
HAL Id: hal-00188311
https://hal.archives-ouvertes.fr/hal-00188311

Submitted on 10 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Whispering-gallery-mode analysis of phase-matched
doubly resonant second-harmonic generation

Yannick Dumeige, Patrice Feron

To cite this version:
Yannick Dumeige, Patrice Feron. Whispering-gallery-mode analysis of phase-matched doubly res-
onant second-harmonic generation. Physical Review A, American Physical Society, 2006, 74 (6),
฀10.1103/PhysRevA.74.063804฀. ฀hal-00188311฀

https://hal.archives-ouvertes.fr/hal-00188311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation

Yannick Dumeige* and Patrice Féron
ENSSAT-FOTON (CNRS-UMR 6082)–Université de Rennes 1, 6 rue de Kerampont, Boîte Postal 80518, 22300 Lannion, France

We propose a coupled modes analysis of second-harmonic generation in microdisk resonators. We demon-

strate that whispering gallery modes can be used to obtain a combination of modal and geometrical quasi-

phase-matching �without domain inversion� to obtain efficient conversion in isotropic and nonferroelectric

materials such as III-V semiconductor compounds. Finally we use an analytical model to describe the coupling

between a bus waveguide and the nonlinear microdisk to achieve an optimization scheme for practical

configuration.

I. INTRODUCTION

The increase of nonlinear conversion efficiency has been

a long-standing goal in nonlinear optics. In the case of sec-

ond harmonic generation �SHG�, different parameters must

be considered in order to achieve efficient frequency dou-

bling. A first step to reach this aim consists in choosing ma-

terials with large second order nonlinear susceptibility. III-V

semiconductors such as AlxGa1−xAs compounds are good

candidates for this purpose due to their large nonlinear coef-

ficient d14 one order larger than commonly used materials for

a fundamental field �FF� wavelength about 1.55 �m �1,2�.
The phase matching condition is strictly required to obtain

constructive interferences between the nonlinear polarization

and the radiated second harmonic �SH� field. This is tradi-

tionally obtained using the birefringence of nonlinear mate-

rials or more recently, using periodical inversion of the non-

linear susceptibility in ferroelectric materials such as LiNbO3

in order to meet the quasi-phase-matching �QPM� condition

�3�. Unfortunately III-V compounds are very dispersive and

isotropic around 1.55 �m. Nevertheless, QPM can be imple-

mented at 1.55 �m with different steps of epitaxial growth

and technological processes �4,5�.
When the phase matching condition is obtained and

within the weak conversion limit, doubling efficiency is di-

rectly proportional to the FF optical intensity and the square

of the interaction length. Waveguiding of SH field and FF

can provide high intensity over large lengths leading to an

increase in the conversion intensity. In addition, using wave-

guide properties such as artificial birefringence or modal dis-

persion permits the phase matching condition to be reached

�6,7�. This has already been achieved in AlGaAs waveguides

leading to efficient converters �8–10�. Another way to in-

crease the FF intensity consists in embedding the nonlinear

material in an external resonant cavity for the FF �11,12�.
This can be extended by using a cavity which is also reso-

nant for the SH field �13�. More recently these approaches

have been proposed for monolithic microstructured planar

devices �14–16� or photonic crystal microcavities �17�. Us-

ing epitaxial growth and technology for vertical cavity sur-

face emitting lasers, singly or doubly resonant nonlinear

planar III-V semiconductor microcavities with Bragg mirrors
have been manufactured �18–20�. These devices pave the
way to ultracompact second order nonlinear converters. Al-
though planar approaches are very attractive due to their ver-
tical access, some difficulties inherent in the doubly resonant

