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multimedia research control system
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We describe an original client—server approach to behavioral research control and the Whisker system, a
specific implementation of this design. The server process controls several types of hardware, including digi-
tal input/output devices, multiple graphical monitors and touchscreens, keyboards, mice, and sound cards. It
provides a way to access this hardware for client programs, communicating with them via a simple text-based
network protocol based on the standard Internet protocol. Clients to implement behavioral tasks may be written
in any network-capable programming language. Applications to date have been in experimental psychology and
behavioral and cognitive neuroscience, using rodents, humans, nonhuman primates, dogs, pigs, and birds. This
system is flexible and reliable, although there are potential disadvantages in terms of complexity. Its design,

features, and performance are described.

We describe a new method of implementing software for
behavioral research control, using a client—server mecha-
nism. The prototypical problem addressed by this software
is as follows. An experimenter has one or more comput-
ers, each attached to multiple computer-controlled operant
chambers, used for experimental psychology or behavioral/
cognitive neuroscience research with experimental ani-
mals. Operant conditioning chambers (Skinner, 1938) are
chambers that enclose an experimental subject and have,
at least, some form of manipulandum, such as a lever, and
a mechanism for producing reinforcement, such as a pel-
let dispenser. Generally, they also have forms of stimulus
delivery equipment such as lights, sound generators, and
visual displays (which may have touchscreen equipment
attached). The experimenter wishes to run a variety of be-
havioral tasks using this equipment (see Figure 1).

The software components of typical computer-based
control systems for behavioral research are organized
along two dominant themes. Both may be characterized
in computing science terms as monolithic (i.e., not based
on a client—server architecture). Some provide extensions
to an existing programming language (Fray, 1988, 1990,
1993); these extensions provide access to hardware con-
trol routines, timing facilities, and so forth, and typically
they control a single type of digital input/output (I/O) in-
terface. Users may program freely in the base language,
including all functions for data handling. Each behavioral
task thus communicates directly with the I/O hardware. If
the host language or computer does not offer multitask-
ing facilities, control of multiple devices or tasks is the
responsibility of the user.

Other systems provide a custom language (Campden,
2005; Dixon, 2009; Fray, 1980; Lafayette, 2007; Med

Associates, 2004; Palya & Walter, 1993; Panlab, 2004;
Tatham & Zurn, 1989), which may be procedural, graphi-
cal, or state-based. The custom language may be inter-
preted directly, or translated internally into a general-
purpose computing language, such as Pascal (Wirth,
1971), and executed by the control system’s primary pro-
cess. The latter approach typically allows users to call any
other code that can be linked from the general-purpose
language (Tatham & Zurn, 1989). Such custom language
control systems may offer predefined data-recording
mechanisms (Campden, 2005; Lafayette, 2007; Tatham
& Zurn, 1989).

We suggest that a good general-purpose approach to
the implementation of a control system for behavioral re-
search entails the separation of functions between a single
server process and multiple client processes. (We refer
throughout to a “process,” meaning a program running
on a computer; the single server process and the client
processes typically, although not necessarily, run on the
same physical computer.) The server process has respon-
sibility for all communication with the physical devices
being controlled, the management and allocation of these
devices as resources for client processes, and temporal
control (see Figure 2). Each of the client processes may
implement a specific behavioral task and control the re-
quired resources independent of other clients.

An additional set of practical problems concerns the
range of hardware that can be controlled by the behavioral
control system. For example, the range of digital I/O inter-
faces supported by many existing operant control systems
(see above) is limited. Additionally, the use of complex
audiovisual stimuli for animal testing has increased re-
cently in the fields of experimental psychology and be-
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Figure 1. Prototypical hardware that might be controlled by Whisker. A single computer (bottom left) controls multiple behavioral
test stations. Several types of test station are shown, and may be mixed freely, running independent behavioral tasks that communicate
with the hardware through the Whisker server process. On the left, standard operant chambers are shown, such as those typically used
for rodents, birds, and primates. These are depicted here with a grill floor, several stimulus lights, two retractable levers, and between
them a central food alcove fitted with a pellet dispenser delivering pellets into a tray, a retractable liquid dipper that rises through a
hole in the alcove floor, an alcove light, and an infrared nosepoke detector. In the middle, touchscreen chambers are shown. Those illus-
trated are fitted with a liquid crystal display screen for presentation of arbitrary visual stimuli, with an infrared touch-detection array
attached to it, a ceiling-mounted licker served by a pump for dispensing liquid reward, and loudspeakers. These chambers are suitable
as depicted or with minor structural modifications for a wide variety of species, such as rodents, birds, dogs, primates, and pigs. On the
right, plain displays are shown, suitable for human testing, with touch-detection equipment and/or response keys (button boxes). The
devices being controlled comprise digital output devices that may be on or off (e.g., lights, lever motors, pellet dispensers), digital input

devices that may be on or off (e.g., levers, nosepoke detectors, response keys), visual displays, touch detectors, and sound devices.

havioral neuroscience (e.g., Bussey et al., 2008; Fray &
Robbins, 1996), yet few control systems provide facilities
to control graphical displays (monitors) and touchscreens.
In practice, touchscreen control is often accomplished by
custom-written touchscreen extensions to generic lan-
guages that already have digital I/O control extensions
(Parkinson et al., 2001), or by programming all the control
systems de novo (Bussey, Saksida, & Rothblat, 2001; Gib-
son, Wasserman, Frei, & Miller, 2004; Markham, Butt, &
Dougher, 1996).

