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ABSTRACT

WHISK: Web Hosted Information into Summarized Knowledge

Jiewen Wu

Today’s online content increases at an alarmingly rate which exceeds users’ ability

to consume such content. Modern search techniques allow users to enter keyword

queries to find content they wish to see. However, such techniques break down when

users freely browse the internet without knowing exactly what they want. Users may

have to invest an unnecessarily long time reading content to see if they are interested

in it. Automatic text summarization helps relieve this problem by creating synopses

that significantly reduce the text while preserving the key points. Steffen Lyngbaek

created the SPORK [32] summarization pipeline to solve the content overload in

Reddit comment threads. Lyngbaek adapted the Opinosis graph model for extractive

summarization and combined it with agglomerative hierarchical clustering and the

Smith-Waterman algorithm to perform multi-document summarization on Reddit

comments.

This thesis presents WHISK as a pipeline for general multi-document text sum-

marization based on SPORK. A generic data model in WHISK allows creating new

drivers for different platforms to work with the pipeline. In addition to the existing

Opinosis graph model adapted in SPORK, WHISK introduces two simplified graph

models for the pipeline. The simplified models removes unnecessary restrictions in-

herited from Opinosis graph’s abstractive summarization origins. Performance mea-

surements and a study with Digital Democracy compare the two new graph models

against the Opinosis graph model. Additionally, the study evaluates WHISK’s ability

to generate pull quotes from political discussions as summaries.
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Chapter 1

INTRODUCTION

This thesis presents WHISK, an automatic text summarization pipeline for multi-

document summarization based on Steffen Lyngbaek’s Summarization Pipeline for

Online Repositories of Knowledge (SPORK) [32].

Today’s internet provides many outlets for user-generated content. Wikipedia,

which allows users to create/edit articles in an encyclopedia form, has reached close to

five million English articles to this day [61]. Social media platforms, such as Facebook,

Twitter, Tumblr, and Reddit, provide an informal community space for almost any

type of content. All of these social media platforms have a grouping mechanism, such

as community groups or tags, to categorize and organize their content so users find

what they want faster.

Keywords are commonly used to generate tags for new content. Topical phrases

and distinctive words in a document may be eligible to be a keyword. Topic and

keyword extraction utilize natural language processing techniques to automatically

find the overall topic and the keywords within a given body of text. However, content

creation speed has grown alarmingly and can overwhelm users even with the help of

such tools. Within the same topic, there can still be a high volume of discussion and

content. Therefore, tagging alone may not be enough to help users find the content

they are interested in. Helping users deal with the increasingly large content flow

motivated this thesis.

Information retrieval (IR) systems provide a specialized solution using natural

language processing techniques. Every piece of text content, referred to as a document,

goes through an indexing process. Many indexing processes rely on keywords for
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servicing user queries. These IR systems help the users find articles most relevant

to their needs by matching documents to the user-specified query text. For example,

Google is a prominent search engine which makes use of IR techniques to quickly

search for web pages relevant to the user’s search query. However, these techniques

truly shine only in situations where the user knows exactly what they want.

In situations where users explore text content freely, automatic text summariza-

tion serves as a great time-saving tool. Radev, Hovy, and McKeown define a summary

as “a text that is produced from one or more text(s), that conveys important infor-

mation in the original text(s), and that is no longer than half of the original text and

usually significantly less,” where text can be “speech, multimedia documents, hyper-

text, etc.” [43]. Summaries help users quickly decide whether they want to continue

reading or move onto another content by drastically reducing the amount of content

to process.

Political discussions is one area where summaries can not only save time but also

increase awareness. The Digital Democracy project by the Institute for Advanced

Technology and Public Policy (IATPP) provides better accessibility to bill discussions

in California state legislature through their website (https://digitaldemocracy.

org/). The website serves as public resource for information on legislative bills as

well as video recordings and transcripts for hearings of those bills. Hearings may

become quite lengthy when a debate occurs over the issues of a bill. However, the

general public may not have enough time to watch a hearing or read a transcript.

Excerpts from the bill discussions may be used to represent the key ideas that

were mentioned. These excerpts can give the reader a general highlight of what is

being discussed in the hearing. The highlights allow the reader to quickly decide

whether they are interested in learning more about the hearing or not. Additionally,

because excerpts are far easier to digest, citizens will be less put off from learning

2
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about the current bills compared to watching a video recording or skimming a tran-

script. Summaries create a lower barrier of entry for the general public to consume

information about the current political issues.

Summaries also save time for users on Reddit, an online messaging board for users

to post text or links. Reddit users often create synopses, called “TL;DR” or “Too

long; Didn’t read”, to save each other time on long posts. However, no summaries

exist as of yet for the comment threads of posts. Summarization Pipeline for Online

Repositories of Knowledge (SPORK) [32], a summarization pipeline built by Steffen

Lyngbaek, aimed to solve this problem by summarizing Reddit comments using an

adapted Opinosis graph model [19] and the Smith-Waterman algorithm [55].

We improve upon the SPORK pipeline through the following ways. First, be-

cause SPORK mainly worked with Reddit comment threads, we expand SPORK for

general summarization usage. Second, we introduce two different simplifications of

the Opinosis graph model to improve performance as a backend service while re-

taining similar summarization results. Last, we contribute to the Digital Democracy

pipeline by creating a module that uses WHISK to select representative sentences

from legislative bill discussions.

We perform three validation experiments to test the effectiveness of the new graph

versions compared to the adapted Opinosis graph:

• A comparison of graph processing timings and similarities between the resulting

summaries.

• Automatic summary evaluations with ROUGE [27] using gold-standard sum-

maries from the Opinosis dataset [19].

• A study in collaboration with the Digital Democracy project onWHISK’s ability

to generate summaries for political discussions.

3



The contributions of this thesis are as follows:

• Generalization of SPORK to support general multi-document summarization

(WHISK)

• Two simplified variants of the Opinosis graph model for WHISK

• A bill discussion summarization module for Digital Democracy using WHISK

4



Chapter 2

BACKGROUND & RELATED WORK

2.1 Automatic Text Summarization

Under the umbrella of natural language processing, active research continues to im-

prove automatic text summarization. The summarization techniques can be divided

into two approaches: abstractive and extractive.

The abstractive summarization approach aims to create novel sentences that cap-

ture the semantics from the corpus text. Humans create summaries in this manner,

so the ideal abstractive summaries would be indistinguishable from summaries done

by humans. Because capturing semantics is difficult, the existing work have been

mostly shallow and does not reflect true abstractions. One of the popular approaches

makes use of templates to create novel sentences. McKeown and Radev’s SUM-

MONS (SUMMarizing Online NewS articles) fills in manually created templates with

algorithmically selected words to create summaries [34]. However, Das and Martins

find that SUMMONS is ineffective in large topic domains because it would require

a large amount of templates [10]. Other works [17][19][28] create novel sentences

by performing sentence compression techniques. Majority of the work in automatic

text summarization utilizes extractive techniques rather than abstractive due to its

difficulty.

The extractive summarization approach, on the other hand, involves creating a

summary from parts extracted from the corpus text such as phrases or sentences.

This approach relies on detecting representative phrases or sentences that are rele-

vant and salient. The phrases or sentences are then arranged into a readable form. A

good variety of extractive methods have been explored towards automatic text sum-

5



marization. Existing methods vary on information usage from the pure document

text to the user’s metadata.

One popular model used to measure the important of a word or to transform

text into a vector space model is the Term Frequency–Inverse Document Frequency

(TF-IDF) model [49][56]. Given a collection of texts, TF-IDF weighs terms (or words)

based on the term’s frequency in a document and inversely on the document frequency.

The vocabulary is the set of all terms present in the collection of texts. The term

frequency (tfd w) in a document is simply the number of times the term (w) appears in

the document (d). The document frequency (dfw) equals to the number of documents

in the collection where the term (w) appears. If there are N documents in the

collection, the inverse document frequency (idfw) equals to log N
dfw

. The TF-IDF

weight of a term w in a document d can then be calculated as follows:

tfidfw = tfd w ∗ idfw (2.1)

There are several variants of the TF-IDF model, but they all work very similarly.

Using the weighing calculation, a document may then be represented in space as

a vector of TF-IDF weights. The vector contains TF-IDF weights for all terms in the

vocabulary. Terms that are not present in a document d have a term frequency of

zero in the document and simply has a TF-IDF weight of zero in document d. This

vector space abstraction of documents allows application of more general algorithms

than pure natural language processing techniques.

This following five sections cover different types of summarization techniques

researched today: query-based summarization, personalized summarization, super-

vised summarization, graph-based summarization, and multi-document summariza-

tion. The two sections afterwards provide an extensive overview on the design of the

Opinosis graph model and SPORK. The last section covers the Digital Democracy

project and the input data for the study.
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2.2 Query-based Summarization

Unlike generic summarization which provides a summary over all ideas in a corpus,

query-based summarization specializes summaries towards specific queries or top-

ics. Queries or topics may be generated automatically, entered dynamically by a

user, or statically defined through a template. Applications of query-based summa-

rization fall under general search with specific domains such as question-and-answer

and scoped product reviews. Existing works [39][66] perform semantic comparisons

between queries and sentences using statistical or clustering techniques. However, au-

tomatic query generation is one of the most important features towards performing

unsupervised summarization.

Lu et al. applies query-based summarization for eBay transaction feedback using

automatically discovered categories as queries [31]. Shipping, communication, and

service are the three predefined areas in the eBay feedback form, but the user feedback

text may contain important aspects of the transaction. Aspects are discovered via

either clustering or probabilistic models. The feedback text are then grouped by

the most related aspect. For each aspect, representative phrases can be extracted

based on frequency. Lu et al. suggests that their approach can be generalized to

any rated aspects [31]. One such possibility may be product features in product

reviews. Each product may have different types of features than other products,

so product features must be defined or discovered. Each product feature as a query

would return a summary relating to that specific feature. Instead of a single summary

about the product, specialized summaries can provide more details on the specific

features. Combining query discovery with query-based summarization, automatic

text summarization may be performed unsupervised for arbitrary text.

7



2.3 Personalized Summarization

Personalized summarization approaches summarization on a user-by-user basis. This

approach aims to provide the summaries predicted to be most interesting or useful to

the target user. Query-based summarization can be used as a base for personalized

summarization. The following works makes use of information about or from the user

in order to perform summarizations.

A simple approach identical to query-based summarization is to use keywords.

Diaz et al. present a keyword approach by using a user-given vector of keyword

weights to score sentences [13]. The sentences containing more keywords will be

considered more relevant to the user. However, their approach requires users to

manually input the vector of keyword weights.

Annotations, or marked words or phrases, is another similar method to keywords

for personalizing summarization. Zhang et al. combine users’ annotations in text

along with the TF-IDF model [49][56] to find the most representative sentences [67].

The annotated keywords and the sentences that contain them are given weights ac-

cording to frequency and predefined annotation weights. The annotated weights with

TF-IDF weights of words together form word scores. Sentences with the highest sum

of word scores are then composed into a summary. Móro et al. goes further by

combining user annotations with domain-specific words to get better personalization

in the area of learning [37]. Like the previous approach, annotation approaches also

requires manual user input.

More generically, user models can be used to track characteristics or interests of

users. When selecting candidate sentences for a summary, the candidates are scored

by their similarity to the user model. Dı́az and Gervás use a user model consisting of

a long term model that represents stable information needs and a short term model

8



that represents temporary information needs [12]. The long term model would be

built with general categories, such as sports or national newspaper sections, and user-

inputted keywords. The short term model, on the other hand, contains representative

keywords from the users’ feedback on the documents they have read. Both models are

represented as term weight vectors that can be compared with candidate sentences.

However, because this work uses user feedback, manual user actions are still required

specifically for the summarization.

Campana and Tombros introduce a method for automatically discovering user

models based on the user’s interactions [4]. For every page the user reads, sentences

are scored based on term frequency, position in the page, and shared words with the

title. The top scoring sentences up to a maximum number are saved into the user

model represented as a complete graph with sentences as nodes and similarity between

sentences as edges. Candidate sentences are scored by their maximum score when

compared to the model nodes by sentence similarity and the node’s degree. With the

help of automatic user model discovery, systems can learn the user’s interests and

provide better personalized summaries the more the user uses the system.

In the Twitter application domain, Ren et al. select tweets as personalized time-

aware summarizations using a user’s history and social network. The authors pro-

posed a Tweet Propagation Model (TPM) which predicts a user’s interests using

probability distributions. TPM considers a user’s personal posts as well as the in-

terests of the user’s friends. Ren et al. implement time awareness by sampling for

each fixed time interval and finding the tweets most aligned with the TPM for that

interval [45]. By tracking a user’s interests, TPM would be able to show the most

relevant tweets relative to a user.
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2.4 Supervised Summarization

Several studies have applied supervised machine learning towards summarizing text.

Supervised learning approaches require training on labelled data which express the

“ground truth” of data points. The labelled data is often specialized to a specific do-

main or application. Additionally, labelled data is usually manually obtained through

human experts which can be expensive in both time and money. To alleviate strong

reliance on labelled data, one may consider semi-supervised approaches such as Wong

et al.’s solution which combines labelled data with unlabelled data to achieve compa-

rable results as fully supervised approaches [62]. The following works apply supervised

approaches such as classification, which builds classifiers for categorizing items, or re-

gression, which builds a mathematical function for predicting numeric values, towards

summarizing tweets.

Rudra et al. takes advantage of language patterns during disaster events to extract

situational information, such as number of causalities or the current situation in a

region [47]. The authors trained a classifier called Support Vector Machine (SVM)

[60] with 1000 random labeled (or categorized) samples to distinguish tweets with

situational information versus those that contain non-situational information, e.g. a

person’s sentiment for the victims. The trained classifier, evaluated at 80% accuracy,

filters out non-situational tweets and allows extraction of situational information.

Rudra et al. finds the tweets with the most important content through a scoring

called TF-IDF [49][56]. Part of Speech (POS) taggers help identify numerals, nouns,

and main verbs for reporting constantly changing information [47].

User contextual information leads Chang et al. towards performing regression on

features derived from time, popularity, and text to summarize Twitter conversations

[7]. Popularity features come from following the PageRank algorithm focused on reply

and retweet relationships. After converting text to a vector-space model using TF-
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IDF [49][56], distance measures from the center point of the conversation dictate a

tweet’s textual features. Chang et al. applies a regression algorithm called Gradient

Boosted Decision Tree to decide which few tweets summarize the conversation [7].

While both Rudra et al. and Chang et al. apply machine learning techniques to

enhance summarization, both works target special domains. Because of this special-

ization, their work is harder to applied to other areas of summarization, especially if

the goal is to summarize arbitrary text which do not follow any assumptions about

structure or topic. Since we are interested in generic summarization of text, the

approaches we focus on will largely be unsupervised.

2.5 Graph-based Summarization

Many summarization techniques use a graph model at some point. Even in the works

above, graphs make a difference in popularity measures. The following works center

their algorithms around graph models.

Sharifi et al. proposes the Phrase Reinforcement algorithm which builds a graph of

common word sequences for summarizing user query results. The root node contains

the topic phrase and its number of occurrences. All other nodes contain a word and

are weighted proportional to their count lessened by their distance from the root

node. The joined path with the maximum total weight on both the left and right side

of the topic phrase identifies the best summary sentence [52].

Instead of complete sentences, Kim et al. proposes a method to find the most

important keywords for user queries. After filtering by the query, words within a

1-25% frequency range are considered as keywords. Kim et al. constructs a graph

based on co-occurrences of those keywords. Maximal k-cliques are then identified

in the graph and used to find clusters, or groups, of tweets. Such clusters are then

merged if there is enough tweets shared by two clusters. The words in those cliques
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then become the most important keywords for that cluster [25].

Sumblr, created by Shou et al., clusters similar tweets together using k-means

clustering and selects representative tweets from each cluster with LexRank to gen-

erate a summary. Sumblr takes into account the tweet’s timestamp and the posting

user’s rank in the Twitter social network based on user relationships during cluster-

ing. New clusters are made when the nearest cluster for a new tweet is too high above

a given parameter [53].

Khan et al. performs graph-based querying after topical clustering [24]. Tweets

are first clustered by topic with a topic model called Latent Dirichlet Allocation (LDA)

[3]. Khan et al. constructs a co-occurrence graph and find the most popular terms

and co-occurrences using the weighted, undirected version of the PageRank algorithm.

Tweets containing the most popular terms are elected as representative tweets for the

summary [24].