approach must be circumvented �i� the 4̄3m symmetry of

AlGaAs compounds, in the commonly used �001� growth

direction, gives an effective nonlinear coefficient null under

normal incidence, �ii� the strong dispersion of III-V semicon-

ductors around 1.55 �m means that efforts have to be made

in design to obtain Bragg mirrors centered around FF and SH

frequencies, and �iii� the use of large quality �Q� factor mi-

crocavities requires large beam size �in order to limit diffrac-

tion effect� leading to a decrease in the FF intensity. The first

point is addressed by using large incident angles which can

also be used as an external tuning parameters and the second

is addressed using aperiodic or high index contrast Bragg

mirrors �16,21�.
Cylindrical �or spherical� whispering gallery mode

�WGM� microcavities working with the total internal reflec-

tion �TIR� effect can be used to reach high Q factors. These

unique properties have been widely used to achieve low

threshold microdisk lasers �22–24�. The use of WGMs in

second order nonlinear optics has been less addressed.

Schiller and Byer have used monolithic TIR MgO:LiNbO3

resonators to obtain parametric oscillation �25�. Recently

Ilchenko et al. have used periodically poled LiNbO3 QPM

toroidal resonators to efficiently achieve frequency doubling

from a wavelength around 1.55 �m �26�. Finally, dispersion

of coupled microdisk resonators have been proposed to reach

simultaneously quasi phase-matching and enhancement of

fields in nonlinear interaction �27,28�.
In this paper we propose to use microdisk cavities and

their associated WGMs to simultaneously obtain phase

matching for III-V semiconductors, FF and SH resonances,

and transverse fields confinement. Note that in WGM de-

vices TIR acts as an ultrabroad band mirror working for FF

and SH frequencies. This combination could be used to fully

integrate nonlinear converters working with low FF power.

The paper is organized as follows. We start with a

coupled-mode formulation of the SHG for WGMs in a mi-

crodisk. In this second section we review linear properties of

WGMs, and we introduce coupled-mode theory �CMT� �29�
for SHG in a doubly resonant WGM microcavity. We also*Electronic address: yannick.dumeige@enssat.fr
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introduce the coupling with an input/output bus waveguide

indispensable for the description of the insertion of the FF in

the microdisk and the extraction of the SH field from the

microcavity. In the last section, we propose to benefit from

the unique properties of WGMs to obtain original phase-

matching scheme in III-V semiconductor microdisk. We fin-

ish this third section by a discussion of the optimization of

coupling between the bus waveguide and the nonlinear

microdisk in the perspective of experimental implementa-

tion.

II. COUPLED MODE THEORY FOR SHG WITH WGMS

Figure 1 schematizes the cylindrical microcavity studied

in this paper. It consists of a microdisk cavity with a second

order nonlinear susceptibility ��2� coupled to a bus wave-

guide. This waveguide allows the FF to be inserted in the

microcavity and the generated SH field to be extracted from

the microcavity. The field confinement in the z direction

is provided by planar waveguiding. The required layered

structuration is taken into account by the effective

index method �EIM� �30�. The refractive index of the non-

linear material at angular frequency � is N�=���, the

effective propagation constant associated with the vertical

confinement evaluated thanks to the EIM is called

��=n�k� where n� is the effective index and k�=� /c the

free space wave vector.

A. Linear properties of WGMs

In the framework of the EIM, the solutions of Maxwell’s

equations can be divided into two polarized fields TE

�Ez
� ,Hr

� ,H�
�� and TM �Hz

� ,Er
� ,E�

��. The fields are all as-

sumed to be CW at single frequency � for the FF �or 2� for

the SH field�. For a microdisk, �� represents the electric or

the magnetic field depending on the polarization

���r,�,z,t� = A����r�	��z�e j��t−
���, �1�

in the TE case, we can write the magnetic field as

H��r,�,z,t� = A�	��z�e j��t−
����Hr
�ûr + H�

�û�� , �2�

and in the TM case the electric field is as follows:

E��r,�,z,t� = A�	��z�e j��t−
����Er
�ûr + E�

�û�� . �3�

In the TE case ��=Ez
�, ��=Ez

�, Hr
�=


�

r�0���, H�
�=

1

j�0�

d��

dr

and in the TM case ��=Hz
�, ��=Hz

�, for r�R we have

Er
�=−


�

r�0n�
2 �

�� and E�
�=

j

�0n�
2 �

d��

dr
, for r�R we replace n� by

1. The integer 
� is the azimuthal number. 	��z� is the ver-

tical dependence of the field amplitude and is derived from

the solution of the transverse modes in a planar waveguide

with the thickness equal to that of the microdisk height. We

will consider 	��z� to be dimensionless and harmonic in the

nonlinear medium with �	��z��2=1. The z component of the

wave vector q� is deduced from the EIM by:

q�=�k�
2 N�

2 −��
2 �31�. Considering these assumptions to be

correct, Helmholtz’s equation reads

d2��

dr2
+

1

r

d��

dr
+ ���

2 −

�

2

r2 ��� = 0. �4�

Within the microdisk the solution is described by a Bessel

function of the first kind ���r�=A�J
�
���r�, whereas at the

exterior the solution is represented by a Hankel function of

the second kind ���r�=B�H

�

�2��k�r�. Tangential field compo-

nent continuity allows the link between the constants A� and

B� to be written as follows

A�J
�
���R� = B�H
�

�2��k�R� , �5�

and the dispersion relation to be calculated using

	u�
 dJ
�

dr



��R


 dH
�

�2�

dr



k�R

J
�
���R� H
�

�2��k�R� 	 = 0 �6�

with u�=n� for TE polarization and u�=1/n� for TM

polarization. A� is chosen in order to obtain for TE

polarization

1

2
�

0

+


�Hr
��*

Ez
�dr = 1, �7�

and for TM polarization

−
1

2
�

0

+


�Hz
��*

Er
�dr = 1. �8�

In these two cases, expression �1� corresponds to an

azimuthal power flow of �A��2W /m.

B. Frequency conversion with a nonlinear polarization TE

polarized

We adapt the coupled-mode theory developed for planar

waveguides �29� for the case of WGMs and thus we start

x

y

θ

z

rR

O

SH

FF

ωτ′

ωκ

ωτ

ωκ′

ωτ′2

ωκ 2

ωτ2

ωκ′2

FIG. 1. The generic structure studied in this work is constituted

by a nonlinear microdisk side coupled with a bus waveguide. This

waveguide allows the insertion of the FF in the waveguide and the

extraction of the SH field. ��, ���, ��, and ��� are the coupling

coefficients introduced in Sec. II C.
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with Helmholtz’s equation in TE polarization

��� · E2�� − �E2� = − �0

�
2

�t2
��0�2�E2� + P� , �9�

P=�0��2� :E�E� is the second order nonlinear polarization.

Taking into account the field dependence given in Eq. �1�
and assuming that the FF is TE or TM polarized we have

��� · E2�� · ûz =
4q�

2

�0�2�

Pz. �10�

Considering only the z component of the electric field, Eq.

�9� becomes

�r,�Ez
2� + �2�

2
Ez

2� = −
4�q�

2 − �2�k�
2 �

�0�2�

Pz, �11�

where �r,� is the laplacian operator in cylindrical coordi-

nates. Using the slowly varying envelope approximation

�SVEA� we can write

Ez
2��r,�,z,t� = A2����Ez

2��r�	2��z�e j�2�t−
2���. �12�

Considering only one polarization for the FF:

Pz�r,�,z,t� = Pz�r,���	��z��2e j�2�t−2
���. �13�

Assuming that �	��z��2=	2��z� �or q2�=2q��, which will be

the case in the following section since we will only consider

the fundamental modes of the planar vertical waveguide, us-

ing Eq. �4� and normalization relation �7� for Ez
2� we obtain

dA2�

d�
= −

j�2�
2

4
2��0�2�
��

0

R

�Hr
2��*

Pzr
2dr
e j�
�. �14�

The integration domain of Eq. �14� is limited to �0,R� since

the nonlinear susceptibility vanishes for r�R.