We describe the implementation and performance
of a client—server design, in which communication is
via simple text-based messages passed between client
and server processes, which usually run on the same
computer (see Figure 2). This method makes use of the
transmission control protocol/Internet protocol (TCP/
IP) suite’s standard facility for a virtual and very fast
local network operating between programs running on

the same computer (Cerf, Dalal, & Sunshine, 1974; Cerf
& Kahn, 1974; Postel, 1981). The hardware controlled
by the server process includes monitors, sound devices,
and touchscreens, as well as conventional digital I/O
interfaces from a range of manufacturers. Our imple-
mentation has been used for both animal experimenta-
tion and human testing. The use of audiovisual stimuli,
touchscreen responding, and digital I/O is common to
many species including humans, and human-specific
devices (keyboards, mice) are also supported; indeed,
many key tasks in modern behavioral neuroscience are
explicitly designed to be used across species barriers—
for example, in monkeys and humans (Fray & Robbins,
1996). Any experiment using any of the device types
supported and requiring a temporal resolution for digital
I/O and behavioral timing of no more than 1 kHz may
be performed using this system. Not all experimenters
would want to use a client—server design, however; we
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Figure 2. Outline of the software architecture, showing communication routes between a single server program (process) and mul-
tiple client processes running on the same computer and on a different computer (typically via two bidirectional transmission control
protocol [TCP] sockets per client), between the server program and physical devices that it controls, and between representations
internal to the server. The thick black box represents the server process, and the surrounding box represents the host computer. Client
programs typically run within the same computer as the server process; three examples are shown (boxes at top left), each linked to
the server process via two TCP network sockets. They communicate with the server process to request resources, set the state of digital
output devices, display visual stimuli, play audio files, and so on. The server process sends event messages to the clients corresponding
to changes in the state of the physical hardware, responses made by subjects, timing events, and so forth. Each client typically requests
resources from the server that correspond to one physical operant chamber. Other programs (shown as ellipses at top right) may also
run on the computer, independent of Whisker and its clients. The Whisker server listens for new connections from clients on a “listening
socket” on port 3233 (depicted at top right of the server process). Connections can also be made from clients on other computers, across
a local area network or wide area network (small box at far top right); typically, this facility is used to monitor the status of Whisker
and its clients remotely. Beneath the box representing the server process, communications with the operating system and device driv-
ers are shown, and beneath them, in turn, the physical control hardware is depicted. Whisker communicates with sound cards, the
keyboard and mouse, and multiple monitors via Windows operating system interfaces; it communicates with multiple touchscreens
via the Universal Pointing Device Driver (UPDD) system (see text); and it communicates with as many digital input/output (I/0) cards
as are installed via their manufacturer-specific drivers, while providing an internal abstraction of individual I/O lines with which the
clients interact. Within the server process, internal representations of connected clients and of the hardware interact, with commands
passing from the clients to the hardware, events passing from the hardware or the server process to the clients, and the server process
providing resource contention management.
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also discuss the practical advantages and disadvantages
of this system and its likely research applications.

Motivation, Design Goals, and History

In 1999, our laboratory wished to purchase additional
operant chambers for rat behavioral neuroscience work.
The choice of digital I/O control hardware and associ-
ated software designed for use with operant chambers
was small, the hardware was expensive, and the software
was limited because the choice of system dictated the
computer type, the operating system, and the program-
ming language in which behavioral tasks could be writ-
ten, with those programming environments being con-

siderably restricted. However, cheap generic digital I/O
interfaces and computers were available. Our prototypi-
cal experimental station was a single computer connected
to 6—8 operant chambers using 1-2 digital I/O cards. The
missing component was the software. Having embarked
on the task of writing a new control system, we set out
to solve the problems we had encountered with previous
such systems.

First, we wanted to be able to run several different be-
havioral tasks simultaneously and asynchronously, one for
each operant chamber, without one task interfering with
another’s operation, even if an individual task encoun-
tered a problem or software crash. Examples of actual
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behavioral tasks might include simple schedules of food
reinforcement, a second-order schedule of intravenous
cocaine reinforcement, a Pavlovian—instrumental transfer
task, and choice involving delayed reinforcement.
Second, we wanted to be able to use mainstream pro-
gramming tools to write behavioral tasks, and to be able
to use any programming language, so that we could add
arbitrary features such as direct communication with da-
tabases and complex on-the-fly calculations to our tasks.
These two considerations dictated the choice of a pre-
emptively multitasking operating system and, more im-
portantly, a client—server model, which to our knowledge
had not hitherto been used for behavioral research con-
trol. The natural method of implementing a client—server
model is with the TCP/IP suite, which has been the domi-
nant networking standard worldwide for decades. There-
fore, we developed a system in which a single server pro-
gram communicates directly with all relevant hardware
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devices (see Figure 2). Clients communicate via TCP/IP
with the server process, which provides a simple interface
with which to control the hardware.

Third, we wanted to be able to control many kinds of
digital 1/0 devices, including equipment from multiple
manufacturers, and to be able to extend the server soft-
ware in the future to support additional hardware without
any modification to the client software.

Fourth, we wanted to create a layer of abstraction by the
use of arbitrary device names, so that a task could be writ-
ten for generically named devices (e.g., “lever”) and thus
be directly portable across different computers, regardless
of whether the lever in question is connected to the first or
fiftieth logical line on a given computer.

Fifth, we wanted debugging facilities, such as the abil-
ity to inspect the operation of tasks as they were running
(see Figure 3), to manipulate the hardware directly for
testing purposes, and to create “fake” or virtual devices,
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Figure 3. Illustrative screenshots. (A) Whole-screen view of the server process (wide window at the top of the screen) and six tasks
connected to it (other six overlapping windows). Here, the clients are two copies of a second-order schedule of reinforcement, two
copies of a delay-discounting task, and two copies of a lever-based autoshaping task. Each task controls a separate operant chamber
connected to the server. The server process is shown in its summary status view. (B) View of the server process during execution of a
visual discrimination task from the MonkeyCantab suite, a Whisker client, showing the server’s copy of one graphical display from a
multimonitor-equipped computer. This is the view that would be seen by the experimenter on the computer’s primary monitor. The
subject sees an identical unadorned copy of this display on a secondary monitor located in a touchscreen-equipped operant chamber.
(C) The server’s view of the digital input/output (I/O) lines being controlled by the same task as in panel B, illustrating a selective view
of the subset of lines in use by one client, with information including their on/off status and events attached to them. Other available
views are listed on the left-hand side of the server’s window, such as a log of communications between the client and the server, a list
of timer events, and so on. (D) The client’s user interface at the same moment (same task as in panels B and C); this interface is used
to connect to the server (usually on the local, “localhost,” or “loopback” network address, meaning the same computer), to set up the
task and data storage parameters, and to start the task.
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so that we could program tasks on computers without
physical I/O hardware attached (saving experimental
time on the laboratory control computers) and be con-
fident that they would work the first time they went into
live operation.