2.6 Multi-document Summarization

Within automatic text summarization, multi-document summarization focuses on

summarizing core ideas spanning across multiple corpus texts instead of a single co-

herent document. Examples of multi-document corpora are Reddit comment threads,

Twitter tweets, and forum threads. Each comment, tweet, or post can be considered

as a single document. However, each document can contain its own distinctive ideas.

Modifications to existing single document techniques will be necessary to avoid redun-

dant summary sentences while still capturing the unique ideas about various topics.

The ability to group documents of similar ideas or topics together play a significant

role in generating quality summaries.

One approach by Celikyilmaz and Hakkani-Tür identifies key concepts and rela-

tionships between the concepts in a hierarchical fashion. Two types of topics, low-level
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and high-level, are identified and associated with one another. High-level topics are

more general and abstract while low-level topics are more specific subtopics. Sen-

tences are scored based on related words to the topics. The best scoring sentences

form the non-redundant summary [6].

Fung et al. and Hu et al., on the other hand, utilize clustering techniques to

create topically coherent document clusters. For each cluster, the sentence closest

to the cluster centroid would be selected as the representative sentence. Assuming

the clusters are non-redundant relative to each other, the representative sentences

together would then form a non-redundant summary [18][21][22].

WHISK offers another novel approach by applying the Opinosis graph [19] towards

extractive summarization on multiple documents or texts. The Opinosis graph relies

on highly redundant text to find the most important word sequences. With a high

number of texts available, there will be a good amount of redundancy for the Opinosis

graph to take advantage of. A query-based traversal from SPORK helps alleviate

situations where there are still a low number of topically aligned texts.

To better understand the foundation WHISK is built on, the next sections cover

the inner workings of the Opinosis graph model and the original SPORK pipeline.

2.7 Opinosis

Ganesan et al. present the Opinosis graph model as an abstractive summarization

technique [19]. In abstractive summarization, the system constructs novel sentences in

order to summarize the given text. Opinosis targets bodies of text that contain highly

redundant sentences, or sentences which consist of shared sequences of words. A word

sequence graph naturally captures the redundancy in the text. On microblogs like

Twitter, a good portion of posts on the same topic are expected to be fairly redundant

as people often share similar opinions in groups.
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Before generating the graph, preprocessing includes tokenization and part-of-

speech tagging. Tokenization breaks up bodies of text into parts called tokens. In

English, sentences may be tokenized by splitting at recognized punctuations such as

periods, question marks, semicolons, ellipses, and exclamation marks. At the next

level, sentences may be tokenized into words by naively splitting the text at space

characters. Different tokenization techniques may be used, but the overall goal of

breaking the text down into sentences and words is the same.

Part-of-speech tagging involves recognizing what part of speech a word is within

the given sentence. This is important when a word may be used in multiple ways with

different meanings. Abstractive summarization requires this in order to make mean-

ingful sentences because the summary should following proper grammatical structures

and rules. Many part-of-speech tagging solutions exist [8][9][11][20][35][44][50][51][58],

but none are perfect. After running a selected tagger on the tokenized text, the

Opinosis graph can be built.

The Opinosis graph contains nodes, representing a word and its part-of-speech,

and directed edges, which indicate one word unit following another in some sentence

(also known as a bigram). A node contains metadata about its word including its

part-of-speech and its occurrences. The word and its part-of-speech are considered

the uniquely identifying factors of a node. Each node’s occurrence is recorded as a

pair: the unique id of the sentence the word occurs in and the position in which the

word occurs in the sentence. Figure 2.1 shows how an Opinosis graph instance looks

like for an example set of sentences.

Special nodes include start nodes and end nodes. Start nodes signify words that

are possible starts of a sentence based on the average position index a word occurs in

sentences. The maximum average position to be considered a start node is empirically

determined. End nodes are punctuation or coordinating conjunctions which can end
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Id Sentence
1 This tests for great usability with mice.
2 We use tests to measure usability with mice and keyboard.
3 Why should we test usability?

We PRP {(2, 1), (3, 3)}

use VBP {(2, 2)}

tests NNS {(1, 2), (2, 3)}

to TO {(2, 4)}

measure VB {(2, 5)}

usability NN {(1, 5), (2, 6), (3, 5)}

with IN {(1, 6), (2, 7)}

mice NN {(1, 7), (2, 8)}

and CC {(2, 9)}

keyboard NN {(2, 10)}. .{(1, 8), (2, 11)}

This DT {(1, 1)}

for IN {(1, 3)}

great JJ {(1, 4)}

should MD{(3, 2)}

Why WRB{(3, 1)}

test VB{(3, 4)}

? .{(3, 6)}

Figure 2.1: Opinosis Graph. An example Opinosis graph for a given set
of sentences.
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a sentence. These special nodes are captured from the tokenized text while building

the graph.

Sentences are derived by scoring possible paths in the graph with several criteria.

Eligible paths in the original Opinosis technique must start at a valid start node

and end at a valid end node. Paths must also follow grammar rules enforced via

part of speech ordering. These two requirements are loosened in the experimentation

discussed in later sections. Stitching techniques are not discussed here since they only

relate to abstractive summarization and are not used in SPORK.

Consider an eligible path W = w1, ..., wk where w1 is the starting node and wk is

the ending node. The path score can be computed using the following formula:

s(W ) =
1

|W |
∗

[

r(w1, w2) +
k

∑

i=3

(

log
2
|w1, ..., wi| ∗ r(w1, ..., wi)

)

]

(2.2)

where |W | is the length of the path, |w1, ..., wi| is the length of the subpath between

w1 and wi, and r(w1, ..., wi) is a function used to determine the redundancy score of

the subpath. The function r(a, ..., b) is defined as r(a, ..., b) = |pa ∩ ... ∩ pb| where

pi is the sentence occurrences of the node by sentence id. Intersection is restricted

by a gap criteria where shared sentence ids are only considered common if the word

position difference between the given node and the following node are less than or

equal to the maximum gap [19].

The top valid paths are reordered by sentence order and composed to form the

abstractive summary. The number of top paths is empirically set. SPORK uses the

Opinosis graph model to discover important word sequences in the text.
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2.8 SPORK

Steffen Lyngbaek built the SPORK pipeline in Python and applied it towards sum-

marizing Reddit comment threads [32]. SPORK first makes use of a clustering tech-

nique to group similar comments together before performing summarization. SPORK

combines abstractive and extractive techniques to form a hybrid summarization so-

lution. Unlike abstractive techniques which create novel sentences, extractive tech-

niques take parts of the original text to create the resulting summary. SPORK adapts

the Opinosis graph model [19] as an extractive approach to derive key features of the

summary. The key features are then used with the Smith-Waterman algorithm [55] to

perform sentence extraction from the original text. The SPORK pipeline is split into

three separate stages: data collection, preprocessing, and summarization. A visual

overview of the SPORK pipeline is shown in Figure 2.2 [32].

Data Collection. SPORK collected reddit posts and comments from subreddit fo-

rums to be summarized. The two subreddits Lyngbaek focused on were r/technology

and r/politics. To do this, a Python wrapper called Python Reddit API Wrapper

(PRAW) was used to interface with Reddit’s API. The data is then persisted in a

MySQL database for local consumption. Only new posts or comments are queried

using the PRAW interface [32].

Preprocessing. In the preprocessing stage, SPORK performs tokenization, part-of-

speech tagging, keyword ranking, and clustering.

Because SPORK needs to work on the word level in the later stages of the pipeline

with the Opinosis graph model, tokenization and part-of-speech tagging are required.

SPORK utilizes tokenizers available through the Natural Language Toolkit (NLTK)

[29] package for Python. The PunkSentenceTokenizer is used for sentences while the
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reddit.com

Tokenization Keyword Ranking

comments

comment ...w1 w2

comment ...w1 w2

comment ...w1 w2

w11.

w52.
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w84.

w95.

w66.
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comments
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Query Generation
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w4

w1 w2 w3 w4

w1 w2 w3 w4

Graph Generation

w1

w5

w4

w8

w9

w6

Graph Traversal

w1

w5

w4

w8

w9

w6

Path Scoring

w6 w9 w1

w6 w4 w5 w1

w8

1.

2.

Sentence Extraction

comments

sentence

sentence

w4

Preprocessing

Summarization

Figure 2.2: SPORK Summarization Pipeline. (adapted from [32])
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TreebankWordTokenizer is used for words. Part-of-speech tagging is handled by the

Stanford POS Tagger [58] using the left3words model: wsj-0-18-left3words.tagger [32].

Keyword rankings are generated from a set of threads in a subreddit forum to

detect stop words. Besides the common articles such as “the” and “a”, subreddits

can contain commonly used words since they are specialized in a certain topic. For

example, Lyngbaek mentioned that the r/technology subreddit may commonly use the

words “technology” or “computer,” but they do not necessarily help give distinctive

meaning since many posts may contain them. SPORK uses the TF-IDF model [49][56]

on a set of comments in a subreddit to determine stop words for each subreddit. These

keyword rankings are used later in the pipeline to score paths in the Opinosis graph

[32].

Comment threads are discussions, so various disjoint topics appear. The different

topics must be detected, grouped, and summarized properly. SPORK topically groups

comments in a post by using agglomerative hierarchical clustering using the single-link

method. Comparisons between comments are made using the cosine similarity metric.

SPORK assumes that child comments are topically related to its parent comment,

so the clustering only targets top-level comments. The output groups (or clusters)

of comments are then fed into the summarization stage where they are processed

independently [32].

Summarization. In the summarization stage, SPORK works with the Opinosis

graph [19] and the Smith-Waterman algorithm [55]. The steps are as follows: query

generation, graph generation, graph traversal, path scoring, and sentence extraction.

Query generation involves discovering representative keywords for a cluster of

comments. Such keywords are found by using the χ2 measure [33] on co-occurrence

of the top 30% frequent words in the cluster. The main idea is that frequent words that
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co-occur with a small subset of other frequent words are considered biased towards

the subset. The higher the bias, the more important the word is considered to be.

SPORK uses these representative keywords for each cluster to optimize traversing the

Opinosis graph [32].

The Opinosis graph is generated following the techniques described in Section 2.7

with a few modifications. Each node contains some metadata information such as

the generic id of the comment the word is found in, the id of the comment within

the cluster, and the (upvote rating) score received by the comment. Recall that the

Opinosis graph relies on heavy redundancy in the text to be effective. Instead of

creating a graph for the entire body of text consisting of every comment in a post,

SPORK generates a graph for every cluster of comments. This method helps to

create more cohesive graphs with less noise. Each Opinosis graph is then traversed

for meaningful paths [32].

The query words from query generation guide the traversal of the Opinosis graphs.

In addition to the the start/end node restriction described in Section 2.7, paths must

also contain at least one of the query words. Instead of finding paths and then filtering

based on the queries, SPORK starts at the node representing a query word and finds

paths via forward and backwards propagation. Each possible forward path is then

combined each possible backward path to form the set of paths containing a given

query word. These sets are then combined to form the total set of paths. Instead

of following the more restrictive sentence structure requirement, paths are tested for

validity using sentence length and a requirement to contain a verb. The valid paths

of a graph are then scored to find the most useful and meaningful path [32].

SPORK scores paths using an augmented version of the path scoring formula using

TF-IDF scores and metadata. The TF-IDF keyword rankings from the preprocessing

stage are used to boost paths containing an important keyword. The sum of upvote
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scores of comments containing the word also contribute towards raising the score.

The customized formula compared to the one described in Section 2.7 is as follows:

s(W ) =
1

|W |
∗

[

r(w1, w2) +
k

∑

i=3

(

log
2
|w1, ..., wi| ∗ r(w1, ..., wi)∗

tfidf(wi) ∗ upvote(wi)
)

] (2.3)

[32]

Using top paths discovered with the graph models, SPORK extracts the most im-

portant sentences of each topic cluster to form a summary. The top two paths for each

query word in graph traversal are used to discover summary sentences. The paths

are then compared to sentences in the original comments using a similarity metric to

find the top matching sentence for each path. Lyngbaek experimented with a number

of metrics, including Jaccard Similarity, Dice Similarity, Cosine Similarity, Minimum

Edit Distance, and Local Alignment, to find that Local Alignment excelled in dis-

covering up to 80% of the important topics. SPORK utilizes the Smith-Waterman

algorithm [55] to implement Local Alignment. The top matching sentences from each

cluster together form a concise summary spanning the various topics in the comments

[32].

WHISK takes the foundational ideas of SPORK to build a more generic summa-

rization pipeline. The next chapter discusses the conceptual design behind WHISK

and how it differs from SPORK.

2.9 Digital Democracy

One area automatic text summarization can apply is helping the general public have

better access and understanding of their state legislatures. We applied WHISK to the
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problem of finding parts of political discussions that serve as good summaries. This

work was done in collaboration with the Digital Democracy project by the Institute

for Advanced Technology and Public Policy (IATPP). This section provides a brief

overview of the project.

The Digital Democracy project provides a website (ontaining resources on the

California state legislature’s committee hearings. The website serves as a searchable

database that allows users to view the video recordings, transcripts, and additional

data on committee hearings. The Digital Democracy project retrieves video record-

ings of committee hearings and information on legislative bills, legislators and lob-

byists from official public databases and websites. The transcriptions and additional

data such as the speaker’s position on the issue come from Digital Democracy’s set of

internal tools. Users may search for committee hearings by keyword, topic category,

or by date. Upon viewing a committee hearing, users can review the video recording

along with the synchronized transcript as shown in Figure 2.3. Committee hearings

consist of discussions of individuals bills with a committee vote on a bill taking place

usually at the end.

The amount of information from the video recording and transcript may be too

much for users to handle. The committee hearing pages, as shown in Figure 2.3, lack

synopses or overviews that easily convey to the user the main ideas within the dis-

cussions. In journalism, phrases, quotations, or excerpts called pull quotes highlight

the key points from the article. We apply WHISK by extracting a select number of

representative sentences as pull quotes for committee hearings.

The input data from Digital Democracy comes in units called utterances. Each

utterance represents a single, uninterrupted thought by a speaker during a hearing.

Utterances are represented on the committee hearing pages as the separate containers

for each speaker in the transcript shown in Figure 2.3. Each utterance comes with
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Figure 2.3: Digital Democracy Screenshot. A committee hearing page on
the Digital Democracy website.
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the following metadata established during the transcription process: the name and

identification of the related bill and hearing, the position in the video recording, the

speaker’s identity (including their name and whether they are a legislator, a lobbyist,

or part of the general public) and position on the issue (for or against).

Utterance datasets for WHISK come in the form of comma-separated values (CSV)

files. Each dataset contains all utterances from one bill discussion. The speaker’s

name is used to set the context for selected sentences. We primarily work with the

textual transcription using summarization techniques to select representative sen-

tences. Please see the work by Rovin [46] and Wu [63] on Digital Democracy for

details on the transcription process that creates the utterances used in our study.
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Chapter 3

DESIGN

WHISK extends SPORK by generalizing the pipeline towards summarization for

many platforms and improving the performance of pipeline components to better

serve as a back-end service. The top level layers defined in WHISK include the origi-

nal SPORK layers: data collection, preprocessing, and summarization, as well as a new

service layer. A visual overview of the new WHISK pipeline is shown in Figure 3.1.

3.1 Generic Data Model

To enable support for many platforms, a generic data model is introduced for working

with WHISK. The generic data model allows drivers for different services to manage

the corpus to be summarized and their resulting summaries. An additional goal of

the generic data model is to allow extension modules to be easily added to pipeline.

Features such as sentiment analysis may be of interest as a service and can share

similar work done for summarization. Metadata may be introduced into the data

objects for use in extension modules that can make use of such data.

The overall structure of the data model is displayed in Figure 3.2. A driver

program initializes the corpus object with the plain text and set applicable pipeline

options in the options field. The rest of the fields are populated by stages in the

pipeline with appropriate results. The metadata fields are used to hold domain-

specific metadata as well as additional data introduced by extension modules.
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Figure 3.1: WHISK Pipeline
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Corpus

texts : list
clusters : list
idfScores : map〈word, float〉
options : map〈string, object〉
metadata : map〈string, object〉

Cluster

texts : list
queries : list
graphs : map〈string, object〉
summaries: map〈string, list〉
options : map〈string, object〉
metadata : map〈string, object〉

Text

text : string
tokenized sentences : list
processed sentences: list
metadata : map〈string, object〉

Sentence

words : list
metadata : map〈string, object〉

Word

text : string
metadata : map〈string, object〉

Figure 3.2: WHISK Data Model. An overview of the generic data model
in WHISK.

3.2 Data Collection

Drivers for a specific platform handle collection of the corpus to be summarized.