C. Linear coupling with the bus waveguide

The imaginary part of the frequencies �� or 2�� calcu-

lated from Eq. �6� characterizes the intrinsic diffraction

losses of the microdisk. In order to take into account all

sources of losses �not only diffraction but also surface rug-

osity for example�, using coupled mode theory, and follow-

ing Rowland and Love �32� it is possible to add losses in the

field expression considering the WGM as a bent waveguide

mode. The complex frequency or the bent waveguide ap-

proaches are equivalent �33�. Consequently we will now con-

sider a complex azimuthal dependence �and a real angular

frequency� for the WGM:


̃� = 
� − j��R/2, �15�

where �� represents the overall losses of the WGMs consid-

ered as a bent waveguide mode. In order to link the WGMs

and the bus waveguide modes we use the matrix approach

provided by Yariv in Ref. �34�. Here we consider an asym-

metric coupling in order to describe the multimodal behavior

of the bus waveguide. Consequently for a given frequency

we use four coupling coefficients ��, ��� , ��, and ��� as

shematized in Fig. 1:

A� = j���Ain + ��A�e−j
̃�2� �16�

assuming a lossless coupling we have ��
2 +��

2 =1, ���� �2

+ ���� �2=1, the power flow of the incoming FF bus wave-

guide mode is described by �Ain�2 in the case where only one

mode of the bus waveguide is excited. As we want to benefit

from resonance field enhancement, we will consider weak

coupling and so we assume now �with no loss of generality�
that the resonant frequencies of the waveguide-loaded micro-

disk are the same as the free one �35�. Note that the assump-

tion of a single mode resonator is verified since we consider

here only one resonant mode at FF and SH frequencies. The

FF envelope is then given by

A� =
j���Ain

1 − ��e−j
̃�2�
. �17�

We write the same relation as Eq. �16� for the SH field

envelope taking into account its angular dependence:

A2��0� = �2�A2��2��e−j
̃2�2�. �18�

This last expression combined with Eq. �14� will give us the

expression of the SH field generated inside the cavity. With

the expression of A2��2��, it is possible to obtain the expres-

sion for the SH field radiated out from the cavity through the

bus waveguide �for only one mode of the bus waveguide�:

Aout = j�2�A2��2��e−j
̃2�2�. �19�

III. APPLICATION TO SHG IN III-V SEMICONDUCTORS

In this section we will apply the formalism developed in

Sec. II to the case of highly nonlinear and isotropic III-V

semiconductor materials for a FF TM-polarized and an SH

TE-polarized field �i.e., parallel to the z direction�.

A. Structural description

The proposed structure consists of an etched microdisk

made of Al28%Ga72%As with a diameter D=2.1 �m and a

thickness h=760 nm �Fig. 2�. The chosen Al composition

avoids two-photon absorption at FF frequency. The vertical

confinement is obtained with a cladding layer of AlAs. This

configuration allows the EIM to be used �30�. For conve-

nience, we will call mi the number of zeros of the considered

planar waveguide mode profile along the i direction

with i= �x ,z�. At FF wavelength ���=1573.4 nm and

N�=3.2364� the vertical planar waveguide has two modes

whereas at SH wavelength �N2�=3.4632� three modes can

propagate. We have considered here that refractive index of

AlAs is 2.9010 at FF frequency and 3.0100 at SH frequency.

In the following text we will only consider the fundamental

�mz=0� FF and SH modes since the mode coupling �with the

same frequency or not� of different orders is weak. The struc-

ture can be obtained by epitaxial growth on a GaAs �001�-
oriented substrate. The bus waveguide is t=350 nm thick,

note that this value is always compatible with EIM �30�. This

waveguide has two modes indexed by mx=0,1 at FF fre-

quency and has three modes �mx=0,1 ,2� at SH frequency.
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The coupling coefficients between the bus waveguide and

the microdisk depend on the value of the gap d between

the microdisk and the bus waveguide. Taking into account

the strong natural dispersion of AlGaAs, these design param-

eters allow the azimuthal numbers 
�=9 and n=1 for the FF;


2�=20 and n=2 for the SH field to be obtained �where n is

the number of maxima of the radial dependence of the

intensity�. Because of the very strong dispersion of AlGaAs

at ��=1573.4 nm, it remains a phase mismatch �
=
2�

−2
�=2 �note that we also have �
̃= 
̃2�−2
̃��. We will see

in the following section that this phase mismatch will be

compensated for using the unique properties of WGMs.