Sixth, we wanted to be able to use visual displays and
touchscreens. Hitherto we had worked with such equip-
ment using ad hoc single-tasking monolithic single-
display programming methods, since no research control
system supported visual displays and touchscreens in ad-
dition to digital I/0O. We determined to make our system
support multiple displays from a single computer, with
multiple touchscreens and multiple sound cards (see Fig-
ure 2). In part, this was to maximize cost efficiency; for
example, when one computer with a single I/O card can
support enough /O lines to drive multiple touchscreen-
equipped operant chambers, it may be cheaper to add
more displays and touchscreens to the same computer
than to add more computers and I/O cards. In addition,
we thought that the client—server architecture would natu-
rally extend to make programming visual stimuli, touch-
screen events, and sound trivially easy from the point of
view of the clients.

The Whisker control suite was developed by R. N. Car-
dinal in 1999 in the Department of Experimental Psychol-
ogy, University of Cambridge, and subsequently devel-
oped in the same location by R. N. Cardinal and M. R. F.
Aitken. Most of the suite is written in C++ (Stroustrup,
1986); the server program and its accompanying tools
run to approximately 60,000 lines of code. The compiled
code includes third-party libraries for multithreading
support, cryptography, random number generation for
clients, and for interfacing with specific hardware. The
suite was first used for “live” research in 2000 and has
been distributed commercially since 2002 under licence
from Cambridge University Technical Services Ltd, a
subsidiary of the University of Cambridge. The current
distributors are Campden Instruments Ltd (U.K.), and the
Lafayette Instrument Company (USA). It is currently in
use by several academic, commercial, and governmental
institutions across the world (Cardinal & Aitken, 2008).
The source code to both the server and client software
is open to license holders. Full source is distributed on
request to licensed users, with rights to modify, compile,
and use the source code in all ways other than redistribu-
tion to unlicensed users.

Overview of the Hardware
and Software Architecture

A prototypical hardware configuration is shown in Fig-
ure 1, with a single testing computer controlling multiple
operant chambers, some equipped with visual displays,
touchscreen sensors, and sound devices. The subjects in
the operant chambers or in front of the displays might be
humans, nonhuman primates, rodents, dogs, pigs, birds,
or other species; this is a matter of experimenter choice
and suitable equipment. A single copy of the Whisker
server process runs on this computer and communicates
with all the hardware. Several client programs run on the
same computer, independently of each other, and each

communicates with the server process. Each client im-
plements a behavioral task. The software architecture is
summarized above and in Figure 2, and is discussed fur-
ther below.

Example of a Simple Multimodal Task

We begin with a simple example from a client’s perspec-
tive. This example presupposes that the server process has
been configured for the appropriate hardware, and a suit-
able device definition file (described in detail later; see
the Resource Management for Clients section) has been
set up to identify the hardware by name to clients. Thus, in
what follows, group names such as “box1” and individual
device names such as “leftlevercontrol” and “sound” have
been defined already and mapped to individual numbered
I/O lines, audio devices, and so on. The following script
shows how to use the Whisker command set (described
in detail at www.whiskercontrol.com) to set up a touch-
screen object that will produce an event when touched,
and ultimately produce a noise, and to set up a lever that
will report an event when pressed, and ultimately produce
a food pellet. The script begins at the point at which the
client has made a TCP/IP connection to the server process.
The first step is to claim the devices. This script will claim
the whole of the “box1” group, representing all devices
connected to operant chamber number 1, so that no other
client can use it, but then reclaim individual devices, to
ensure that those devices are present and no errors are
generated. Some aliases are assigned for convenience, and
a sound is preloaded:

ClaimGroup boxl
LineClaim box1l leftlevercontrol -alias

levercontrol

LineClaim boxl leftleverreport -alias
leverreport

LineClaim boxl pellet -alias
pelletdispenser

AudioClaim boxl sound -alias speaker

AudioLoadSound speaker rewardsound
C:\mysound.wav

DisplayClaim boxl lcddisplay -alias
display

Now we can extend the lever and ask it to generate an
event named “LeverPressed” when it is pressed:

LineSetState levercontrol on
LineSetEvent leverreport on LeverPressed

We can create a display document (described in more
detail later), set its background to dark blue (red 0,
green 0, blue 100, on a scale of 0-255), add a red rectan-
gle named “rectl” extending from coordinates (100,100)
to (600,600), relative to the origin at the top left of the
screen, load a bitmap from disk and name it “bmp1,” plac-
ing it on top of the rectangle with its top left at coordinates
(200,200), add suitable events named “ObjectTouched” to
detect when either the rectangle or the bitmap is touched,
and show the document on our display:

DisplayCreateDocument doc
DisplaySetBackgroundColour doc 0 0 100
DisplayAddObject doc rectl rectangle 100
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100 600 600 -penstyle null -brushsolid
255 0 0

DisplayAddObject doc bmpl bitmap 200 200
c:\mybitmap.bmp

DisplaySetEvent doc rectl TouchDown
ObjectTouched

DisplaySetEvent doc bmpl TouchDown
ObjectTouched

DisplayShowDocument display doc

Now the client can wait for the following message from
the server process (via the main TCP/IP port, described
below):

Event: ObjectTouched

and can respond by playing a sound:
AudioPlaySound speaker rewardsound

Likewise, the client can wait for a lever event from the
server:

Event: LeverPressed

and can respond by dispensing a pellet. For illustration,
we shall dispense the pellet with a 50-msec on—off pulse
to the pellet dispenser’s control line, achieved by a one-off
(nonrepeated) timer:

LineSetState pelletdispenser on
TimerSetEvent 50 0 EndOfPelletPulse

The client should respond to the subsequent message
from the server (50 msec later):

Event: EndOfPelletPulse

with
LineSetState pelletdispenser off

To add detection of keyboard “down” (key pressed)
events via the “KeyEvent:” message, for human testing
situations in which a single display is in use and the dis-
play window has the input focus, the client can issue the
following command:

DisplayKeyboardEvents doc down

This simple sequence illustrates the basics upon which
complex tasks may be built. The full command set is de-
scribed online (see www.whiskercontrol.com).