These drivers are to be created and handled by developers. For example, a Reddit

comment driver collects comment threads to be summarized as well as any other

threads required for intermediate stages such as keyword ranking. Since the driver

performs the collection, the driver must define what it considers to be a unit of

text and how multiple units of text compose the corpus. After collection, the driver

converts the corpus into the generic data model for working with WHISK. A driver

program is responsible for any other features useful for its operation such as caching

and persistence of corpus text and summaries since WHISK does not implement these

features. Once the corpus data is ready, the driver passes it into the preprocessing

stage.
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3.3 Preprocessing

WHISK’s preprocessing steps follow the same steps in SPORK with added features.

The corpus text is tokenized by sentences and then by words. Additionally, sim-

ple stopword filtering and word stemming [30] may be optionally performed. The

tokenized text is then analyzed using keyword ranking in order to detect special stop-

words in the corpus. Finally, the text in the corpus is clustered into groups to be

processed by the summarization stage.

3.4 Summarization

WHISK introduces several changes to query generation, graph generation, graph

traversal, and path scoring. Sentence extraction as the last step remains the same

design as in SPORK using the Smith-Waterman algorithm.

Query Generation. Query generation becomes a more optional step to be used by

the developer’s discretion. Certain corpora benefit from querying based on keywords,

while others may be redundant enough that such work is unnecessary. By moving

queries as an option, developers with domain knowledge will have more control over

what WHISK produces.

Graph Generation. Three different versions of the Opinosis graph model are in-

cluded in WHISK for summarization: the original Opinosis graph model described

in Section 2.7, a sentence-id graph model, and a numeric graph model. The original

Opinosis graph model based on the paper by Ganesan et al. is the basic model used

in SPORK [19][32].

The sentence-id graph model is a simplified version of Opinosis which ignores word
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positions. Because word positions are ignored, the gap threshold present in Opinosis

is not used. The formalization of the sentence-id graph is covered in Section 3.6. We

make this simplification because we are not generating novel sentences as done by

Ganesan et al. [19] which requires grammatical correctness. Ganesan et al. found

that increasing the maximum gap threshold between words leads to better perfor-

mance in generating summary sentences but also carries the possibly of generating

grammatically incorrect sentences [19]. Since we use the sequences instead to match

and extract sentences from the original text, grammatical correctness of the sequences

does not matter. However, the order in which the words appear in the sentences is

still preserved via the directed edges. Therefore, the paths in the sentence-id graph

still capture the number of sentences which contain the same word sequences.

The numeric graph model is a further simplification based on the sentence-id graph

model. Instead of keeping any sentence information, we keep track of word nodes and

how many times they co-occur with an edge and a counter. The graph becomes

a classic directed graph where edges represent co-occurrence. The formalization of

the numeric graph is covered in Section 3.7. An interesting possibility is to perform

LexRank [14] on this co-occurrence graph for keyword extraction. The effectiveness

of this graph is to be tested in the experimentation section of this thesis.

Additional metadata can be added onto nodes in the graph for the purpose of

utilizing extension modules that can work the graph models. Methods for doing so

is discussed later in Chapter 4. After generating the selected graph model, WHISK

traverses the graph for paths.

Graph Traversal. WHISK loosens the restrictions on traversing the Opinosis graph

compared to SPORK. Instead of following the original requirement of valid start and

end nodes, WHISK allows traversal to begin at any node in the graph. Additionally,

paths are not required to follow the sentence structure restriction presented by Gane-
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san et al. or the simplified sentence restriction presented by Lyngbaek [19][32]. Path

traversal also takes into account queries if they are used as SPORK does. WHISK

scores discovered paths with a numeric value to determine the top paths.

Path Scoring. Because different graph models are used, the scoring method changes

depending on the graph. The redundancy measure on the sentence-id graph model no

longer checks for gaps and simplifies to a set intersection. On the even simpler numeric

graph model, scores are merely done with numbers without any set operations. The

design of the new scoring methods for sentence-id and numeric graphs are described

in the Section 3.6 and Section 3.7 respectively.

The path scoring from SPORK for the Opinosis graph is updated in WHISK to

reflect TF-IDF scores on paths containing only two nodes. The updated formula

based on Equation 2.3 in SPORK is as follows:

s(W ) =
1

|W |
∗

[

tfidf(w1) + r(w1, w2) ∗ tfidf(w2)+

k
∑

i=3

(

log
2
|w1, ..., wi| ∗ r(w1, ..., wi) ∗ tfidf(wi)

)

] (3.1)

We have tfidf(w1) + r(w1, w2) ∗ tfidf(w2) instead of the original r(w1, w2) to

balance the TF-IDF scoring bonus. Without this addition, paths containing two

nodes have a severe scoring disadvantage compared to longer paths.

3.5 Service

The service layer is an optional layer to be implemented in a driver program which

handles summarization as a service to users. This layer ties in with the data collection

layer to form the input and output of the WHISK pipeline. The service layer handles
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interpreting output from the summarization stage and extension stages and packaging

it into a useful result.

For example, if the summarization service is exposed as a REST API, a driver may

take the relevant result values and package it into a JSON object. The presentation of

the resulting JSON object can then be handled by javascript programs on the user’s

browser.

The following sections formalize the sentence-id and numeric graph models intro-

duced earlier in the overview of WHISK’s graph generation.

3.6 Sentence-Id Graph

The sentence-id graph model inherits the following from the Opinosis graph model:

nodes, representing a word and possibly its part of speech, and directed edges indi-

cating one word following another in some sentence. Like Opinosis, a node contains

metadata about its word including its part-of-speech and its occurrences. The word

and its part-of-speech are considered the unique identifiers of a node if the part-of-

speech feature is enabled. Otherwise, the word alone becomes the unique identifier.

Each node records a set of unique identifiers of the sentences that the word occurs

in. Figure 3.3 shows how a sentence-id graph instance looks like for an example set

of sentences.

The special start and end nodes from the Opinosis graph are still maintained in

the sentence-id graph in a simplified manner. The first word in a sentence is considered

a start node, while the last word in a sentence is considered an end node. Users may

choose to restrict traversal to paths starting at start nodes and ending at end nodes.

However, this is not recommended since the idea of the sentence-id graph is to not

worry about word positions.
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Id Sentence
1 This tests for great usability with mice.
2 We use tests to measure usability with mice and keyboard.
3 Why should we test usability?

We PRP {2, 3}

use VBP {2}

tests NNS {1, 2}

to TO {2}

measure VB {2}

usability NN {1, 2, 3}

with IN {1, 2, }

mice NN {1, 2}

and CC {2}

keyboard NN {2}. .{1, 2}

This DT {1}

for IN {1}

great JJ {1}

should MD{3}

Why WRB{3}

test VB{3}

? .{3}

Figure 3.3: Sentence-Id Graph. An example sentence-id graph for a given
set of sentences.
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The scoring of paths is simplified compared to SPORK by using simple set inter-

sections. Consider an path in the sentence-id graph W = w1, ..., wk where w1 is the

starting node and wk is the ending node. The path score can be computed using the

following formula based on Equation 2.3 in SPORK:

s(W ) =
1

|W |
∗

[

tfidf(w1) + r(w1, w2) ∗ tfidf(w2)+

k
∑

i=3

(

log
2
|w1, ..., wi| ∗ r(w1, ..., wi) ∗ tfidf(wi)

)

] (3.2)

where |W | is the length of the path, |w1, ..., wi| is the length of the subpath between

w1 and wi, and r(w1, ..., wi) is a function used to determine the redundancy score of

the subpath. The function r(a, ..., b) is defined as r(a, ..., b) = |pa ∩ ... ∩ pb| where

pi is the set of sentence occurrences of node i by sentence id. The function tfidf(i)

returns the TF-IDF score of the word the node i represents. The TF-IDF scores are

identified solely by the word text.

3.7 Numeric Graph

The numeric graph model inherits the following from the Opinosis graph model: nodes,

representing a word and possibly its part of speech, and directed edges indicating one

word following another in some sentence. A node contains metadata about its word

such as its part-of-speech. The word and its part-of-speech are unique identifiers of

a node if the part-of-speech feature is enabled. Otherwise, the word alone serves as

the unique identifier. Each edge records the number of co-occurrences between two

nodes as its edge weight. Figure 3.4 shows how a numeric graph instance looks like

for an example set of sentences.

The special start and end nodes are maintained in the same way as the sentence-id

graph described in Section 3.6. Again, users may choose to restrict traversal to paths

33



Id Sentence
1 This tests for great usability with mice.
2 We use tests to measure usability with mice and keyboard.
3 Why should we test usability?

We PRP

use VBP

tests NNS

to TO

measure VB

usability NN

with IN

mice NN

and CC

keyboard NN. .

This DT

for IN

great JJ

should MD

Why WRB

test VB

? .

1

1

1

1

2

2

1

1

1

1

1

1

1

1
1

1
1

1

1

1

Figure 3.4: Numeric Graph. An example numeric graph for a given set of
sentences.
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starting at start nodes and ending at end nodes, but it is not recommended since the

graph does not capture word positions as a primary goal.

The path scoring is further simplified from the sentence-id graph since we only

keep numeric counts. Consider an path in the numeric graph W = w1, ..., wk where

w1 is the starting node and wk is the ending node. The path score can be computed

using the following formula based on Equation 2.3 in SPORK:

s(W ) =
1

|W |
∗

[

tfidf(w1) + e(w1, w2) ∗ tfidf(w2)+

k
∑

i=3

(

log
2
|w1, ..., wi| ∗ e(wi−1, wi) ∗ tfidf(wi)

)

] (3.3)

where |W | is the length of the path, |w1, ..., wi| is the length of the subpath between

w1 and wi. The function e(a, b) returns the edge weight between nodes a and b. The

function tfidf(i) returns the TF-IDF score of the word represented by node i.

Moving from the conceptual design, the next chapter discusses the core imple-

mentation details of each layer in WHISK.
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Chapter 4

IMPLEMENTATION

This chapter covers the implementation details behind WHISK. All modules written

for WHISK are implemented using Python 3 and its available packages.

4.1 Data Collection

As the beginning of the pipeline, data collection is the responsibility of the driver

program. The driver must convert its input corpora into WHISK’s generic data

model covered in Section 3.1. The generic data model is implemented as namedtuples

in Python as shown in Figure 4.1. Since Python’s list and dict (dictionary) objects

are loose on type restrictions, the stated type restrictions in Figure 4.1 are to be

respected by the developer. The primary objects of interest for the driver during

initialization are the Corpus and Text objects.

WHISK provides a list of model creation methods to help ease the creation of

model objects. Most list and dictionary parameters are optional by making use of

default parameters while the required parameters are expected to be appropriate

non-None values. Parameters that have the None default value are initialized ap-

propriately to their type. Lists and dictionaries are initialized with empty lists or

dictionaries respectively.

The Corpus object allows for all optional parameters because the driver may not

have the information it needs yet. The Text object requires the plaintext string during

creation since the object should only be used to represent a piece of text. Cluster,

Sentence, and Word objects, on the other hand, are more internal since they are

created and handled by the pipeline, so fields such as texts, words, and text should
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Corpus (namedtuple)

texts : list〈Text〉
clusters : list〈Cluster〉
idfScores : dict〈Word, float〉
options : dict〈string, object〉
metadata : dict〈string, object〉

Cluster (namedtuple)

texts : list〈Text〉
queries : list〈string〉
graphs : dict〈string, object〉
summaries: dict〈string, list〉
options : dict〈string, object〉
metadata : dict〈string, object〉

Text (namedtuple)

text : string
tokenized sentences : list〈Sentence〉
processed sentences: list〈Sentence〉
metadata : dict〈string, object〉

Sentence (namedtuple)

words : list〈Words〉
metadata : dict〈string, object〉

Word (namedtuple)

text : string
metadata : dict〈string, object〉

Figure 4.1: WHISK Data Model Implementation. An overview of the
generic data model implementation in WHISK.

already be known during creation.

WHISK model creation methods are as follows:

• new Corpus(texts=None, clusters=None, idfScores=None,

options=None, metadata=None)

Creates a new Corpus object with the provided fields

• new Cluster(texts, tfidfScores=None, queries=None, graphs=None,

summaries=None, options=None, metadata=None)

Creates a new Cluster object with the provided fields

• new Text(text, tokenized sentences=None, processed sentences=None,

metadata=None)

Creates a new Text object with the provided fields

• new Sentence(words, metadata=None)

Creates a new Sentence object with the provided fields
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• new Word(text, metadata=None)

Creates a new Word object with the provided fields

4.2 Preprocessing

The preprocessing stage of WHISK performs tokenization, part-of-speech tagging,

stopword filtering, stemming, keyword ranking, and clustering.

Tokenization. Tokenization is used to allow WHISK work with small units that

compose the text. The original text from a Text object is first transformed to low-

ercase letters and then tokenized at the sentence and word level using NLTK ’s [29]

sent tokenize for sentence tokenization and word tokenize for word tokenization.

Words that are of one character are automatically ignored.

The tokenized sentences and words may go through optional part-of-speech tag-

ging before being stored inside Sentence and Word model objects. The original text

string is also saved with the key ’text’ in metadata dictionary of Sentence objects.

These saved objects are use during sentence extraction on the original text. Sep-

arate Sentence and Word model objects are created for the other processing steps

during summarization. Stopword filtering and stemming may be performed for these

processed sentences.

Part-of-Speech Tagging. Part-of-speech (POS) tagging allows more detailed NLP

work by extensions of WHISK. The developer may enable or disable POS tagging

through a boolean value with the key ’tag pos’ in the Corpus object’s options

dictionary. The tagging is done by the Java-based Stanford POS Tagger [58] using

the left3words model: wsj-0-18-left3words-nodistsim.tagger. Since the Stanford POS

Tagger is Java-based, a JVM process would have to be started every time we call the
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tool via command-line. Since we may be tagging thousands of sentences, the start-up

overhead would slow down the pipeline since the pipeline is linear. To minimize the

overhead, we extend off NLTK ’s [29] own interface class StanfordPOSTagger as the

POSTaggerServer to manage the Stanford POS tagger instance.

WHISK’s POSTTaggerServer allows for POS-tagging by keeping only one instance

of the Stanford POS Tagger instance alive throughout its lifetime. The Stanford POS

Tagger continuously reads one line and outputs the tagged version. Since the Stanford

POS Tagger would wait on reading from an empty pipe, POSTTaggerServer takes

advantage of this by passing sentences to the instance and returning the tagged version

by reading from the output without ending the process. The POSTTaggerServer

makes use of a separate writer thread to the instance to avoid write blocking on full

pipes.

Methods in a separate POS tagger module allow the developer to interface with

the POSTTaggerServer. Appropriate initialization and cleanup methods provide for

creation and destruction of the class along with the Stanford POS Tagger instance.

tag sentence and tag sentences allow the developer to tag either by single sen-

tences or by batch.

Stopword Filtering. Stopword filtering allows developers with domain expertise to

filter out any words that would not be meaningful in their domain. The default list

makes use of NLTK ’s [29] stopwords list for English and a custom list of standard

punctuations. Tokens that match any item in the stopword list are ignored. The

developer can specify their own stopword list by placing the list into the Corpus

object’s options dictionary with the key ’removable tokens’.

Stemming. The stemming technique maps variants such as verb or adjective forms

of the same word to a common root [30]. For example, “having” would be stemmed to
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“have.” WHISK makes use of NLTK ’s [29] SnowballStemmer. Stemming’s mapping

of word variants can lead to better redundancy for the Opinosis graph since more

commonality is introduced. Stemming may be turned on or off through a boolean

value with the key ’stem’ in the options dictionary of the Corpus object.

Keyword Ranking. WHISK follows SPORK [32] in using the TF-IDF model [49][56]

for ranking keywords. Since the TF-IDF vectors are also be used during clustering,

WHISK uses the TfidfVectorizer from scikit-learn [41] which also provides for the

clustering algorithm.

Before clustering, WHISK only obtains the inverse document frequencies (IDF)

of each token in the corpus. The Corpus object’s idfScores dictionary contains the

IDF token scores. After clustering, the term frequencies in each cluster multiplies

with the respective inverse document frequencies of the overall corpus to give the full

TF-IDF measure for a token within a cluster. The cluster TF-IDF scores are saved

into the respective Cluster object’s tfidfScores dictionary.

