to limit computational costs, we limited ourselves to
the first problem using only the rigid-body docking stage of
HADDOCK. For each set of predictions (WHISCY, Pro-
Mate, the WHISCYMATE score, and the Added score)
2000 rigid-body docking solutions were generated for each
of the 25 complexes. We also performed control runs in
which random patches, different for each of the 2000
docking structures, were used to generate the restraints

for docking. Interface prediction and docking were per-
formed from the structures of the free proteins (unbound
structures), meaning that (small) conformational changes
might be required for proper docking.

The number of correct rigid-body docking solutions
obtained for the various predictions is presented in Table
II for the various complexes. A docking solution is defined
as correct if its ligand root-mean-square deviation (ligand
RMSD) from the experimentally determined complex is
less than 10 Å (acceptable solutions in CAPRI terms). The
ligand RMSD from the target is computed on the backbone
atoms of the smaller protein after positional least-square
fitting on the backbone of the largest component. For
individual docking runs, large differences are found in the
number of correct structures generated. However, for a
majority of the runs (57 out of 97), prediction-driven
docking performed significantly better than the control
run at the 1% significance level. The best results were
obtained with predictions made by the Added predictor,
followed by WHISCYMATE.

If all the runs are pooled, correct structures are gener-
ated for 22 out of 25 complexes. Moreover, the number of
correct structures is in the order of hundreds (out of a total
of 8000 generated structures) for 18 out of 25 complexes.
These 18 complexes include 1ACB and 1WQ1, which are
considered (medium) difficult targets in the benchmark.
These numbers can be considered an encouraging success
for an initial test, especially when compared to the control
runs with random interface patch definitions.

In general, docking was successful if the predictions for
both protein chains were more than 20% accurate. How-
ever, it is surprising to see that many runs yielded correct
structures even while the prediction for one or both of the
partners was not very good. This could be due in part to the
random removal of restraints that we implemented in
HADDOCK: by discarding randomly half of the restraints
for each docking trial, ambiguous interaction restraints
involving false positives might be removed allowing for
correct solutions to be generated, provided that at least
one correct prediction was made for each chain.

There are two cases that escape this general pattern.
For 1EZU, no correct solutions were generated even while
the WHISCY predictions were excellent. The reason of this
failure is not clear to us at this time. In contrast, for 2PCC,
many good structures were obtained using ProMate and
the Added predictor, even while there were few or no
correct predictions at all. This can be explained by the fact
that for 2PCC, most predicted residues are near the
interface [see Fig. 3(F)], indicating that these residues can
also be helpful in docking.

CONCLUSIONS AND PERSPECTIVES

In this study, we have described the interface prediction
program WHISCY and its combination with another pre-
dictor, ProMate, in the context of prediction-driven dock-
ing. Our results strongly confirm the hypothesis that
surface conservation yields useful information for data-
driven docking. WHISCY predictions identifying 30% of
those residues were 32.9% accurate, 3.5 times better than
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Fig. 3. Predicted versus true interface residues mapped onto the two chains of the six complexes selected
from the 1.0 docking benchmark:30 1AVW (a), 1BRC (b), 1DFJ (c), 1WQ1 (d), 2PCC (e), and 2SNI (f). Green:
interface as determined by DIMPLOT (see Material and Methods); red: WHISCY prediction; blue: ProMate
prediction; purple: overlap between WHISCY and ProMate prediction.
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random. By shifting the prediction cutoff, the accuracy can
be increased even more at the expense of sensitivity, or
vice versa. Some complexes clearly have more conserved
interfaces than others. Predictions made by WHISCY were
accurate for most enzymes, but they were less reliable for
inhibitors and proteins not part of enzyme–inhibitor com-
plexes. This is in agreement with Bradford et al.,38 who
determined interface conservation for enzymes and inhibi-
tors using Rate4Site.19 Our results are particularly impres-
sive if one considers the fact that a protein may have
multiple interfaces, so that predicted residues that are
part of a different interface are scored as wrong predic-
tions. For example, the Ras protein, chain 1WQ1R in our
test set, is known to be involved in at least 11 distinct
interactions39 that might not be necessarily mediated by
the same interface residues. Finally, one must bear in
mind that the chosen interface criterion that marks 9.4%
of the surface as interface is extremely strict. Other groups
have used criteria resulting in 30% of the surface to be
marked as interface;22,40 all predictions in this large area
of the surface would thus be considered correct. This
explains some of the high accuracies that are sometimes
reported in the literature.

For docking purposes, the interface predictions obtained
from WHISCY, ProMate, and their combination were good
enough to generate correct structures for 22 out of the 25
complexes used for testing purposes with only the rigid-
body part of our data-driven docking program HADDOCK:

for 18 complexes, more than 100 correct structures (out of
8000 generated) were obtained.

In general, the Added predictor that takes all predic-
tions from both WHISCY and ProMate performed best; it
correctly predicts a larger number of residues than the
other methods described here. This suggests that the
currently used cutoffs might be too conservative. In the
future, improved translation of prediction scores into
restraints may further enhance the docking. Our results
provide a promising starting point for routine incorpora-
tion of interface prediction in data-driven docking.

Software Availability

The WHISCY source code is freely available from the
authors upon request. Alternatively, WHISCY predictions
can be made through our web server at http://www.
nmr.chem.uu.nl/whiscy.
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