The actual method of establishing TCP/IP communi-
cations with the server process depends on the client’s
programming language. We provide examples in Perl,
Python, Microsoft Visual Basic, and C++ (see www
.whiskercontrol.com).

Communications Architecture

The Whisker server process is the heart of the system,
and runs on 32-bit Microsoft Windows operating systems
(NT4, 2000, XP, Vista). A client process interfaces with
the hardware by communicating with the Whisker server
process, using standard TCP/IP operations, with a defined
text-based language and command set. A running server
process listens on TCP port 3233, which is registered

for Whisker use (Internet Assigned Numbers Authority,
2008). The server also offers a second TCP port to all con-
necting clients, from the dynamic port range; the client
typically chooses to connect to this second (“immediate”)
port as well as the main port, providing a two-port system
of communication.

The normal way to run Whisker would be to run the
server program and several client programs on the same
computer (see Figure 2). All computers running standard
Internet protocols have an “internal” network facility,
whereby programs running on the same computer can
communicate with each other via the network system.
This is much faster than communication over a physical
network. Programs that communicate via an internal net-
work can communicate over a network between different
computers without modification, simply by changing the
network address they communicate with; this is useful for
Whisker clients in certain situations, but the normal mode
of operation would be for all programs to run on the same
computer.

Messages and commands are sent as plain text. This is
not the most efficient format—numerical encoding and
compression would be more efficient—but it makes com-
munication simple for the client, whatever its program-
ming language, and network latency is low enough for this
inefficiency to not be a problem (see below). Commands
are separated by semicolon, linefeed, or carriage return
characters. Parameters are separated by spaces; param-
eters that include spaces or semicolons may be encapsu-
lated in double quotation marks. Messages may be split
across multiple TCP packets silently by the network sub-
system, so there is a mechanism for detecting and recom-
bining split messages, by holding any message remnants
in a queue until the rest of the message arrives.

Events are reported by the server process to the client
via the main port (port 3233). These may reflect digital
input state changes, touchscreen responses, or timing
events. The server does not spontaneously send informa-
tion to the client via the immediate port. The messages
sent by the server to the client on the main port are strictly
defined (see www.whiskercontrol.com).

Clients may issue commands to the server on either the
main or the immediate port. For client commands issued
on the main port, the server may return multiple result
messages on that port. Client commands sent on the im-
mediate port are always followed by a single, rigidly de-
fined response message; thus, each “immediate” client
command always receives a corresponding “reply” mes-
sage. Client commands that request information are there-
fore usually issued on the immediate port.

The rationale for the two-port system is as follows. In
an event-driven system, events may occur unpredictably
and at any time (for example, in response to a subject
pressing a lever). The server process must send the event
to the client process immediately. Consequently, there
must be a port on which the client is constantly listening,
ready to process event messages. This is an example of
asynchronous or nonblocking I/O (Stevens, 1998). At the
same time, it must be possible for the client to send a com-
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mand or request to the server, and to obtain a reply. This
is an example of synchronous or blocking I/O: The client
wishes to obtain a reply immediately—that is, to pause or
“block” until the reply is obtained. The server should not
send spontaneous events down a socket on which the cli-
ent might be expecting a reply to its command, since this
could confuse the client, and it is highly inconvenient for
clients to have to use a general event-processing system to
deal also with all possible replies to its commands. This
is a general problem when events may be sent at unpre-
dictable times through a single channel of communica-
tion. The solution to this problem adopted by Whisker is
to have two channels, using the main socket for sending
unpredictable events, while the immediate socket returns
responses to commands in a rigidly defined manner, so
that the client can wait for its reply. The optimal way for
clients to behave is therefore to send commands and await
their replies on the immediate port, and to expect sponta-
neous events on the main port. Within the server process
itself, all communications are implemented via nonblock-
ing sockets so that any communication failure cannot hold
up processing.

To ensure network responsiveness, the server and cli-
ent processes disable the Nagle algorithm (Nagle, 1984),
an algorithm for delaying and concatenating small TCP
network packets to improve efficiency by minimizing the
proportion of traffic taken up by packet “header” infor-
mation. Since the Whisker architecture relies on network
timing, efficiency is sacrificed for speed. The algorithm
is disabled by setting the TCP_NODELAY parameter in
the network stack.

Network latency within a single computer is theo-
retically extremely small, and real-world performance
is explicitly testable through the server. We tested a
client—server—client round trip on a computer with a
dual-core Intel E6600 2.4-GHz processor running Win-
dows XP under the unusually demanding conditions of
104 back-to-back tests without pause. Each individual
test consisted of the client sending a Ping command and
awaiting a PingAcknowledged reply (for syntax, see
www.whiskercontrol.com). The round trip took a mean
of 132.3 usec (standard deviation = 29.2, range = 93—
377, median = 123). Mean one-way network latency,
relevant to commands and events, was thus 0.066 msec,
with standard deviation 0.015 msec. All events gener-
ated by the server, whether in response to timers, digital
inputs changing state, or touchscreen activity, may ad-
ditionally be time-stamped with the system clock time
at the moment of first receipt by the server, maximizing
accuracy.