Clustering. The agglomerative hierarchical clustering in SPORK [32] clusters a low

number of documents well by restricting to only the top-level comments, but with

generic summarization, WHISK will need to be able to handle hundreds or thousands

of documents. Each run of the agglomerative hierarchical clustering compares all

documents to each other and merges the two closest clusters if the similarity satisfies

a threshold [32]. SPORK continues run the agglomerative hierarchical clustering until

there are no more clusters to merge [32]. This procedure gets very slow to around 20

minutes during a sample run of over one hundred documents.

To make clustering quicker, WHISK adopts Density Based Spatial Clustering

of Applications with Noise (DBSCAN) [15] as its clustering algorithm. DBSCAN

employs the algorithm described in Algorithm 1 and Algorithm 2. DBSCAN takes
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two parameters: ǫ and MinPts. ǫ denotes the maximum distance between any two

points to be considered neighbors. Cosine distance, equivalent to 1 - cosine similarity,

is used as the distance metric between TF-IDF vectors. MinPts denotes the minimum

number of neighboring points for a point to be considered a core point.

Core points are crucial in combining clusters together. Each core point may start

out as its own cluster with its neighboring points. If any two core points are neighbors,

they merge into the same cluster. This merging propagates to neighboring non-core

points as well. As long as there are neighboring core points, a cluster grouping may

continue to propagate. The full details on DBSCAN can be found through its original

paper [15].

WHISK makes use of the scikit-learn [41] package for its DBSCAN clustering im-

plementation. The ǫ and MinPts parameters can be passed via the options dictionary

in the Corpus object using the keys ’epsilon’ and ’minPts’. The default values of

these parameters are 0.5 and 5 respectively. By default, WHISK allows scikit-learn’s

DBSCAN to compute a full pair-wise NxN distance matrix. However, this may not

be feasible when the number of points (or texts in this case) increase the size of the

distance matrix so much that it does not fit into memory.

WHISK allows the calculation of a sparse distance matrix in Python with the same

distance function from scikit-learn. This option can be enabled through a boolean

with the key ’sparse dist’ in the Corpus object’s options dictionary. The custom

sparse distance matrix only keeps distances below or equal to ǫ and passes it to scikit-

learn which ignores missing distances. This method saves memory by keeping only

the relevant distances, but it also loses performance since the distance calculations

are done linearly in Python compared to optimizations and vectorizations in NumPy

[59].

Using the previously generated TF-IDF vectors for the corpus texts, scikit-learn’s

41



Algorithm 1: DBSCAN Clustering

Function DBSCAN(D, ǫ,MinPts)

// D is the collection of points to cluster.

// ǫ and MinPts are floating point numbers

Core := ∅

Compute distance between all pairs of points in D

foreach point P in D do

let N be the P’s neighbors in D within ǫ distance

if |N | ≥ MinPts then

Core := Core ∪ {P}

ClusterId := 0

foreach point C in Core do

ClusterId := ClusterId + 1

if cluster(C) = ∅ then

ExpandCluster(D, C, Core, ClusterId)

Clusters := ∅

for i := 1 to ClusterId do

Cluster[i] := {p ∈ D | cluster(d) = i}

Clusters := Clusters ∪ {Cluster[i]}

Noise := {p ∈ D | cluster(p) = ∅}

Border := D - (Core ∪ Noise)

return clusters, Core, Border, Noise

42



Algorithm 2: Auxiliary Recursive Function for DBSCAN

Function ExpandCluster(D, P, Core, Cid)

let N be the P’s neighbors in D within ǫ distance

foreach point M in N do

cluster(M) := Cid

if M ∈ Core then

ExpandCluster(D, M, Core, Cid)

DBSCAN method clusters the texts and outputs the list of cluster labels. WHISK

groups the texts by the cluster labels into new Cluster objects and saves them into

the Corpus object’s clusters list. The corpus texts finish the preprocessing stage here

and may now move onto the summarization stage for further processing.

4.3 Summarization

The summarization stage works with the preprocessed corpus texts to select represen-

tative sentences as the corpus summary. Each cluster discovered during preprocessing

undergoes query generation, graph generation, graph traversal, path scoring, and sen-

tence extraction.

Query Generation. Query generation finds the top N keywords in a text cluster

using the χ2 measure [33]. WHISK makes use of SPORK’s [32] χ2 implementation

for discovering the keywords. Small changes to the syntax were made for compati-

bility with Python 3, but overall algorithm remains the same. An interface method

generate queries is available under the QueryGeneration module to perform the

query generation using the model objects. The discovered keywords are saved into

the Cluster object’s queries list.
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To make use of query generation, the developer must set a true boolean value

with the key ’use queries’ and the number of query words to be generated for

each cluster with the key ’num queries per cluster’ in the Corpus object’s options

dictionary. The default number of query words is 10.

Sample runs of the query generation showed that the process takes over 100 sec-

onds for a cluster with over 45,000 words and over 50 seconds for a cluster with over

35,000 words. Smaller clusters with under 10,000 words finish around or under five

seconds. Query generation may be better used for offline summarization, rather than

for online summarization.

Graph Generation. The Opinosis graph captures the redundancy present in the

corpus texts using word sequences. WHISK generates a graph for each cluster using

either the PRIGraph, SentIdGraph, or the NumericGraph class. The three classes map

to the graph models described in Chapter 3. The PRIGraph implements the original

Opinosis graph model, the SentIdGraph implements the sentence-id graph model, and

the NumericGraph implements the numeric graph model. It is up to the developer to

create the appropriate graph object and provide the graph the appropriate Cluster

object to work on through either the graph’s constructor or the create graph class

method. The developer may save the graph objects into the graphs dictionary in the

Cluster object.

For each sentence in a cluster, the graphs create new nodes as necessary for

each word and update the edge properties following Algorithm 3. Nodes within a

graph are uniquely identified using a string identifier. If POS tagging is used, the

string is formatted as word pos. Otherwise, the word’s plaintext string is used. The

OpinosisGraph and OpinosisNode superclasses contain common data and methods

between the graph variants.
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Algorithm 3: General Graph Generation

Function createGraph(cluster)

startNodes := ∅

endNodes := ∅

numSentences := |getSentences(cluster)|

for sentId := 0 to numSentences do

sent := getSentence(cluster, sentId) // Get sentence by index

numWords := |getWords(sent)|

prevNode := ∅

for wordNdx := 0 to numWords do

word := getWord(sent, wordNdx) // Get word by index

node id := getId(word) // Generate id for word

node := createNode(word, sentId, wordNdx)

nodes[node id] := node

if wordNdx := 0 then

startNodes := startNodes ∪ {node}

if wordNdx := (numWords - 1) then

endNodes := endNodes ∪ {node}

Update positions using sentId and wordNdx OR update edge

weights using prevNode and node

if prevNode 6= ∅ then

prevNode.next := node

node.prev := prevNode

prevNode := node

return nodes, startNodes, endNodes
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The OpinosisGraph class exists as an abstract graph class for the three graph

implementations. It has common functions between the graph implementations such

as the skeletons for graph creation, score calculations, and selection of the top redun-

dant paths in the graph. Common data elements include a reference to the working

Cluster object, the dictionary for mapping node identifiers to nodes in the graph, the

sets of start and end nodes, the boolean representing whether or not queries are to

be used, and bookkeeping variables for tracking the number of sentences and words

in the graph as well as for enabling verbose information printing.

The OpinosisNode class represents the basic node for the three graph variants.

This class stores its string identifier, the plaintext string of a word, metadata about

the node, and adjacent nodes. The POS tag, if available, is saved with the key ’pos’

in the node’s metadata dictionary. Adjacent nodes are saved in sets separated by

the edge direction: in nodes for incoming edges and out nodes for outgoing edges.

Specifically for the PRIGraph, the PRINode extends off the OpinosisNode by adding

a positions list that stores the sentence identifier and word positional information in

tuples. SentIdGraph, on the other hand, uses the SentIdNode class which adds a

positions set to the OpinosisNode to store sentence identifiers. Each graph variant

provides their own node creation method for dealing with custom node classes.

Both PRIGraph and SentIdGraph maintain positional information for path scor-

ing. Since neither graphs maintain edge weights, these subclasses do not add addi-

tional data elements to the OpinosisGraph superclass.

NumericGraph, however, only uses the base OpinosisNode since it does not store

any positional information. Instead, NumericGraph adds an edges dictionary to store

integer edge weights. Each edge is identified by a tuple of the starting OpinosisNode

and the ending OpinosisNode.
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Graph Traversal. WHISK discovers redundant word sequences by traversing paths

in the generated Opinosis graphs. The general traversal algorithm is described in Al-

gorithm 4 and Algorithm 5. The graph is traversed recursively in a depth-first search

(DFS) fashion until the candidate path fails to satisfy the minimum redundancy,

distinct node, or maximum path length requirements.

Algorithm 4: Redundant Sequence Discovery

Function getRedundantSequences(graph, tfidfScores, minRedundancy,

startEndRestrict, maxLength, distinctNodes)

seqs = ∅

if startEndRestrict then

startingSet := graph[startNodes]

else

startingSet := graph[nodes]

foreach node n in startingSet do

newPath := [node] // Start a new list to represent a path

foreach neighbor m of n do

seqs := seqs ∪ traverse(graph, node, newPath, tfidfScores,

minRedundancy, startEndRestrict, maxLength, distinctNodes)

return seqs

The minimum redundancy requirement keeps traversal to potentially interesting

paths and prunes the search tree. WHISK uses 3 as the default minimum redundancy

value. A good minimum redundancy value can help speed up searching but discover-

ing the value may be difficult. Domain knowledge on the input text allows one to infer

the expected background redundancies. Without domain knowledge, one may possi-

bly consider using a logarithmic function on the number of input texts or sentences.

Developers can set their own requirement value using the key ’min redundancy’ in
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Algorithm 5: Recursive Graph Traversal

Function traverse(graph, n, curPath, tfidfScores, minRedundancy,

startEndRestrict, maxLength, distinctNodes)

seqs := ∅

if (maxLength > 0) ∧ (¬distinctNodes ∨ ({n} ∩ curPath = ∅)) then

newPath := curPath + [n] // Append current node to path

redundancy := getRedundancy(newPath)

if redundancy ≥ minRedundancy then

score := getScore(newPath, tfidfScores)

if (¬startEndRestrict) ∨ ({n} ∩ graph[endNodes] 6= ∅) then

seqs := seqs ∪ {newPath}

foreach neighbor m of n do

seqs := seqs ∪ traverse(graph, m, newPath, tfidfScores,

minRedundancy, startEndRestrict, maxLength - 1,

distinctNodes)

return seqs
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the Corpus object’s options dictionary.

To prevent sequences from containing duplicate words, WHISK has an option

for a distinct node requirement. By default, this requirement is enabled to avoid

word sequences that repeat the same phrase. Additionally, the SentIdGraph and the

NumericGraph may get into a cycle in the graph since they does not maintain any

word positional information. The distinct node requirement prevents any cycles from

developing. To change this setting, developers may set the boolean value with the

key ’distinct nodes’ in the Corpus object’s options dictionary.

Because depth-first search observes one path at a time, WHISK limits the search

depth to prevent getting stuck while searching a very long branch or a cycle. WHISK

searches up to a maximum path length of 20 by default. This option may be changed

with the key ’max path length’ in the Corpus object’s options dictionary.

PRIGraph has an extra integer value ’max gap’ available in the Corpus object’s

options dictionary. This option maps to the maximum gap in original Opinosis path

restrictions. WHISK has the maximum gap set to 3 by default. The other two models

ignore this value since they lack the word positional information to track gaps between

words.

If queries are enabled, candidate paths are further filtered by the query keywords.

SPORK [32] uses forward and backward propagation from the query word’s node in

the graph, if it exists, to optimize path searching. This method would work as long

as the nodes are not identified with POS tags in addition to the word’s plaintext.

WHISK takes a safer approach by exploring all candidate paths and performing a

simple filtering check. Only paths which contain at least one of the query keywords

are saved into the resulting sequence pool. There are potential time savings using

SPORK’s method if one is using queries in a fairly dense graph where a large number

of paths satisfy the minimum redundancy requirement. However, in the interest of
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development time, WHISK only implements the simple filter.

Overall, the graph traversal in PRIGraph, SentIdGraph, and NumericGraph are

identical and differ in only in the path redundancy and score calculation.

Path Scoring. The redundancy and path scoring methods for Opinosis, sentence-id,

and numeric graphs described in Chapter 3 allow WHISK to rank word sequences.

For each score calculation, WHISK uses NumPy ’s [59] implementation for log2. To

easily get the top sequences, WHISK stores candidate sequences based on the path

score and the length of the sequence in a max heap. Once all candidates have been

added to the heap, the top N sequences can be selected based on the score and length

of the path as well as the similarity of a candidate sequence to sequences already

selected. The number of top sequences can be set using the key ’num top seqs’ and

the maximum similarity value (between 0 to 1 following cosine similarity or None

to disable) can be set using the key ’max path similarity’ in the Corpus object’s

options dictionary. By default, WHISK tries to retrieve the top 10 sequences with

the maximum similarity comparison disabled.

WHISK iterates through the max heap to provide the final top sequences as shown

in Algorithm 6. The iteration order follows the ordering of the max heap: primarily

by path score and secondarily by path length.

The comparison of the candidate sequence with selected top sequences prevent

similar sequences from crowding and overtaking the top spots. For example, “cold

day” would be very similar to “cold winter day.” Having both sequences as top se-

quences would not provide any more insight than had we picked “cold winter day.” By

filtering out sequences that are too similar, WHISK has a better chance of capturing

a more diverse set of redundant word sequences.
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Algorithm 6: Selection of Top Sequences

Function getTopSequences(heap, num, maxPathSimilarity)

topSeqs := ∅

while ¬isEmpty(heap) ∧ (num > 0) do

seq := pop(heap)

if (maxPathSimilarity = ∅) ∨ (topSeqs = ∅) ∨

(max({cosine similarity(seq, x)|x ∈ topSeqs}) ≤ maxPathSimilarity)

then

topSeqs := topSeqs ∪ {seq}

num := num - 1

return topSeqs

Sentence Extraction. Using the scored top sequences, WHISK can now extract

representative sentences from the original text for each cluster following Algorithm 7.

Each word sequence is compared to every tokenized sentence in the cluster using

SPORK’s [32] Local Alignment similarity implementation. The implementation has

been tweaked in WHISK to have the similarity value be between 0 and 1 like cosine

similarity. The sentences with the highest non-zero similarity to the word sequences

are selected as the representative sentences. Ties are broken by choosing the longer

length sentence. The selection can also be constrained with a minimum sentence

length. By default, the minimum sentence length is 7. Developers can change this

option using the key ’min sent len’ in the Corpus object’s options dictionary. The

developer may choose to save the cluster summary into the summaries dictionary in

the Cluster object. The list of extracted sentences are outputted in descending order

of the graph path score multiplied with the sentence similarity score.

The Local Alignment similarity is implemented using the Smith-Waterman algo-

rithm’s [55] matrix values. The Smith-Waterman algorithm generates a NxM matrix,
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Algorithm 7: Sentence Extraction

Function extractSentences(sentences, seqs, minSentLength)

repSentences := ∅

foreach sequence S in seqs do

Calculate similarity between S and every sentence in sentences

let T be the the sentence of the highest similarity

if length(T) ≥ minSentLength then

repSentences := repSentences ∪ {T}

return repSentences

where N is the length of the first string and M is the length of the second, as part

of its dynamic programming approach. Each matrix cell holds a matching score for

its position in matching the two input strings. The recurrence relation is as follows

(adapted [55]):

H(i, j) = max{0, H(i− 1, j − 1) + (MATCH if ai = bj else MISMATCH),

H(i− 1, j) +DELETION,

H(i, j − 1) + INSERTION)}

(4.1)

where a is the first string, b is the second string, and ai and bj are the i
th character of

string a and the jth character of the string b. Each situation’s value in the recurrence

relation is set to the following: MATCH = 2,MISMATCH = −1, DELETION =

−1, and INSERTION = −1.

As the matrix is filled with computed values, the maximum value is tracked as the

similarity value. Once the maximum has been determined, the value is normalized by

the maximum possible score which is equal to (min(length(a), length(b))∗MATCH).
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4.4 Service

The implementation of the service layer is entirely up to the developer. One can

have the driver be a command-line utility, perform HTML generation, or enable a

web API. The presentation of the summary sentences is completely unrestricted since

WHISK simply provides the sentences in plaintext.

4.5 Example Drivers

Digital Democracy. A case study with pull quotes from state legislative hearings is

used to test the practicality of applying WHISK to a complex domain. Each hearing

has been already transcribed into text segments. For the case study, we provide

a simple command-line driver that takes transcription datasets in csv format and

outputs the representative sentences as pull quotes. Each transcribed segment of

a speaker is considered an utterance. In this domain, an utterance is a text unit,

therefore, we create Text objects on each segment.