Implications for Client Behavioral
Task Programming

The use of a TCP- and text-based system means that
behavioral tasks can be implemented within any program-
ming language or third-party task design software capable
of TCP/IP communication. The majority of tasks to date
have been written in C++ and Microsoft Visual Basic,
although Python and Perl are other obvious candidates and

work well. This freedom of choice regarding program-
ming language means that task design is unrestricted, and
hardware control facilities provided by the Whisker server
process may be combined with those of other programs
(e.g., dedicated electrophysiology software, video presen-
tation) if so desired. It is also possible, for example, to cre-
ate translation software to migrate behavioral tasks origi-
nally implemented as scripts for another research control
system. Others have developed graphical front-end clients
to aid task writing (Campden/Lafayette, 2009). Practical
advantages and disadvantages of this system are discussed
further below.

Since behavioral tasks run as independent client pro-
cesses, the system is protected from failures should an ex-
ception or error arise within an individual task. A Whisker
server process typically controls several operant cham-
bers, and allows arbitrary combinations of tasks to run
simultaneously and asynchronously within these cham-
bers: A reversal learning task in one operant chamber can
be started and stopped independently of the autoshaping
task in another.

Timing and Threading Architecture

The server process uses the Windows high-performance
timing system to monitor hardware status with a poll fre-
quency of 1 kHz. Use of the high-performance multi-
media timing system rather than the basic Windows timer
system is necessary to guarantee performance: The basic
Windows timer system is unsuitable for reliable timing,
since the generated messages have the lowest priority
within Windows (e.g., dragging windows around on the
desktop can suspend basic Windows timers), whereas the
multimedia timers provide guaranteed performance. The
server process can be configured to run with real-time
priority to ensure that other processor-intensive applica-
tions have minimal impact on the server’s performance
as a result of competition for processor time. The polling
performance is monitored live to allow performance to
be assured. We tested performance on a 2.5-GHz Intel
Pentium 4 motherboard running Windows 2000 and ob-
tained a mean polling period of 999.6 usec (standard de-
viation = 53.6, range = 53-1,129) across 104 consecu-
tive polls.

Using the highest, real-time priority in Windows will
allow the server process to deny processor time to other
processes (including the client processes) that perform
essential tasks. In order to ensure that the system remains
usable, and that any client processes are run correctly, the
server process performs internal monitoring to ensure
that it can use no more than 50% of processor time when
performing hardware polls. This is achieved by “yield-
ing” at the start of a poll if the time since the end of the
preceding poll has been less than 500 usec. Yields may
thus occur if the processor is heavily loaded, or if the Win-
dows polling system polls the server faster than 1 kHz, as
it sometimes does.

The server process provides millisecond-resolution tim-
ing to connected clients. A client may request a timer to
be fired at defined times, lending temporal structure to the
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task being implemented as in any other behavioral control
system. The precise resolution depends on the stability of
the server’s 1-kHz poll routine (measured standard devia-
tion = 53.6 usec, as above) and the latency of a within-
computer network message (measured latency = 66 usec,
with standard deviation = 15 usec, as above). Timer com-
mands result in Event messages from the server process
to the client process (for syntax, see www.whiskercontrol
.com).

Internally, the server process is multithreaded, with
dedicated threads to handle incoming communication
from each client. This is necessary so that any potentially
slow operation (such as loading a bitmap from disk) does
not affect communications with other clients, which can
proceed uninterrupted. A separate high-priority thread,
called from the Windows high-performance multimedia
timing system, polls the digital I/O hardware (see below)
and client timers and sends event messages to the clients.
Another thread receives touchscreen messages. A final
thread handles all graphical systems and the graphical
user interface (GUI).

The use of a multithreaded architecture gains substan-
tial performance but brings a standard set of programming
problems (Cohen & Woodring, 1998). Most concern the
problem of two or more threads trying to access the same
object or variable simultaneously. Without proper safe-
guarding, Thread A might read part of a data structure and
begin to work using this information, at the same time that
Thread B is writing to the data structure, leading to inter-
nal inconsistency and sometimes program failure. Data
access must be made “atomic”: Each item of nonconstant
data (or set of interdependent data) that may be accessed
by more than one thread must be protected by a system
of “locks” or “mutex” (mutual exclusion) algorithms, to
prevent uncontrolled access (Cohen & Woodring, 1998).
The ownership of objects is also important to determine,
since serious memory management problems can arise
if objects are created by and used within one thread and
destroyed by another.

Digital I/O Architecture

Digital I/O cards for binary (on—off) control and detec-
tion are supported from several manufacturers, including
Amplicon, Advantech, ICS Advent (Kontron), Lafayette,
and National Instruments. Currently, these span ISA, PCI,
and USB interfaces. The popular Intel 82C55 generic I/O
controller chip is also supported directly, and the server
process allows conventional serial (RS-232, COM) ports
to be used to provide four lines of input and two lines
of output each. Additional custom support is provided
for some manufacturers’ control hardware, including de-
vices that use internal multiplexing systems to increase
the number of physical devices controlled by a given I/O
card. Internally, the representation of a digital I/O device
is abstracted, allowing support for additional manufactur-
ers’ cards to be added simply.

Clients may set the state of output lines, read the state
of any line, and attach events to line on/off transitions. In
general, digital I/0O cards are actively polled at the server’s

primary event frequency (1 kHz), although some types
of cards that implement different (e.g., interrupt-driven)
event notification have also been integrated into the sys-
tem. Arbitrary different types of I/O card may be mixed
in one system, limited by physical space to connect them
to the computer. The digital /O command set is described
online (see www.whiskercontrol.com).

In addition to attached physical I/O lines, the server
may be configured with virtual or “fake” digital input and
output lines. These allow the development and testing of
behavioral task software on computers that do not have
physical I/O hardware attached, or the use of client soft-
ware preconfigured to use devices that are not needed. All
digital lines, whether physical or virtual, may be moni-
tored and controlled via the server’s console, which we
have found to provide a simple way of testing client task
software.

Internally, the server uses two key I/0 abstractions. The
first is a base class representing an abstract digital I/O
board (see Figure 2). This encapsulates central features
provided by any digital I/O board, including functions to
update its current input and output representations from
and to the physical hardware, and to report the number
of inputs and outputs it provides. All classes represent-
ing digital I/O boards are derived from this abstract base
class. Such derived classes represent an instance of a spe-
cific I/O board from a particular manufacturer, and the
derived classes have hardware-specific code to talk to the
relevant manufacturer’s driver software. This software ar-
chitecture allows support for new manufacturers’ equip-
ment to be added in an encapsulated manner by adding
a new class.

The second key abstraction within the server is of an
individual digital I/O line. Lines represent, among other
things, their state (on or off, this being updated to or from
the physical hardware state periodically), their owner (if a
client has claimed them), and any on/off events currently
attached to them, so they can report those events to their
client when the line’s state changes. They also provide a
layer at which the logical state can be disconnected from
the physical state or from the state their client intended,
enabling the user to manipulate digital I/O lines from the
console for debugging purposes.

Safety Features

Some digital I/O cards, including those controlled by
the common Intel 82C55 chip, default to settings that
turn on all connected output devices when the control-
ling computer is powered up. If the devices controlled by
these output lines are potentially data- or life-threatening
(e.g., intravenous infusion pumps), inadvertent temporary
power loss or rebooting of a computer may be hazard-
ous. Uninterruptible power supply use is one important
defense against this, but the server also allows a subset
of digital output lines to be dedicated as power control
lines (“failsafe” outputs). If these are attached to a power
control relay and configured so that some control lines
need to be on and others simultaneously off before power
is provided to the devices, the risk of inadvertent device
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activation is substantially reduced. However, our system
is not certified to control medical devices in humans and
should not be used for this purpose. Failsafe outputs are
controlled exclusively by the server and are not available
to clients.

Clients may also specify that it is hazardous to leave
particular lines on. The server will then ensure that none
are left on for more than a specified time, in case the cli-
ent fails to turn them off, and will return them to a speci-
fied safe state if communication with the client is lost.
Typically, this facility is used to provide an extra degree of
safety for intravenous infusion pumps, as used in animal
drug self-administration experiments. The safety facility
is implemented internally within the representation of a
digital I/O line discussed above.

Graphics Architecture

Our objective was to make all graphics primitives of
the Windows graphics device interface (GDI) available
for multiple monitors, without the client’s having to be
aware of the programming problems associated with
multimonitor use, and to make display objects capable of
responding to events such as touches. We summarize key
design decisions here; further implementation details are
available online (see www.whiskercontrol.com). Display
devices (monitors) are enumerated via the Windows op-
erating system, allowing multimonitor configurations to
be used directly. Typically, the primary display is used to
view the conventional Windows desktop, including the
Whisker server console and any tasks that are running
(see Figure 3). Additional monitors are typically placed
inside operant chambers (optionally with touchscreen
equipment attached to them; see below) and are used to
provide stimuli in behavioral tasks. For human testing, cli-
ents may also create “new” display devices, represented as
windows on the conventional operating system desktop. A
copy of all additional displays is provided on the server’s
console, with representations of subjects’ screen touches,
so stimuli and subjects’ responses may be monitored from
the console.

The display command set is described in full online
(see www.whiskercontrol.com). Once a client has claimed
ownership of a display device (see below), it may create
arbitrary “documents,” and draw to them with or without
the document’s being visible. One document at a time may
be assigned to a display to make it visible. To maximize
flexibility from the client’s perspective, all Windows basic
GDI calls are made available via the server’s command set,
allowing arbitrary graphics and text presentation. Bitmaps
(BMP files) may be displayed, allowing stimuli to be cre-
ated with third-party photographic or illustration software.
Most classes of graphical object may have “touch” events
attached to them (e.g., touched, touch removed, touch
moved), so that if touch-detection equipment is present,
the objects will generate events when touched.

Touchscreen Architecture
Our objective was to support the widest range of touch-
screens possible, and to support multiple touchscreens si-

multaneously. Since there is a large range of commercial
touchscreen equipment (touch-detection equipment sold
attached to a monitor, or sold to be positioned in front
of an existing monitor), and no unifying touchscreen
architecture built into Windows NT/2000/XP/Vista, the
server process relies on the commercial UPDD (Universal
Pointing Device Driver; Touch-base Ltd, U.K.) common
touchscreen interface, which in turn supports a large ma-
jority of available touchscreens, often via serial interfaces.
Touchscreen sensors are configured and calibrated via
the UPDD interface, and the server takes control of any
touchscreen(s) selected for use with Whisker while it is
running, via the UPDD driver (see Figure 2). Touchscreen
sensors are assigned to display devices (monitors) by the
server process, and the combination of a display device
and a touchscreen sensor is treated as a single functional
unit. Touchscreen events are detected via display objects
(for details, see www.whiskercontrol.com) and thus re-
quire no specific commands.

Sound Architecture

In order to place the fewest restrictions on sound op-
eration, the server process enumerates sound devices via
the operating system (through the Windows DirectSound
interface), and thus all Windows-enabled sound devices
are available for use. Optionally, a stereophonic sound
device may be split into two monophonic devices. If the
device itself provides adequate stereo separation, this is
a cheap way of doubling the number of sound outputs.
“Fake” audio devices may be created for testing purposes
on computers without sufficient sound cards.

The sound system was designed to allow clients to play
arbitrary combinations of sounds. Having claimed a sound
device, clients may attach any number of sound buffers to
it, limited only by system memory. Buffers may be played
independently, including simultaneously. Buffers may
contain either simple sound waveforms (e.g., sine wave,
square wave, etc.) specified by the client, or wave format
(WAV) files stored on disk. The latter method allows ar-
bitrary sounds to be played. Volume control features are
provided. The audio command set is described online (see
www.whiskercontrol.com).

An undesirable feature of DirectSound primary sound
buffers (an undocumented bug) is that stopping a sound
and starting another can produce a small click or burst
of one of the sounds. Since this would be problematic in
behavioral experiments, the server plays a “blank” sound
continuously to prevent this problem.