With a little domain knowledge, we provide a custom stopword list (dd.stop)

based on Lewis’s smart stopword list in RCV1 [26]. From reading the transcription,

the hearings often contain many greetings message and administrative utterances that

do not add meaning to the discussion. Words such as “sir,” “ma’am,” or “secretary”

tends to carry little weight. The custom stopword list removes unnecessary phrases

that often arise. NLTK’s [29] English stopword list is added as well during runtime.

The driver also provides functionality to generate HTML pages. The generated

pages make use of basic carousels from the web framework Bootstrap. This allows for

displaying and animating representative sentences one by one in a scrolling fashion.

These pages merely serve as a prototype to see how pulled quotes may be presented

to serve and aid the user.
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Since pull quotes should be highlights, a requirement for pulling at most 10 quotes

naturally came about. To select the 10 quotes, we created two basic selection methods:

TopScores and RoundRobin. The TopScores scheme selects the sentences based on

the highest value from multiplying the graph sequence’s path score with the matching

Local alignment similarity value. The RoundRobin scheme, on the other hand, goes

to each cluster in a round robin fashion and picks the highest value like TopScores

does. Clusters are ordered by their number of words.

To enable convenient evaluation, the driver supports saving the results to a CSV

file. The CSV file contains the union of all selected sentences and uses column fields

as flags to indicate which graph method and which selection method resulting in

outputting each quote.

Plaintext. For more generic plaintext files, we provide a driver that performs similar

functionality to the Digital Democracy pull quote driver. The input plaintext files

are expected to present each text unit in a separate line. Instead of saving the

output as a CSV file, the plaintext driver outputs each representative sentence into

a line in a plaintext output file. Lewis’s smart stopword list in RCV1 [26] (saved

as english.stop) combined with NLTK’s [29] English stopword list compose the list

of removable tokens. This driver is used to create summaries for evaluating with

ROUGE [27].
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Chapter 5

VALIDATION

Three experiments have been run in order to evaluate different parts of WHISK. The

first experiment involves a processing time comparison to evaluate the performance

improvements of the new graph models: sentence-id and numeric. The second experi-

ment uses an automatic summary evaluation tool created by Lin called ROUGE [27]

with the dataset provided by Ganesan et al. [19] to evaluate the summaries generated

by the different graph models. The last experiment is a study of WHISK’s ability to

generate pull quotes from a number of bill discussions that took place in the California

state legislature.

5.1 Graph Performance Comparison

The proposed sentence-id and numeric graph models simplify the original Opinosis

graph model to save processing time. To grasp the performance improvements, we

isolate time recordings for graph creation and traversal of the graph for redundant

sequences. On every run of the pipeline, timings are recorded and record for all graph

variants used. Since a graph is created and processed for every text cluster, a single

WHISK run may have multiple timings outputted.

The datasets from the Digital Democracy project shown in Table 5.1 are used

to run performance timings. Each dataset contains all hearings from a single bill.

The bills covered by the datasets include: SB145, SB277, SB34, SB530, and SB9.1

Performance timings are uniquely identified by the dataset name, the cluster number,

and the procedure (either graph creation or graph traversal). Abbreviated graph

1For 2015-2016 legislative session.
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Dataset # Utterances

SB145 598

SB277 5510

SB34 976

SB530 293

SB9 3018

Average 2079

Table 5.1: Dataset of bills for graph performance comparison

variant names are used for column names in Table A.1: Opinosis graph (PRIGraph) to

PRI, sentence-id graph (SentIdGraph) to SentId, and numeric graph (NumericGraph)

to Numeric.

The operational settings of WHISK during this experiment are shown in Table 5.2.

All values are static except for the ’min redundancy’ for numeric graphs. Since

the numeric graphs only use edge weights without any restriction to share common

sentences, paths can cross between sentences. This crossing can easily increase the

potential number of paths which increases the processing workload. To better prune

the search tree, we need a different minimum redundancy value for numeric graphs

than the ones appropriate for Opinosis and sentence-id graphs. A higher minimum

redundancy requirement is determined using the following function which scales the

static minimum redundancy value by the natural log on the number of texts in the

cluster:

minRedundancy′ = min{3,max{1, ln(numClusterTexts)− 5}} ∗minRedundancy

(5.1)

The shift of 5 makes the scaling occur after the number of cluster texts surpasses

e6 ≈ 400. We limit the scale to a factor of 3 to prevent losing too many candidates

while keeping the minimum possible value at the static value.
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Setting Value

removable tokens custom stopword list: dd.stop

stem true

tag pos false

epsilon 0.5

minPts 3

sparse dist false

use queries false

num queries per cluster 10

num top seqs 20

max path similarity 0.3

min redundancy 5

max gap 3

start end restrict false

max path length 20

distinct nodes true

min sent len 15

Table 5.2: Operation settings of WHISK
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Dataset # Clusters # Usable Clus. Max # Utt. Min # Utt. Avg # Utt.

SB145 21 5 458 3 27.1904

SB277 206 40 3764 3 23.3349

SB34 28 8 604 3 31.3214

SB530 12 5 223 3 22.5

SB9 42 16 2126 3 66.7142

Average 61.8 14.8 1435 3 34.2122

Table 5.3: Cluster statistics

Dataset Max # graph nodes Min # graph nodes Avg # graph nodes

SB145 1736 1 102.9047

SB277 6289 1 50.1941

SB34 2119 2 101.4285

SB530 881 3 93.3333

SB9 4834 2 150.6904

Average 3171.8 1.8 99.7102

Table 5.4: Cluster graph statistics

Results. For each dataset, we recorded cluster statistics and timings for graph cre-

ation and traversal. Clusters that generated a summary from at least one graph

model are considered “usable” clusters. Statistics on number of clusters, number of

usable clusters, number of utterances per cluster, and number of graph nodes per

cluster are shown in Tables 5.3 and 5.4. For text clusters with less than 200 words,

the timings are similarly low and are affected by other processes being executed. For

this validation, we will only look at data for clusters with 200 words or more.

Table A.1 shows the graph creation and traversal timings for the three graph meth-

ods by dataset and by cluster id (CId). Figures 5.1 and 5.2 visualize the comparison
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Figure 5.1: Graph creation timings. Comparison of graph creation speed
for the three graph models in logarithmic scale
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Figure 5.2: Graph traversal timings. Comparison of graph traversal speed
for the three graph models in logarithmic scale
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between three graph models’ performance. Each cluster is denoted in the following

format: 〈Dataset〉 C〈ClusterId〉. Since the recorded timings vary from short dura-

tions to fairly long durations, Figures 5.1 and 5.2 utilize a logarithmic scale to make

the differences easier to see in the smaller cases. The logarithmic scale portrays values

below one as “negative” bars that go further left of the 1-value mark the smaller they

are.

The graph creation timings between the new graphs, as shown in Figure 5.1, are

fairly similar. In the clusters SB145 C1, SB277 C1, SB277 C2, SB277 C5, SB530 C1,

and SB9 C1, sentence-id or numeric graph creation take longer than Opinosis graph

creation, but the difference is not too large. Graph creation times between the graph

models are comparable overall. The bigger area for time savings is during graph

traversal.

The sentence-id graph pulls ahead of Opinosis in most graph traversal cases while

numeric graph beats Opinosis in all graph traversal cases shown in Figure 5.2. For

the SB277 C1 cluster, Opinosis graph took 70064.53 ms while sentence-id graph took

22378.12 ms and numeric graph took 1940.99 ms. For the SB9 C1 cluster, Opinosis

graph finished in 16211.79 ms while sentence-id graph finished in 2386.54 ms and

numeric graph finished in 206.85 ms.

However, sentence-id graph traversal performs slower than Opinosis graph traver-

sal in the SB145 C2 and SB34 C4 clusters. This slowdown is due to many similar

sequences with high scores being discovered while traversing the sentence-id graph.

WHISK filters out similar sequences using a heap data structure as described by Al-

gorithm 6 in Chapter 4. With a high number of similar sequences, more time is spent

going through the top sequences in the heap to filter out sequences that have cosine

similarities above the maximum threshold.

We can calculate the percentage of time improvement from a time S to a time T by
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Sentence-Id Numeric

Average % time improvement (graph creation) 14.8228 14.3367

Average % time improvement (graph traversal) 29.1596 75.0436

Overall average % time improvement 21.9912 44.6901

Table 5.5: Aggregate performance measures of new graphs

using the following equation: improvement = S−T
S

∗ 100. We then averaged the time

improvements to get an idea of the overall time improvements shown in Table 5.5.

Using the sentence-id and numeric graph models, we gain a modest improvement of

around 14% time improvement in graph creation on average over the Opinosis graph.

However, we achieve around 29% or 75% graph time improvement in graph traversal

on average with sentence-id or numeric graphs respectively compared to the Opinosis

graph. Overall, we can save around 22% and 44% of graph operation time by using

sentence-id or numeric graphs respectively.

5.1.1 Summary Similarity

In addition to timings, we wanted to see how similar the output summaries are from

using the different graph models. This observation does not act as a performance

metric, but it provides some insight on how differently the graph models operate.

The generated summaries by each graph model are compared using Jaccard sim-

ilarity [23]. Specifically, sentences extracted using sentence-id and numeric graph are

compared to sentences extracted using the Opinosis graph. Two sentences are consid-

ered equal only if they are identical. We compare the sets of sentences in a pairwise

fashion with the Jaccard similarity coefficient [23]:

sim =
|A ∩ B|

|A ∪ B|
(5.2)

We calculate the similarity for the first i sentences where i comes from the range
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Figure 5.3: Jaccard similarities of extracted sentences. Extracted sen-
tences using Sentence-Id and Numeric graphs are compared to those using
the Opinosis graph.

[1...L]. L equals the smaller total number of sentences between the two sets. For

example, when i = 1, only the first sentence is compared, but when i = 5, the first

five sentences of both sets are compared. By recording using a range on the number

of sentences, we can observe the similarity of extracted sentences by the order of

retrieval. These comparisons allow us to see how different the output from the new

graph models are from the original.

Tables A.2 and A.3 show the results from the described Jaccard similarity pro-

cedure. Only clusters that generate a non-zero number of extracted sentences and

has over 200 words were considered for the comparison. We expected that the simi-

larity grows towards 1 as the number of sentences increase, but the results show the

similarity decreasing from 1 or a value near 1. Like the time improvements, we can

average the Jaccard similarities to get an idea of the overall similarity in Table 5.6.

However, instead of averaging using all of the similarities, we use only the similarities

of the highest number of sentences for each cluster because we are not observing the

order of retrieval. Figure 5.3 visualizes the Jaccard similarity values by cluster used

for the average.
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Sentence-Id Numeric

Average Jaccard Similarity 0.6249 0.5386

Table 5.6: Aggregate jaccard similarities. Average jaccard similarities of
summaries generated by the new graph models versus summaries gener-
ated by the Opinosis graph

As shown in Table 5.6, the overall similarities of the sentence-id and numeric

graphs to the Opinosis graph average close to 0.5. This means that around half the

sentences retrieved with the new graphs were also retrieved with the Opinosis graph.

Using a strict requirement of identical sentences may have contributed to the low

similarity. The sentences retrieved with the new graphs may be similarly relevant

but not identical to the sentences retrieved with Opinosis. The next experiment uses

ROUGE [27], an automatic summary evaluation tool, to compare the n-gram recall

of the summaries generated by the different graph models. A study with human

evaluators in the later Section 5.3 further explores the performance of the new graphs

compared to Opinosis with respect to their precision in extracting relevant sentences.

5.2 ROUGE

Besides comparing the performance measures, we also compared the effective sum-

maries produced using the different graph models. Recall Oriented Understudy for

Gisting Evaluation (ROUGE) is a tool created by Lin to perform automatic evalua-

tions of summaries [27]. ROUGE has been validated through comparing its results to

the Document Understanding Conference’s (DUC) three years of manually labelled

summaries. Numerous works [2, 6, 7, 19, 22, 28, 36, 38, 39, 47, 52, 53, 54, 62, 64, 65]

use some version of ROUGE for validation.

ROUGE takes gold-standard summaries and system-generated summaries as input

and can perform a variety of scoring metrics. In particular, we are interested in
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ROUGE-N which performs a n-gram recall. ROUGE-N scores the system-generated

summaries by counting n-grams that co-occur in the system-generated summaries and

the gold-standard summaries. We specifically use ROUGE-1, which uses unigrams,

and ROUGE-2, which uses bigrams.

We used the Opinosis dataset [19] by Ganesan et al. for working with ROUGE.

We picked the Opinosis dataset over data from Digital Democracy because we do not

have gold-standard summaries for the bill discussions. Since Ganesan et al. published

their dataset for public consumption, we make use of the available resources that has

been prepared for ROUGE evaluation. However, the Opinosis dataset was created in

mind for evaluating abstractive summarization which is a bad fit for WHISK which

performs extractive summarization. We do not expect high performing scores from

ROUGE because WHISK is not tuned for this type of dataset. Our main goal here

is to use ROUGE as an objective measurement to compare the three graph models.

The Opinosis dataset [19] contains 51 corpora of topically aligned sentences from

user reviews. Each corpus follows a certain topic in the reviews. Some example topics

are “video quality on an ipod nano,” “price of Amazon kindle,” and “performance of

a Honda Accord.” The user reviews were retrieved from sources such as Tripadvisor,

Edmunds.com, and Amazon.com. Each corpus is stored as a plaintext file with each

line containing a sentence from user reviews. Additionally, each corpus comes with

four or five gold-standard human-generated summaries that was used to evaluate the

abstractive approach presented in the original Opinosis paper [19].

The plaintext driver described in Section 4.5 is used to generate the summaries

using the 51 corpora provided by Ganesan et al.’s dataset [19]. Since each sentence

in a corpus of this dataset may have come from a different user review, we consider

each sentence in a corpus as a text document. This models a situation where mul-

tiple people are contributing to a discussion around the corpus topic. We use the
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ROUGE-1 ROUGE-2

Graph Method Recall Precision F-score Recall Precision F-score

Opinosis 0.3954 0.1212 0.1584 0.0824 0.0221 0.0295

Sentence-Id 0.4240 0.1144 0.1520 0.0948 0.0174 0.0259

Numeric 0.3791 0.1221 0.1558 0.0768 0.0183 0.0259

Table 5.7: ROUGE-1 and ROUGE-2 scores

settings for WHISK described in Table 5.2 to generate summaries for each corpus.

The summaries are saved as plaintext files and compiled into the appropriate formats

for ROUGE using scripts publicly published by Ganesan et al.

Jackknifing [42] is used to reduce bias in the sampling. For each corpus that have

N gold-standard summaries, we perform N ROUGE evaluations using N − 1 gold-

standard summaries, which leaves one summary out each time. Every gold-standard

summary is left out of the evaluation exactly once. All system generated summaries

are used in every evaluation. We enabled the stopword removal and Porter stemmer

options in ROUGE for all executions. The resulting scores from the N evaluations

are averaged and aggregated into precision, recall, and f-scores presented in Table 5.7.

Results. All summaries generated by the three graph models performed equally

poorly as shown in Table 5.7. The two new graph methods perform comparably to

the Opinosis graph. The Opinosis graph wins in F-scores in both ROUGE-1 and

ROUGE-2, however sentence-id graph has the best recall overall. Both sentence-id

and numeric graphs achieved ratings close if not better than the Opinosis graph. To

further verify the competence of the two new graphs, the next section describes a study

with human evaluations on portions of political discussions extracted by WHISK as

summary pull quotes.
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5.3 Digital Democracy

To measure the real-world applicability of WHISK, we performed a study with the

Digital Democracy project to generate pull quotes from political discussions that

would serve as good summaries. Given a dataset of committee hearings on several

bills, we extract the top sentences from each bill discussion as the representative pull

quotes for the respective bill discussion. We use the settings described in Table 5.2.

The resulting pull quotes are then reviewed by human evaluators with domain knowl-

edge on the bill’s subject matter. We consider these human evaluators to be experts

in the subject matter. The reviews are then used to determine the precision in which

WHISK generates relevant pull quotes.

With the help of the Digital Democracy project management, we selected 17

bill discussions (listed in Table 5.9) for 11 bills (listed in Table 5.8) from the 2015-

16 legislative session. Statistics on number of clusters, number of usable clusters,

number of utterances per cluster, and number of graph nodes per cluster are shown

in Tables 5.10 to 5.12. A cluster is considered a “usable” cluster if at least one

sentence is extracted while using any of the three graph models. The counts are also

averaged in the last row of the tables. As shown in Tables 5.10 and 5.11, the largest

clusters contained a large portion of the utterances while the smallest cluster has only

a few utterances. A similar pattern follows for the number of graph nodes.