Keyboard and Mouse Input

For human testing, keyboard and mouse events are also
supported. Keyboard events are available from the display
device that has the operating system focus. Mouse clicks
are likewise processed through display devices. The key-
board and mouse are also used in the conventional way
on the server’s console, including for testing; for example,
mouse input to the server’s copy of an active display de-
vice may be used to mimic touchscreen input for testing
purposes.
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Resource Management for Clients

A single text-based device definition file is used to pro-
vide a mapping between device numbers (e.g., output line
20) and convenient device names (e.g., “PelletDispenser”).
Thus, client behavioral tasks may be written without knowl-
edge of the specific I/O device numbering on the host com-
puter. Multiple names are supported, so that a device may
be known by different names to different tasks. Devices may
also be grouped; typically, a group of devices represents an
operant chamber. This allows clients to refer to the “Pellet-
Dispenser” in “chamberl.” All device types (including dis-
play and sound devices) may be addressed in this way.

Client processes request (“claim”) devices or groups of
devices (for syntax, see www.whiskercontrol.com). Once
claimed, the server process will prevent any other client
from claiming or accessing those devices until the client
frees the resources or disconnects from the server. This
prevents unwanted crosstalk between operant chambers.
Intentional crosstalk is still possible if one client program
takes control of several operant chambers, or if two sepa-
rate client programs cooperate deliberately, and the server
supports client—client communication.

Having claimed devices, the client may also assign
them aliases and refer to them by alias. Clients have the
option to create aliases on the fly, and to assign the same
alias to multiple devices, thereby allowing simple pro-
gramming of counterbalancing and yoking. Counterbal-
ancing might be accomplished, for example, by creating
an alias LEVER to refer to either LEFTLEVER or RIGHTLEVER
in the counterbalancing code, and then referring only to
LEVER in the main task code. Yoking might be accom-
plished, for example, by assigning the alias LIGHT to the
stimulus lights in all of several operant chambers, so
when the task proper switches on the LIGHT, the lights in
all the chambers come on.

Server-Based and Remote Monitoring
and Debugging

Clients are encouraged to provide status information
to the server, allowing the server’s console to provide a
snapshot status view of all current clients, in addition to
any status information the clients choose to display them-
selves. The server’s console allows all aspects of current
tasks to be monitored, including digital I/O line status, ac-
tive timers, copies of any graphical displays in use, events
that have been generated, client—server communications,
and so on (see Figure 3). The console allows manipula-
tion of I/O devices and events for testing purposes (e.g.,
manually turning devices on and off, or simulating sub-
jects’ responses), and provides test facilities for display,
touchscreen, and sound devices.

Remote access to the server process, if permitted by the
user, allows status monitoring to be conducted from com-
puters anywhere on the same IP network (see Figure 2;
for details, see www.whiskercontrol.com). In certain situ-
ations, behavioral tasks themselves could run on different
computer systems connected to the computer hosting the
Whisker server process via a network; of course, this ap-
proach requires guaranteed network performance.

Data Capture

Although event and communication log files may be
captured and saved from the server process, primarily for
debugging purposes, data capture is the responsibility of
the client process (the behavioral task), and this separation
of responsibility contributes to server performance and
reliability. In our practice, we write clients that record data
both to an appropriately structured relational database,
for power in data queries, and to a text file as a backup.
However, for additional security, the client can request the
server to log events, communications, and arbitrary client-
generated messages to disk (see www.whiskercontrol
.com). These logs can be digitally signed by the server to
assist compliance with regulatory frameworks such as the
Good Laboratory Practice (GLP) system (U.S. Food and
Drug Administration, 2002).

Aucxiliary Software

The status of current behavioral tasks can be moni-
tored remotely using a remote status client, or via a Web
browser (provided the computer hosting the server runs
a third-party Web server and Java applet). A demonstra-
tion client allows manual testing and learning of the sys-
tem commands. Since many client tasks we have written
use the open database connectivity (ODBC) interface for
structured data storage, a tool to manage ODBC connec-
tions and databases is also supplied.

Examples of behavioral task frameworks are avail-
able in Perl, Python, Visual Basic, and C++ (see www
.whiskercontrol.com). As discussed above, the free choice
of client programming language enables procedural pro-
gramming, the use of state-based models, or any other ap-
proach to behavioral task creation.

Performance, Practical Experience,
and Behavioral Tasks

The concept of client—server separation of responsi-
bilities aims for reliability, efficiency, and performance
through specialization and simplicity, akin to the pro-
gramming philosophy behind the development of UNIX
(Ritchie & Thompson, 1974). In practice, we have found
that client—server separation generates an extremely re-
liable platform. We estimate that the server process has
run for well over a quarter of a million hours in our own
institution from 2000 to 2008; at the time of writing in late
2009, we are unaware of any server system “crash” in the
worldwide deployment during the last 5 years.

The system is also fast enough for behavioral testing,
reliably providing digital I/O facilities at 1 kHz, even on a
decade-old computer: The slowest computer tested to date
is a 1999 system with an AMD K6-2/450 processor and
128-MB RAM under Microsoft Windows NT 4.0. Sub-
sequent improvements in typical computing speed have
meant that computing performance is rarely a consider-
ation. Timing performance is described above.

The client—server separation, device abstraction, and
the test facilities built into the server mean that it is easy
to write and test behavioral task software fully with-
out needing access to physical operant chamber hard-
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ware; this frees up the laboratory hardware for active
research.

The system has now been used for research involv-
ing human and nonhuman primates, rodents, dogs, pigs,
and birds. Several research groups use the system with
their own client task software, and others use precom-
piled tasks designed and written in the University of
Cambridge, including the five-choice serial reaction time
task, second-order schedules of reinforcement paradigms,
delay-discounting choice tasks, and the MonkeyCantab
touchscreen-based task suite (Roberts, Robbins, Everitt,
& Muir, 1992; see Figure 3) that implements a primate-
oriented version of the human Cambridge neuropsycho-
logical test automated battery (CANTAB) (Robbins et al.,
1994; Sahakian & Owen, 1992). Published research con-
ducted encompasses human work (e.g., Fairchild et al.,
2009; Kehagia, Cools, Barker, & Robbins, 2009) and ani-
mal work (e.g., Belin, Mar, Dalley, Robbins, & Everitt,
2008; Dalley et al., 2007; Hutcheson, Everitt, Robbins,
& Dickinson, 2001; Ito, Robbins, & Everitt, 2004; Mui,
Haselgrove, Pearce, & Heyes, 2008; Vanderschuren &
Everitt, 2004; Von Huben et al., 2006; also see Cardinal
& Aitken, 2008).

Advantages and Disadvantages of Client—Server
Versus Monolithic Architectures
for Behavioral Control

We think that the trade-offs in complexity, reliabil-
ity, and flexibility between client—server and monolithic
methods for behavioral experiment control are, in general,
as follows.

Complexity is the major disadvantage of the client—
server system, although the actual level of complexity for
the end user can vary considerably. Client—server mod-
els involve considerable complexity in programming for
the server process, although this is a one-off problem.
Programming of the client processes may be simple or
complex (depending on the choice of language, the pro-
gramming model followed, and so on), although there is
a minimum extra level of complexity required of the cli-
ents in that they must incorporate a system for network
communications with the server process. Monolithic ar-
chitectures (e.g., using a custom script language) do not
require the same degree of network communications pro-
gramming by the architecture’s creator, but require more
language support for behavioral tasks; for example, they
must support conditional execution and other program-
ming constructs that may be left to the client in a client—
server model. The complexity of a behavioral task in a
monolithic system is determined by the custom script lan-
guage, although support for network communications is
not required in this situation.

Complexity for users is thus closely related to the
choice of programming or scripting language, and the
choice of a client—server architecture may at first appear
to be independent of the choice of a scripting language.
That is, within a client—server architecture such as ours,
programmers may write clients that communicate di-
rectly with the server process using the Whisker com-

mand set, but it is also possible to create intermediate
steps, such as graphical or text-based script interpreters
to interpret a different script language and translate it into
commands passed to the Whisker server process. Under
such a system, the end user would work with the alterna-
tive graphical system or script language, and retain the
other benefits of the client—server architecture (such as
independence of multiple client processes). However, the
converse is not necessarily true: In a system based on a
single custom script language whose interpreter also con-
trols the physical hardware (e.g., Campden, 2005; Fray,
1980; Lafayette, 2007; Med Associates, 2004; Palya &
Walter, 1993; Panlab, 2004; Tatham & Zurn, 1989), the
choice of programming language is not free, and clients
are independent only if the script interpreter enables this.
In either case, the range of physical hardware that may
be controlled depends on the process that actually com-
municates with that hardware.

The reliability of client-server versus monolithic sys-
tems is an empirical question. Client—server architectures
allow their clients to fail without disrupting other clients,
and the server process does not take responsibility for
client reliability. Client—server models also have a po-
tential failure point in the network connecting the client
and server processes; this is a real problem if a network
between computers is used, but not a practical problem if
the client and server processes run on the same physical
computer. Monolithic architectures take responsibility for
execution of their behavioral tasks, and therefore for their
reliability. In practice, we have found a client—server sys-
tem to be highly reliable, as discussed above.

In terms of flexibility, there are clear advantages to the
client—server system, given the independence of execution
and of programming language for the client processes.

Research Applications and Users

To use directly a client—server system such as the one we
outline here, users must be able to program in a general-
purpose programming language with TCP/IP network ca-
pabilities. This is an undoubted hurdle, exposing users to
languages that may be more powerful and complex than
typical dedicated scripting languages, and it probably re-
stricts use to a subset of undergraduates, graduate students,
and researchers with some programming experience. The
choice of language determines the complexity; for exam-
ple, it is likely that writing a text-based client in Python
using prewritten examples (see www.whiskercontrol.com)
is much simpler and within the grasp of more researchers
than writing a GUI-based client in C++; both methods
could achieve the same experimental aim, and the choice
is a matter of personal preference. In either case, there is
also a need to deal, directly or indirectly, with the server’s
command set. However, an alternative option also exists
to use a client—server system indirectly through a special
client designed to make task programming easy or graphi-
cally based (e.g., Campden/Lafayette, 2009).

The strongest arguments for using a client—server sys-
tem come when a single computer is used to control multi-
ple independent test stations, and thus a single server pro-
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cess would communicate with multiple client processes.
This reflects the situation in which digital I/O control
hardware and computers are relatively expensive com-
pared with operant chambers (including when an expen-
sive I/O control card and interface can support many more
devices than would be found in a single operant chamber),
so the researcher would not wish to assign a computer, I/O
controller, and other I/O interface equipment for each op-
erant chamber. It also reflects situations in which operant
chambers may be used independently or in groups (e.g.,
for yoked experiments), again requiring one computer to
communicate with several chambers. In these situations,
client—server architectures provide efficient use of experi-
mental resources. In our experience, these situations are
most common in rodent, bird, and primate research within
behavioral neuroscience and experimental psychology.

Conclusion

Real-time research control systems based on a client—
server architecture are feasible and reliable. A system
based on TCP/IP communications and a tightly controlled
timing architecture can implement 1-kHz digital I/O per-
formance on cheap and readily available hardware and
consumer operating systems. Internally, our system’s ab-
stractions allow the control of interfaces from multiple
manufacturers, while providing safety features, conten-
tion management, and simplified control of a range of
hardware devices (including visual displays, sound cards,
and touchscreens) in any programming language capable
of TCP/IP communications. The use of a client—server
architecture can carry some costs in terms of program-
ming complexity for the clients, but provides substantial
practical benefits in terms of task software development
flexibility, efficient use of experimental resources, and
data management.
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