5.3.1 Pull Quote Selection

The Digital Democracy project posed a requirement for a maximum of ten quotes for

each bill discussion. For the simple case where WHISK produces ten or less sentences,

all of the sentences are selected as pull quotes. However, WHISK may produce more

sentences than appropriate. We propose two methods based on scores and cluster
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Bill Id Bill Title

AB1135 Firearms: assault weapons

AB1405 Developmental centers: closure

AB66 Peace officers: body-worn cameras

AB884 Legislature: legislative proceeding: audiovisual recordings

SB10 Health care coverage: immigration status

SB1235 Ammunition

SB128 End of life

SB277 Public health: vaccinations

SB329 Charter schools: petition denials: competitive bidding

SB350 Clean Energy and Pollution Reduction Act of 2015

SCA14 Legislative procedure

Table 5.8: Bills for pull quote generation

groupings to select a subset of ten sentences as pull quotes. Both methods ignore

clusters that do not result in any extracted sentences.

The first method TopScores selects based on the path score from the graph method

and the similarity score from sentence extraction. Sentences chosen by WHISK

come from discovering redundant sequences using a graph method and finding a

matching sentence from the original text using sentence extraction. We describe the

graph methods’ scoring in Chapter 3 and the sentence extraction’s similarity score

in Chapter 4. The core metrics from the graph method and the sentence extrac-

tion combine to represent the final score of a sentence in the following equation:

sentencescore = pathscore ∗ pathsimilarity. All sentences across clusters are sorted

by the sentence score metric. The sentences with the top ten scores are chosen as the

pull quotes.

The second method RoundRobin selects quotes from each cluster in a round robin
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Id Bill Id Committee Date # Utt.

1 AB1135 Public Safety (Senate) 05-10-2016 58

2 AB1405 Human Services (Assembly) 06-09-2015 325

3 AB66 Privacy and Consumer Protection

(Assembly)

04-30-2015 308

4 AB884 Elections and Constitutional Amendments

(Senate)

06-08-2016 145

5 AB884 Appropriations (Senate) 06-13-2016 48

6 SB10 Health (Assembly) 04-26-2016 157

7 SB1235 Public Safety (Senate) 04-19-2016 66

8 SB1235 Senate Floor 05-19-2016 117

9 SB128 Judiciary (Senate) 04-07-2015 515

10 SB128 Health (Senate) 03-25-2015 478

11 SB277 Education (Senate) 04-15-2015 1276

12 SB277 Health (Assembly) 06-09-2015 1354

13 SB329 Education (Senate) 04-22-2015 162

14 SB350 Energy, Utilities and Communications

(Senate)

04-07-2015 355

15 SB350 Natural Resources (Assembly) 07-13-2015 418

16 SCA14 Elections and Constitutional Amendments

(Senate)

06-08-2016 213

17 SCA14 Appropriations (Senate) 06-13-2016 195

Table 5.9: Bill discussions for pull quote generation
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Id # Clusters # Usable

Clusters

Max #

Utt.

Min #

Utt.

Avg #

Utt.

Avg # Utt.

in Usable

Clusters

1 2 1 50 3 26.5 50

2 8 1 277 3 38.125 277

3 5 2 289 3 60.8 147

4 2 1 137 3 70 137

5 2 1 45 3 24 45

6 4 1 108 3 30.25 108

7 1 1 62 62 62 62

8 5 1 102 3 22.8 102

9 1 1 515 515 515 515

10 4 1 425 3 109.25 425

11 24 3 1082 3 48.7083 365.6667

12 15 4 1226 3 87.1333 310.25

13 5 1 115 3 27 115

14 6 3 311 4 56.1666 108

15 3 1 380 9 133 380

16 4 1 197 3 51.75 197

17 6 2 167 3 31.3333 85.5

Average 5.7058 1.5294 322.8235 37 81.9892 201.7303

Table 5.10: Cluster statistics for bill discussions
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Id Max # graph nodes Min # graph nodes Avg # graph nodes

1 369 3 186

2 1008 2 136

3 1203 1 253.8

4 771 3 387

5 359 4 181.5

6 388 1 99.75

7 359 359 359

8 705 2 149.2

9 1819 1819 1819

10 2033 1 510

11 2856 1 128.8333

12 3294 3 239.4

13 636 11 141.4

14 1217 3 212.8333

15 1793 16 608.3333

16 1020 2 259.5

17 708 4 125.8333

Average 1208.1176 131.4705 341.0225

Table 5.11: Cluster graph statistics for bill discussions for all clusters
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Id Max # graph nodes Min # graph nodes Avg # graph nodes

1 369 369 369

2 1008 1008 1008

3 1203 11 607

4 771 771 771

5 359 359 359

6 388 388 388

7 359 359 359

8 705 705 705

9 1819 1819 1819

10 2033 2033 2033

11 2856 9 966.3333

12 3294 40 860.5

13 636 636 636

14 1217 13 416.3333

15 1793 1793 1793

16 1020 1020 1020

17 708 19 363.5

Average 1208.1176 667.7647 851.3922

Table 5.12: Cluster graph statistics for bill discussion for usable clusters
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Method Id Graph Method Selection Method

A Opinosis RoundRobin

B Opinosis TopScores

C sentence-id RoundRobin

D sentence-id TopScores

E numeric RoundRobin

F numeric TopScores

Table 5.13: Quote generation methods

fashion. Clusters are ordered by number of words in their texts. We iterate over

the clusters by picking one representative sentence from a cluster each time. The

selection of a sentence in a cluster uses the same method as TopScores. We propose

this method to prevent bigger cluster which may have higher redundancy from entirely

overshadowing smaller clusters.

By combining the three graph methods with the two proposed pull quote selection

methods, we have six different quote generation methods listed in Table 5.13.

Some quotes are chosen by more than one of the six quote generation methods.

Figures 5.4 and 5.5 use Venn diagrams to portray the number of shared quotes from

the different quote generation methods for bill discussion SB277 Hearing Id#261.

Figure 5.4 shows a 2-set Venn diagram for each of the graph models. Each of the three

2-set Venn diagrams depicts the shared quotes between using RoundRobin versus

TopScores selection methods while using the same graph model. Figure 5.5 uses a

3-set Venn diagram to show shared quotes between the three graph models. The

3-set Venn diagram groups quote generation methods by the graph method to ignore

the quote selection method. This reduces the six quote generation into the three

sets in the Venn diagram: “AB,” “CD,” and “EF.” The combined sets are unions of

the quotes generated by the original methods. For example, “AB” contains quotes
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Figure 5.4: Quote selection method comparison for SB277 Hearing

Id#261. Venn diagram for showing the number of shared pull quotes
selected from SB277 Hearing Id#261 by different quote selection methods
grouped by the graph model used

generated with method “A” or method “B.” The Venn diagrams for the other bill

discussions can be found in Figures B.2 to B.33 in Appendix B.

5.3.2 Evaluation Method

To evaluate selected pull quotes, we create surveys for each hearing that ask human

evaluators to rate how appropriate each pull quote is for representing the ideas in the

hearing. Each pull quote is presented as a multiple choice question. The speaker’s

name is shown with the sentence to establish context. The evaluators may choose

from the following choices: “Don’t know,” “Bad,” “Questionable,” “Maybe,” and

“Good.” The evaluators also have a checkbox option to indicate whether the quote is

the best quote they saw for this bill discussion. Figure B.1 in Appendix B shows what

a survey looks like. Additional feedback may be provided textually by the evaluator at

the end of the survey. All responses are kept anonymous and no personal information

is recorded.
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Figure 5.5: Graph model comparison for SB277 Hearing Id#261. Venn
diagram for showing the number of shared pull quotes generated from
SB277 Hearing Id#261 using different graph models and ignoring the
quote selection method

Certain evaluators may prefer specific processing methods over others. We have

six total methods of generating pull quotes by combining the three different graph

methods and the two proposed pull quote selection methods. To prevent any bias

about processing methods, the surveys show all pull quotes on a single page and do

not reveal which method(s) generated which quotes.

Response Analysis. We analyze the precision of WHISK on producing good pull

quotes using a number of measures with the survey responses. The survey responses

provide insight on how relevant the pull quote is to the committee hearing it originated

from. Ignoring “Don’t Know” responses, the individual multiple choice responses are

interpreted as relevant or irrelevant ratings based on a soft and a strict definition.

The soft definition of relevant allows the response to be “Maybe” or “Good” while

the strict definition requires the response to be “Good.”

We then determine the overall rating of a quote based on the ratings. Three

different quote rating methods provide different viewpoints on how relevant the pull

quote is:
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• Plurality takes the plurality rating (or majority vote) from the responses.

In the case of a tie, we take preference towards relevant since losing quotes

marked as relevant by some experts would be more detrimental than providing

quotes some experts do not value.

• Consensus requires a consensus among the evaluators where a quote is only

considered relevant if all responses rate the quote as relevant.

• Union takes the opposite side of Consensus where we consider a quote to be

relevant if at least one response rates the quote as relevant.

The two definitions of relevance combined with the three quote rating methods create

six different quote evaluation methods shown as methods #1 to #6 in Table 5.14.

After determining the overall rating for quotes in a bill discussion, we aggregate

the rating as a precision metric for each quote generation method. We calculate the

percentage of quotes that were considered relevant in the bill discussion. Additionally,

we consider a bill discussion to be “consensus covered” if at least one quote achieves

a consensus rating that it is relevant. Combining consensus coverage with the two

definitions of relevance, we add two more methods (#7 and #8) in Table 5.14.

To calculate the overall score for each quote generation method, the percentage of

relevant quotes is averaged across bill discussions. To aggregate consensus coverage,

we calculate the percentage of bill discussions that are consensus covered for each

quote generation method.

We also record the number of quotes that receive at least one “Best Quote” vote.

Each quote generation method’s count of best quotes is then summed across bill

discussions to compare the number of best quotes achieved. Since the same quote

can be selected by more than one method, we also create a 3-set Venn diagram similar

to Figure 5.5 to display the number of shared best quotes generated with the three
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Id Relevance Overall Rating Explanation

1 Soft Plurality Majority of experts rated the quote as

“Maybe” or “Good”

2 Strict Plurality Majority of experts rated the quote as

“Good”

3 Soft Consensus All experts rated the quote as “Maybe”

or “Good”

4 Strict Consensus All experts rated the quote as “Good”

5 Soft Union At least one expert rated the quote as

“Maybe” or “Good”

6 Strict Union At least one expert rated the quote as

“Good”

7 Soft Consensus Coverage At least one quote in the bill discussion

was rated relevant under method #3

8 Strict Consensus Coverage At least one quote in the bill discussion

was rated relevant under method #4

Table 5.14: Evaluation methods
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graph methods.

5.3.3 Participants

Seven experts familiar with committee hearings were asked to evaluate pull quotes

through a list of surveys. Some experts were familiar with only a subset of the bills

and filled out the appropriate surveys for those bills. As such, surveys may have a

different number of responses as shown in Table 5.15.

5.3.4 Results

Results for 3 out of the 17 bill discussions (SB128 Hearing Id#123, SB277 Hearing

Id#308, SCA14 Hearing Id#1266) are shown as data tables in Appendix B. Tables

for the remaining 14 bill discussions are not shown for the sake of brevity. Tables B.1,

B.3 and B.5 list the pull quotes generated for each bill discussion. Tables B.2, B.4

and B.6 show the quote generation method source and the rating counts from the

survey for each generated pull quote in the bill discussions. We apply our evaluation

methods to this data to compare our quote generation methods.

The number of best quotes for each quote generation method are shown in Ta-

ble 5.16. The numeric graph achieved the highest number of best quotes as quote

generation methods E and F followed by the Opinosis graph (methods A and B) and

the sentence-id graph (methods C and D). The number of shared best quotes are

shown using a 3-set Venn diagram in Figure 5.6.

Applying the evaluation methods in Table 5.14, we compare the aggregate results

in Table 5.17. For all evaluation methods, higher values are better. The best scores

of each evaluation method in Table 5.17 are highlighted in blue boxes. Quote gener-

ation method D (sentence-id graph using TopScores) scored the most number (4) of

best scores followed by methods B (Opinosis graph using TopScores), C (sentence-id
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Bill Discussion Id # Responses

1 7

2 6

3 4

4 6

5 6

6 5

7 5

8 5

9 5

10 4

11 7

12 5

13 4

14 4

15 6

16 5

17 5

Table 5.15: Number of responses for the survey for each bill discussion

79



Id Method Source Total # Best Quotes

A B C D E F

1 1 1 1 1 1 1 1

2 1 0 1 0 2 2 3

3 1 1 1 1 2 2 2

4 2 2 3 3 2 2 3

5 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1

7 2 2 2 2 1 1 2

8 1 1 0 0 2 2 3

9 2 2 2 1 3 2 4

10 3 1 3 1 2 2 3

11 1 2 2 2 1 2 3

12 1 0 0 1 1 1 2

13 1 1 1 1 1 1 1

14 1 1 1 1 1 1 3

15 0 0 0 1 0 1 1

16 1 1 0 0 0 0 1

17 2 2 2 1 2 2 2

Sum 22 19 21 18 23 24 36

Table 5.16: Number of best quotes. The number of best quotes in a bill
discussion achieved by each quote generation method along with the total
number of best quotes in the bill discussion
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Figure 5.6: Graph model comparison for best quotes. Venn diagram for
showing the number of shared best quotes using different graph models
and ignoring the quote selection method

graph using RoundRobin) and F (numeric graph using TopScores) with 2 best scores.

Method C and D tied for evaluation methods #7 and #8. In all of evaluation methods,

quote generation methods (B,D,F) using the TopScores selection method performed

comparably to, if not better than, their counterparts (A,C,E) using the RoundRobin

selection method. Overall, the sentence-id graph (methods C and D) and the nu-

meric graph (methods E and F) follow closely and sometimes beat the Opinosis graph

(methods A and B). Interestingly, Table 5.17 shows a consistent pattern where the

Opinosis graph is best for plurality rating, the sentence-id graph is best for consensus

rating, and the numeric graph is best for union rating.

The aggregates in Table 5.17 also show the overall performance of WHISK in

selecting portions of political discussions as summaries. Under evaluation method

#1 using soft Plurality scoring, 55-64% of pull quotes generated by WHISK would

be rated as relevant by a majority. On the other hand, evaluation method #5 using

soft Union scoring shows that 83-93% of pull quotes generated by WHISK would be

rated as relevant by at least one person. The result analyses support that WHISK

has potential as module for the Digital Democracy project that generates pull quotes

for political bill discussion.
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Evaluation

method

Quote generation method

A B C D E F

1 59.8039 64.5098 55.3922 61.8627 60.2941 63.2353

2 28.6275 29.8039 26.7157 29.0686 27.0588 28.8235

3 10.3922 10.3922 9.1667 12.6961 10.2941 11.4706

4 3.5294 3.5294 3.1373 3.7255 3.5294 3.5294

5 85.0000 89.1176 83.0392 87.7451 88.8235 93.5294

6 64.3137 67.2549 63.1863 65.5392 66.9118 68.0882

7 47.0588 47.0588 52.9412 52.9412 41.1765 41.1765

8 11.7647 11.7647 17.6471 17.6471 11.7647 11.7647

Table 5.17: Aggregate evaluation results
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Chapter 6

CONCLUSION

The amount of online content grows at such a high rate that users are overwhelmed

and have difficulties finding interesting and relevant material without using search

queries. Summaries or synopses can help alleviate this problem by significantly reduc-

ing the amount of text that users have to digest. Automatic text summarization serves

as a potential solution towards generating these time-saving summaries. This thesis

presented WHISK as an automatic text summarization pipeline based on SPORK

[32] that exploits redundancy in texts to perform multi-document summarization.

WHISK generalizes from SPORK by using a generic data model to allow working

with multiple platforms or plaintext in general. Client drivers decide what is con-

sidered to be a corpus or text unit. All special domain knowledge are handled and

provided by client drivers rather than by the generic pipeline. The pipeline itself can

be extended to provide additional processing modules between or replacing stages in

the pipeline.

Within this thesis, we introduced two alternate graph models, sentence-id and

numeric, over the Opinosis graph [19] adapted in SPORK [32]. The new graphs

simplify from the Opinosis by removing word positional information for sentence-

id graphs and further removing sentence occurrence information for numeric graphs.

Since we only need to extract redundant sequences from the graphs, unnecessary

grammar and positional restrictions are removed to provide faster performance.

We performed three different experiments comparing the two new graphs against

the Opinosis graph. The first performance comparison showed that the sentence-id

graph performs around 14% faster on graph creation and 29% faster on graph traver-
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sal compared to Opinosis. The numeric graph performs graph creation around 14%

faster than Opinosis and graph traversal around 75% faster. Both graphs produced

summaries that had Jaccard similarity values of around 0.5 on average to the sum-

maries generated with the Opinosis graph.

ROUGE [27], an automatic summary evaluation tool, provides the second experi-

ment which compares the graph models using gold-standard summaries from Ganesan

et al.’s dataset [19]. We used ROUGE-1 and ROUGE-2 which scores based on uni-

grams and bigrams respectively. Although Opinosis achieves the higher F-scores in

both ROUGE-1 and ROUGE-2 (0.1584 and 0.0295 respectively), sentence-id has the

higher recall scores. Neither of the two new graphs fall too far behind Opinosis.

In the third experiment, in collaboration with the Digital Democracy project,

WHISK generated pull quotes for a number of bill discussions in the California state

legislature. We created a client driver for WHISK to work with the transcription data

from the Digital Democracy project. The driver generates representative pull quotes

that summarize the ideas presented by various speakers in the bill discussions. Seven

domain experts rated the generated pull quotes for each bill discussion. Out of the

8 evaluation methods, sentence-id graph achieved 4 of the best scores while numeric

graph and Opinosis graph achieved 2 of the best scores. Both sentence-id and numeric

graphs performed comparably to the Opinosis graph. Across all quote generation

methods, 83-93% of pull quotes generated by WHISK on average were considered

relevant under a soft definition by at least one expert.

Overall, the sentence-id and numeric graphs proposed in this thesis produces sim-

ilar or better summaries while improving the graph processing speed. Additionally,

WHISK has demonstrated its potential in generating relevant pull quotes from polit-

ical discussions.
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6.1 Future Work

WHISK has a strong dependence on redundancy in the corpus text due to its under-

lying graph models. This works fine for multi-document summarization of discussions

where we can reasonably expect people to say similar things. Techniques from single

document summarization can enable WHISK to handle discussions where people do

not use the same words or phrases.

The clustering of corpus texts can be further refined from DBSCAN [15]. Although

DBSCAN offers a fast clustering, sample runs show that many texts may be labelled

as noise and put into a noise cluster. The noise cluster is not grouped by similar texts,

so it can suffer from too many contesting topics. If the texts can be better grouped

without too much more processing time, WHISK has a lower chance of missing a

smaller topic overshadowed by other topics.

The handling of query during graph traversal described in Chapter 4 can be further

optimized. We currently use the simple filtering method which would still explore all

candidate paths. However, graph traversal starting directly at the query word’s node

can potentially save more processing time. This can be done using forward and

backward propagation as done by SPORK [32].

Graph traversal can also be optimized with a parallel implementation for large

graphs. WHISK currently performs graph traversal in a serial manner. However,

there are not any data dependencies between path discovery runs. The overall top

paths can be later determined when all discoverd paths are merged back into a single

pool.

Parallelization can also be done on each layer to make WHISK into a streaming

pipeline. The pipeline would then be working on multiple corpora at the same time.

WHISK currently processes corpora one at a time, so there is definitely room for

85



better scalability and throughput.

Additional changes to the driver for the Digital Democracy project can be tested

to improve the quality of generated pull quotes. Rather than extracting sentences as

the pull quote, it may be possible to extract entire utterances since each utterance

should represent an uninterrupted thought. Extraction of multiple utterances by the

same speaker may also be useful in the case of a short interruption. A restriction on

the number of words may also lead to better extraction since long pull quotes can

lose the reader’s attention.
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APPENDICES

Appendix A

GRAPH PERFORMANCE DATA

This appendix contains datasets of performance timings and Jaccard similarity values

for comparing the new graph variants to the Opinosis graph.
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Dataset CId # Words Procedure PRI (ms) SentId (ms) Numeric (ms)

SB145 1 6552 Creation 68.1 74.07 64.36

Traversal 389.02 275.81 70.53

2 299 Creation 2.64 1.95 1.95

Traversal 9.16 11.98 3.59

SB277 1 45504 Creation 381.83 389.5 390.72

Traversal 70064.53 22378.12 1940.99

2 1106 Creation 13.41 10.48 14.79

Traversal 32.92 28.85 8.54

3 273 Creation 2.67 2.62 2.51

Traversal 6.01 3.41 2.05

4 236 Creation 4.23 2.07 1.92

Traversal 2.38 0.83 0.64

5 226 Creation 1.64 1.69 1.55

Traversal 2.85 0.61 0.48

SB34 1 8433 Creation 144.61 88.35 73.26

Traversal 654.37 284.28 70.78

2 675 Creation 8.69 6.26 4.53

Traversal 4.24 1.52 1.42

3 650 Creation 4.42 4.23 4.31

Traversal 86.73 178.03 56.57

4 354 Creation 3.7 2.85 2.95

Traversal 40.89 34.61 15.13

SB530 1 2912 Creation 29.87 25.99 33.71

Traversal 114.89 115.55 37.81

2 232 Creation 2.03 1.69 1.82
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Traversal 3.95 4.11 0.71

SB9 1 36568 Creation 416.53 413.03 424.08

Traversal 16211.79 2386.54 206.85

2 2294 Creation 22.23 19.89 19.05

Traversal 52.49 20.88 6.18

Table A.1: Comparison of timings for graph creation and traversal
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Dataset Cluster Id Num Sentences Jaccard Similarity

SB145 1 1 0

2 0

3 0.2

4 0.1428

5 0.1111

6 0.2

7 0.1666

8 0.2307

9 0.2857

10 0.3333

11 0.375

12 0.3333

13 0.3684

14 0.3333

15 0.3636

16 0.3333

17 0.3076

18 0.3461

2 1 1

2 1

3 1

SB277 1 1 0

2 0.3333

3 0.5

4 0.6
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5 0.4285

6 0.3333

7 0.4

8 0.3333

9 0.3846

10 0.3333

11 0.375

12 0.4117

13 0.3684

14 0.4

15 0.3636

16 0.3913

17 0.4347

18 0.4166

2 1 1

2 0.3333

3 0.5

4 0.6

5 0.5

6 0.6666

3 1 1

2 1

4 1 1

SB34 1 1 0

2 0.3333

3 0.5
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4 0.6

5 0.6666

6 0.5

7 0.4

8 0.4545

9 0.3846

10 0.4285

11 0.4666

12 0.4117

13 0.4444

14 0.4736

15 0.5

16 0.5238

17 0.4782

18 0.5

19 0.5416

3 1 0

2 0.3333

3 0.5

4 0.6

5 0.6666

6 0.7142

7 0.5555

8 0.6

9 0.7

4 1 1
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2 0.3333

3 0.5

4 0.4

SB530 1 1 1

2 0.3333

3 0.5

4 0.6

5 0.6666

6 0.7142

7 0.5555

8 0.4545

9 0.5

10 0.4285

11 0.4666

12 0.4117

13 0.4444

14 0.421

15 0.4736

2 1 0

2 0

3 0.3333

SB9 1 1 1

2 1

3 0.5

4 0.3333

5 0.25

103



6 0.2

7 0.1666

8 0.1428

9 0.2

10 0.1764

11 0.2222

12 0.2

13 0.238

14 0.2727

15 0.3043

16 0.28

17 0.3076

18 0.3333

19 0.3571

2 1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 0.8888

Table A.2: Jaccard similarity between Opinosis and sentence-id
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Dataset Cluster Id Num Sentences Jaccard Similarity

SB145 1 1 0

2 0.3333

3 0.2

4 0.1428

5 0.1111

6 0.2

7 0.1666

8 0.2307

9 0.2

10 0.25

11 0.3125

12 0.375

13 0.4375

14 0.4117

15 0.4705

16 0.4444

17 0.421

18 0.4

2 1 1

2 1

3 1

SB277 1 1 1

2 0.3333

3 0.5

4 0.6
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5 0.4285

6 0.3333

7 0.2727

8 0.2307

9 0.2

10 0.1764

11 0.1578

12 0.2

13 0.238

14 0.2727

15 0.25

16 0.28

17 0.3076

18 0.3333

2 1 0

2 0.3333

3 0.5

4 0.6

5 0.8

3 1 1

2 0.5

4 1 1

SB34 1 1 0

2 0.3333

3 0.2

4 0.3333
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5 0.4285

6 0.3333

7 0.2727

8 0.2307

9 0.2

10 0.1764

11 0.2222

12 0.2631

13 0.3

14 0.2727

15 0.3181

16 0.3043

17 0.2916

18 0.3333

3 1 1

2 0.3333

3 0.5

4 0.6

5 0.4285

6 0.5

7 0.625

8 0.5555

9 0.6666

4 1 0

2 0

3 0.2
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SB530 1 1 1

2 0.3333

3 0.5

4 0.6

5 0.6666

6 0.7142

7 0.75

8 0.6

9 0.6363

10 0.5384

11 0.6153

12 0.6923

13 0.7692

2 1 0

2 0

3 0.3333

SB9 1 1 1

2 0.3333

3 0.5

4 0.3333

5 0.25

6 0.3333

7 0.2727

8 0.2307

9 0.2857

10 0.25
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11 0.2222

12 0.2631

13 0.3

14 0.2727

15 0.3043

16 0.3333

17 0.36

18 0.3846

19 0.4074

20 0.4444

2 1 0

2 0

3 0

4 0

5 0

6 0

7 0.1111

8 0.2222

Table A.3: Jaccard similarity between Opinosis and numeric
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Appendix B

SURVEY EXAMPLE AND RESULTS

This appendix contains a subset of data from the validation study done in collab-

oration with the Digital Democracy project. Below is a example screenshot of the

survey for bill AB1405 hearing id#302 which shows the format of the surveys used

in validation. There are a total of 20 quotes to be evaluated in that survey, so the

screenshot is cut off to remain brief.

Following the screenshot are venn diagrams that show how many shared quotes

were generated by looking at the quote selection method and then at the graph model

used for each bill discussion. The venn diagrams showing the number of shared quotes

between the different quote selection methods are separated into three diagrams, one

for each graph model. The venn diagrams showing the number of shared quotes

between the different graph models ignore the quote selection method.

Lastly, tables of results are shown for three bill discussions:

• SB128 Hearing Id#123

• SB277 Hearing Id#308

• SCA14 Hearing Id#1266

The tables show the generated pull quotes, the source method(s) for each quote,

the rating counts from the survey, and the average rating scores based on the numer-

ical scale described in Section 5.3.
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Figure B.1: Screenshot of the survey for AB1405 Hearing Id#302
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Figure B.2: Quote selection method comparison for AB1135 Hearing

Id#1123. Venn diagram for showing the number of shared pull quotes se-
lected from AB1135 Hearing Id#1123 by different quote selection methods
grouped by the graph model used
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Figure B.3: Graph model comparison for AB1135 Hearing Id#1123.

Venn diagram for showing the number of shared pull quotes generated
from AB1135 Hearing Id#1123 using different graph models and ignoring
the quote selection method
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Figure B.4: Quote selection method comparison for AB1405 Hearing

Id#302. Venn diagram for showing the number of shared pull quotes se-
lected from AB1405 Hearing Id#302 by different quote selection methods
grouped by the graph model used

1 4

4

AB CD

EF

4

5

2 0

Figure B.5: Graph model comparison for AB1405 Hearing Id#302. Venn
diagram for showing the number of shared pull quotes generated from
AB1405 Hearing Id#302 using different graph models and ignoring the
quote selection method
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Figure B.6: Quote selection method comparison for AB66 Hearing

Id#192. Venn diagram for showing the number of shared pull quotes
selected from AB66 Hearing Id#192 by different quote selection methods
grouped by the graph model used
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Figure B.7: Graph model comparison for AB66 Hearing Id#192. Venn
diagram for showing the number of shared pull quotes generated from
AB66 Hearing Id#192 using different graph models and ignoring the quote
selection method
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Figure B.8: Quote selection method comparison for AB884 Hearing

Id#1266. Venn diagram for showing the number of shared pull quotes
selected from AB884 Hearing Id#1266 by different quote selection meth-
ods grouped by the graph model used
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Figure B.9: Graph model comparison for AB884 Hearing Id#1266. Venn
diagram for showing the number of shared pull quotes generated from
AB884 Hearing Id#1266 using different graph models and ignoring the
quote selection method
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Figure B.10: Quote selection method comparison for AB884 Hearing

Id#1284. Venn diagram for showing the number of shared pull quotes se-
lected from AB884 Hearing Id#1284 by different quote selection methods
grouped by the graph model used
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Figure B.11: Graph model comparison for AB884 Hearing Id#1284.

Venn diagram for showing the number of shared pull quotes generated
from AB884 Hearing Id#1284 using different graph models and ignoring
the quote selection method
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Figure B.12: Quote selection method comparison for SB10 Hearing

Id#1048. Venn diagram for showing the number of shared pull quotes
selected from SB10 Hearing Id#1048 by different quote selection methods
grouped by the graph model used
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Figure B.13: Graph model comparison for SB10 Hearing Id#1048. Venn
diagram for showing the number of shared pull quotes generated from
SB10 Hearing Id#1048 using different graph models and ignoring the
quote selection method
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Figure B.14: Quote selection method comparison for SB1235 Hearing

Id#1074. Venn diagram for showing the number of shared pull quotes se-
lected from SB1235 Hearing Id#1074 by different quote selection methods
grouped by the graph model used
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Figure B.15: Graph model comparison for SB1235 Hearing Id#1074.

Venn diagram for showing the number of shared pull quotes generated
from SB1235 Hearing Id#1074 using different graph models and ignoring
the quote selection method
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Figure B.16: Quote selection method comparison for SB1235 Hearing

Id#1173. Venn diagram for showing the number of shared pull quotes se-
lected from SB1235 Hearing Id#1173 by different quote selection methods
grouped by the graph model used
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Figure B.17: Graph model comparison for SB1235 Hearing Id#1173.

Venn diagram for showing the number of shared pull quotes generated
from SB1235 Hearing Id#1173 using different graph models and ignoring
the quote selection method
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Figure B.18: Quote selection method comparison for SB128 Hearing

Id#123. Venn diagram for showing the number of shared pull quotes
selected from SB128 Hearing Id#123 by different quote selection methods
grouped by the graph model used
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Figure B.19: Graph model comparison for SB128 Hearing Id#123. Venn
diagram for showing the number of shared pull quotes generated from
SB128 Hearing Id#123 using different graph models and ignoring the
quote selection method
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Figure B.20: Quote selection method comparison for SB128 Hearing

Id#139. Venn diagram for showing the number of shared pull quotes
selected from SB128 Hearing Id#139 by different quote selection methods
grouped by the graph model used
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Figure B.21: Graph model comparison for SB128 Hearing Id#139. Venn
diagram for showing the number of shared pull quotes generated from
SB128 Hearing Id#139 using different graph models and ignoring the
quote selection method
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Figure B.22: Quote selection method comparison for SB277 Hearing

Id#308. Venn diagram for showing the number of shared pull quotes
selected from SB277 Hearing Id#308 by different quote selection methods
grouped by the graph model used
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Figure B.23: Graph model comparison for SB277 Hearing Id#308. Venn
diagram for showing the number of shared pull quotes generated from
SB277 Hearing Id#308 using different graph models and ignoring the
quote selection method
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Figure B.24: Quote selection method comparison for SB329 Hearing

Id#161. Venn diagram for showing the number of shared pull quotes
selected from SB329 Hearing Id#161 by different quote selection methods
grouped by the graph model used
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Figure B.25: Graph model comparison for SB329 Hearing Id#161. Venn
diagram for showing the number of shared pull quotes generated from
SB329 Hearing Id#161 using different graph models and ignoring the
quote selection method
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Figure B.26: Quote selection method comparison for SB350 Hearing

Id#113. Venn diagram for showing the number of shared pull quotes
selected from SB350 Hearing Id#113 by different quote selection methods
grouped by the graph model used
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Figure B.27: Graph model comparison for SB350 Hearing Id#113. Venn
diagram for showing the number of shared pull quotes generated from
SB350 Hearing Id#113 using different graph models and ignoring the
quote selection method
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Figure B.28: Quote selection method comparison for SB350 Hearing

Id#413. Venn diagram for showing the number of shared pull quotes
selected from SB350 Hearing Id#413 by different quote selection methods
grouped by the graph model used
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Figure B.29: Graph model comparison for SB350 Hearing Id#413. Venn
diagram for showing the number of shared pull quotes generated from
SB350 Hearing Id#413 using different graph models and ignoring the
quote selection method
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Figure B.30: Quote selection method comparison for SCA14 Hearing

Id#1266. Venn diagram for showing the number of shared pull quotes se-
lected from SCA14 Hearing Id#1266 by different quote selection methods
grouped by the graph model used
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Figure B.31: Graph model comparison for SCA14 Hearing Id#1266.

Venn diagram for showing the number of shared pull quotes generated
from SCA14 Hearing Id#1266 using different graph models and ignoring
the quote selection method
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Figure B.32: Quote selection method comparison for SCA14 Hearing

Id#1284. Venn diagram for showing the number of shared pull quotes se-
lected from SCA14 Hearing Id#1284 by different quote selection methods
grouped by the graph model used
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Figure B.33: Graph model comparison for SCA14 Hearing Id#1284.

Venn diagram for showing the number of shared pull quotes generated
from SCA14 Hearing Id#1284 using different graph models and ignoring
the quote selection method
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Id Quote

0 So some have suggested that we’re pushing this as an alternative to

hospice care, palliative care, that’s not true in fact we think this bill will

help advance greater awareness in participation with existing end-of-life

options in treatment and care.

1 And again we have to evaluate as legislators, a balance between a public

policy good for people living with a terminal illness and the compelling

testimony we’ve heard today.

2 It has to be fifteen days in addition to that diagnosis before someone can

request medication.

3 And beyond that once the patient under what is proposed in SB 128 goes

down this road, ends their life, the physician who is completing the death

certificate is required in this law to indicate that the that the patient died

of the underlying illness not by taking their own life.

4 SB 128 is aptly entitled the End-of-Life Option Act, it permits a physician

to positively respond to the request of a terminally ill decisionally capable

person for a prescription which taken as directed will enable him or her

to determine the time and manner of an imminent an inevitable death.

5 Where assisted suicide is legal under this system, an heir , someone who

stands to inherit or an abusive caregiver is allowed to steer the person

towards assisted suicide, witness their request as was said, pick up the

lethal dose, and in the end...
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6 Hello, my name is Toni Broaddus, I am the California campaign director

for Compassion and Choices and in case you haven’t figured it out I just

want to let you know that Compassion and Choices strongly supports

this legislation on behalf of the two-thirds of Californians who want to

have this option at the end of life, thank you.

7 And, in the discussion by our the attorney the representative, here I’m

struck by the fact that in your argument he made no reference to the

fact that these people had been told that they were terminally ill. Age,

hopefully, it’s not a terminal illness although I guess you could argue

that it is.

8 Aid-in-dying under this law is not a replacement for palliative care or

for hospice, it is an additional end-of-life option to be considered by the

patient and by all physicians whether they be a hospice doc, palliative

care specialist, or an oncologist.

9 Senior citizens, particularly those now in what I would call assisted liv-

ing situations whether in residential communities for living with family or

friends, in my experience these people aware that they were now depend-

ing on others more than they had previously, sometimes even for food

and shelter and always, always for for emotional support and well-being...

have been readily influenced by the desires, comments, criticisms, even

facial expressions of others whether family members, nurses, doctors, so-

cial workers or yes even attorneys.We often times wait several weeks to

hear back from clients on the available options they have and from my

participation in those discussions and what I wish to share with you this

afternoon, I have learned that a certain population particularly vulnera-

ble to persuasion by others.
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10 What is our job and where do we default in terms of the rights of folks

to engage in making decisions?

11 This is of particular concern to the disability community which includes

many people like John Norton who’ve out lived terminal diagnoses for

years and even decades.

12 But, I totally support you in any decision you make about your life at

this point.

13 For seventeen years the laws of Oregon have allowed a terminally ill

mentally competent person to take control of their own dying process

and decide for themselves the amount of suffering they may have to

indoor and if at all they need to utilize this end-of-life option.

14 Those who maintain that thisis a euphemistically and misleading term

for physician assisted suicide failed to acknowledge the significant trans-

formation in attitudes and perspectives among many health care profes-

sionals over the last twenty years.

15 I think if the oncologist could tell you hundreds of stories of physicians

who, I’m sorry, patients who told they have 6 months to live and they’re

still sitting here many years later.

16 Before she took her life using lethal drugs, yet the Director of compassion

Choices Washington said that her situation represented quote none of the

red flags.

17 Even having this concept out there even for a physician who does not par-

ticipate we think poisons the physician patient relationship and, makes

it that much more difficult to talk about the legal and what we believe

more appropriate end-of-life options.
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18 Again I believe the Oregon record is a very strong record of the built-in

safeguards protecting against abuse or coercion.

Table B.1: SB128 Hearing Id#123 pull quotes
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Id Method Source Rating Counts

A B C D E F DK B Q M G Best Quote

0 X 0 0 0 1 4 1

1 X X X 0 1 1 0 3 0

2 X 0 2 2 1 0 0

3 X X X X X X 0 0 0 2 3 0

4 X X X X X 0 0 0 0 5 2

5 X X X X 0 0 1 2 2 0

6 X X X X X X 0 1 1 3 0 0

7 X X X X X X 0 2 3 0 0 0

8 X X X 0 0 1 0 4 1

9 X X X 1 1 0 1 2 1

10 X 1 2 0 1 1 0

11 X X X 0 2 2 0 1 0

12 X X 0 5 0 0 0 0

13 X 0 0 1 2 2 0

14 X X X X X X 0 0 1 2 2 0

15 X X 0 0 3 1 1 0

16 X 0 3 2 0 0 0

17 X X X X 0 1 2 1 1 0

18 X X 0 0 1 3 1 0

Table B.2: SB128 Hearing Id#123 method sources and rating counts

(Rating abbreviations: DK – Don’t know, B – Bad, Q – Questionable, M – Maybe,

G – Good)
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Id Quote

0 I represent over 500 grassroots sponsors of over 120 Southern California

mothers, that were able to come here and represent those who could not

be, to oppose this bill.

1 In fact, let’s go back to AV12109, my dear opponents here who are now

supporting the bill, were right here testifying, saying that doctors were

going to force people to get vaccinated by refusing to sign, by refusing

to sign the form saying that they consulted.

2 It seems as though, if you want to send your child to public school and

you have no other option to home school, you must sign the consent form.

3 Everybody has access to vaccines and it seemed unbelievable to them

and scary that their young children their young babies who could not be

vaccinated could be subject to these diseases that they have seen first

hand in horrifying ways and so to say it’s not a public health crisis when

one of the closest urgent cares to my district has to be shut down.

4 The only other thing I wanted to say about Serrano and this issue of the

compelling state interest is that at the end of the day, the core of the equal

protection concern really comes down to whether the bill discriminates

facially against the suspect class.

5 I understand AB 2109 has had some impact in some areas, capturing

those who use PBEs because it was easier than going to the doctor per-

haps, but in other areas, something else is happening, creating an uneven

landscape of protection for our children and our society.
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6 And the family physicians have been in support of this bill since its in-

troduction, along with the entire physician community, because they are

not only educating parents and patients about vaccines, and administer-

ing the vaccines, but they are also treating patients, when they are not

vaccinated or when they develop diseases.

7 Then if they decide not to have their child immunized, under this bill,

they would have to seek out other options like home schooling or inde-

pendent study.

8 The purpose of AB 2109 was to get our immunization rates up high

enough so we can protect herd immunity, community immunity in their

schools, prevent the spread of outbreaks.

9 Now, we have worked with this committee to ensure that SB 277 protects

our most vulnerable citizens, ensures that every child has an opportu-

nity to receive an education, and protect our constituents from deadly,

contagious, and preventable diseases.

10 Elisa Vargas from Meadow Vista, a single mother, a microbiologist, and

a school teacher, and I strongly oppose this bill.

11 What I’ve seen with all the reading, the bottom line is despite originating

in one of the most densely populated places in the country, the 2015 Dis-

neyland measles outbreak was successfully contained, and only affected

0.00035% of the state’s population.
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12 And would like to be able to continue that discussion with you on en-

suring the fact that the doctor would not have this, what I’m hoping

is an expanded judgement around the medical exemption, but also an

expanded judgement around alternate schedules beyond what is printed

in the current regulations and that’s something that I think is very im-

portant and critical as we look at the daycare and childcare issue.

13 In this case, the court won’t even look at are vaccines a compelling in-

terest.

14 It’s a narrow analysis, and what the court looks at is, is there a compelling

state interest to remove the personal belief exemption in light of what’s

going on.

15 My name is Paul Nelson, I’m a business owner from Huntington Beach,

California, and I strongly oppose this bill.

16 And so we are certainly very concerned over that, especially with the

continuing outbreak in Disneyland and other outbreaks that we are con-

cerned about, that it’s not, unfortunately, gonna do the job to prevent

outbreaks in our community and again, this is a 19% decrease that fol-

lowed a over 300% increase in PBEs that have occurred prior to that

decrease.

17 I believe that current law states that a physician has complete, profes-

sional discretion over the writing of a medical exemption.

18 And this would not be a problem for those in the mainstream who choose

to have their children vaccinated if the vaccines were 100 % effective, but

they are not.
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19 I’m a teacher and a member of the American Criminal Justice Associ-

ation, and I have permission to speak on the behalf of over 100 of my

colleagues to oppose this bill, as well as every member of my family.

20 Hello, my name is Cynthia Rivera from El Centro, California, mother of

three fully vaccinated children, grandmother of partial vaccination and I

strongly oppose this bill.

21 In fact, most recently, the state of Vermont, the governor who signed

their bill to eliminate personal belief exemptions in the state of Vermont,

one of the reasons he stated was there was a previous bill, was different

than 2109, but they had a bill requiring education of parents.

22 It’s been stated that there is a responsibility in the freedom of choice,

and therefore, those choosing to limit vaccines face the consequence of

not being able to send their child to school,

23 I am Scott Folsom, a parent leader in Los Angeles Unified School District

and also a member of the LAUSD Trust for Children’s Health, which

operates on school clinics.

24 There was a lot of attempts to cause them to be medicated before they

came to school, so the federal government and California followed, passed

a law and said, you cannot condition a kid’s right to attend school based

on them taking any sort of medication.

25 If we want to stop outbreaks, we need to get our immunization rates

higher, not just across the state, but also in individual communities as

well because otherwise those communities have become the basis and

the seeds for outbreaks that’ll spread into other parts of the state that’s

around them.
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26 This bill is about having your child enroll in school or potentially, the

existing law for day care.

27 The amendments were here given verbally, the next step will just be, if

it doesn’t go to a probst, will be on the floor, and the input from the

public is not going to be there, not going to have the opportunity to do

what we just had here, and I think that doesn’t serve us well.

28 That nothing in this section shall prohibit a pupil that qualifies for an

IEP, pursuant to Federal Law and Section 56026 of the Education Code

from accessing any special education and related services required by the

Individualized Education Program.

Table B.3: SB277 Hearing Id#308 pull quotes
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Id Method Source Rating Counts

A B C D E F DK B Q M G Best Quote

0 X X 0 2 2 1 0 0

1 X X 0 2 1 2 0 0

2 X X 0 0 2 2 1 0

3 X X X 0 0 3 2 0 0

4 X X 0 0 1 4 0 0

5 X 0 0 2 3 0 0

6 X 0 0 0 1 4 0

7 X X 0 0 0 3 2 0

8 X 0 0 0 1 4 1

9 X X X 0 0 0 1 4 0

10 X 0 2 2 1 0 0

11 X X X 0 0 0 3 2 1

12 X X X 0 2 1 1 1 0

13 X X 0 3 1 1 0 0

14 X 0 1 1 2 1 0

15 X 0 3 1 1 0 0

16 X X X X X X 1 1 1 1 1 0

17 X 1 0 2 1 1 0

18 X X X X 1 1 0 1 2 0

19 X X 0 2 2 0 1 0

20 X 0 2 2 1 0 0

21 X X X X X 0 3 1 1 0 0

22 X 0 0 1 2 2 0

23 X X X 0 4 1 0 0 0
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24 X 0 1 2 2 0 0

25 X 0 0 1 0 4 0

26 X X 0 2 1 2 0 0

27 X 0 4 1 0 0 0

28 X X 0 3 2 0 0 0

Table B.4: SB277 Hearing Id#308 method sources and rating counts

(Rating abbreviations: DK – Don’t know, B – Bad, Q – Questionable, M – Maybe,

G – Good)
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Id Quote

0 But I just think, I can’t stress enough how important it is that I think that

this should be part of a negotiation, and I apologize to the proponents

that this wasn’t started a long time ago.

1 Indeed, over the years, legislators have authored nearly 10 different mea-

sures to require a bill to be in print for 72 hours before it can be voted

on.

2 By abundant court precedent, in particular set by the litigation over the

ill fated Legislature Reform Act of 1983, in the absence of a constitutional

definition of the distinction between what a Committee of the Legislature

might be and what a standing Committee of the Legislature might be,

the distinction will default to the Legislature’s own rules.

3 The purpose is, in my judgement, from my own personal view, I can’t

speak for the author.

4 Certainly I don’t have the authority to take amendments now, but I think

that certainly there’s an opportunity for discussion to be able to avoid

putting this on the, well it’ll be put on the ballot as a constitutional

amendment by the Legislature, which is a better thing to do.

5 There are times when it’s not appropriate and not the best way to deal

with issues and we think the ones at hand with these two bills and at

hand with the initiative are the kinds of issues that are best dealt with

through the legislative process.

6 Well, it’s part of this tension that exists between the public’s important

right to be able to make the law or to question what we do and the power

of the Legislature to act responsibly is this initiative process and we use

to have in the law what was called the indirect initiative.
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7 Let me finish by asking, I don’t want you to have to speak for the author,

but based on what you’ve said, is that your position that the goal, really,

of SCA 14 is to put options on the ballot and not necessarily proceed to

strive to get the best product on the ballot?

8 But I’ll tell you for somebody who spent a year and a half of my life and

know all those thousands of e-mails and you can ask A lot of the people

here were testifying at all those endless meetings and conference calls we

had creating the 1253, which was the Ballot Transparency Act.

9 The third element you talked about was the definition of committees,

standing committees versus other committees.

10 So this measure in broad terms as you have before you will certainly talk

about the details as we go forward, provides that the Legislature provide

at least 72 hours notice of a measure in its final form before taking

it up seeking to avoid what is commonly referred to in the legislative

parliaments and gut and amends.

11 And I think but at the end of the day if what we produce is something

that works, I think it’s a fair and a reasonable solution which was the

compromise that was just mentioned by the League of Women Voters

that was envisioned in 1253, to try to bring people to the table to be able

to create an honorable discussion, however late, between the legislative

branch of government and those folks who are proponents of initiatives.

12 And I think that when you’re talking about protecting the public’s right

to know, it’s very important that it is constitutional and not at the whim

of today’s legislators or tomorrow’s legislators.
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13 I would just appeal to as long as, at the end of the day, they exercise

good faith, negotiate with the lawyers in the Legislature and the staff

in Legislature to try to come up with something that achieves the same

objectives that they’re achieving that they stand down and we have one

measure going forward and we solve the problem which they have been

solely the catalyst for making it happen.

14 SCA 14 does not protect the public’s access to recordings of the Legisla-

ture’s public proceedings.

15 And none has ever passed out of a policy Committee, let alone off the

Senate and Assembly Floor.

Table B.5: SCA14 Hearing Id#1266 pull quotes
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Id Method Source Rating Counts

A B C D E F DK B Q M G Best Quote

0 X X X 0 4 0 1 0 0

1 X X 0 0 0 0 5 0

2 X X X 0 0 2 2 1 0

3 X X X 0 5 0 0 0 0

4 X X X X X 0 2 0 3 0 0

5 X X X X X X 0 1 1 3 0 0

6 X X X X X 0 2 1 1 1 0

7 X X X X X X 0 0 2 1 2 0

8 X X X X X X 1 2 1 1 0 0

9 X 0 3 0 1 0 0

10 X X X X X X 0 1 0 2 2 0

11 X X X X X 0 1 1 1 2 0

12 X X 0 0 0 4 1 1

13 X 1 1 1 1 1 0

14 X 0 0 0 0 5 0

15 X 0 2 1 2 0 0

Table B.6: SCA14 Hearing Id#1266 method sources and rating counts

(Rating abbreviations: DK – Don’t know, B – Bad, Q – Questionable, M – Maybe,

G – Good)
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