B. Phase-matching consideration

The cubic 4̄3m symmetry of AlGaAs and the TM

polarization for the FF leads to the following expression for

nonlinear polarization �36�:

Pz = 2�0d14A�
2
Ex

�
Ey

�, �20�

where d14=108 pm/V for the chosen Al composition �1,2�.
In the cylindrical coordinates the nonlinear polarization reads

Pz = �0d14A�
2 �2Er

�
E�

� cos�2�� + ��Er
��2 − �E�

��2�sin�2��� .

�21�

This leads to the following angular dependence for the

effective nonlinear polarization

�
0

R

�Hr
2��*

Pzr
2dr = A�

2 �a+e2j� + a−e−2j�� . �22�

This natural modulation of the nonlinear tensor can be used

to reach the quasi-phase-matching condition. Taking into ac-

count this feature �14� reads

dA2�

d�
= −

j�2�
2

A�
2

4
2��0�2�

�a+e j��
̃+2�� + a−e j��
̃−2��� . �23�

In order to analyze the SH field and nonlinear polarization

overlap we define

a± = �
0

R

f±�r�dr , �24�

with

f±�r� = �0r2d14�Hr
2��*�Er

�
E�

� ±
j

2
��E�

��2 − �Er
��2�� , �25�

which is an imaginary quantity. Figure 3�a� shows Im�f+�
and Im�f−� for the structure already described. We can notice

that due to a weak overlap between the nonlinear polariza-

tion and the SH field �a−� is lower than �a+�, calculations

show that �a+ /a−��6. Unfortunately regarding the strong

material and structural dispersions, it is not possible to obtain

�
=−2 for low value of n for FF and SH field which could

lead to phase match the term in a+ and to a better overlap

between the nonlinear polarization and the SH field. It is

possible to obtain the condition �
=−2 with high values of n

both at FF and SH wavelengths. In Fig. 3�b� we represent

AlAs

GaAs

Al28%Ga72%As

D = 2.1µm

h=0.760µm

χχχχ(2)

t = 0.35µm

d

z = [001]

x

y

x

Air

FIG. 2. The proposed structure is etched in a planar waveguide

constituted by a core in Al28%Ga72%As and a cladding layer in

AlAs. The two layers are grown on a GaAs �001�-oriented sub-

strate. The thickness of the microdisk is h=760 nm and the distance

between the bus waveguide and the microdisk is d. The width of the

bus waveguide is t=350 nm. The diameter of the microdisk is taken

equal to D=2.1 �m.

FIG. 3. Functions Im�f+� �dash lines� and Im�f−� �full lines�
normalized for the maximal value of Im�f−� as a function of r inside

the microdisk: �a� for the proposed structure with D=2.1 �m, �b�
for the same structure with D=5.3 �m, n=2 for the FF and n=5 for

the SH field. In this last case, we have for the phase mismatch

�
=44−2�23=−2.
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Im�f+� and Im�f−� for a the same structure as described

in Fig. 2 but with D=5.3 �m, ��=1578.5 nm, n=2 for

FF and n=5 for SH. In this case �
=44−2�23=−2 and

�a+ /a−��3. Although the effective nonlinear susceptibility is

better than in the precedent case, we did not study this

structure since high values of n increase the WGMs volume

which is detrimental for nonlinear interactions.

In the case chosen here and described in Sec. II, we have

�
=2, so only the term in a− is phase matched,

consequently,

A2��2�� − A2��0� = −
j�2�

2
A�

2
a−

2
2��0�2�

e��2�−2����R − 1

��2� − 2���R
.

�26�

If we define

K̃ = −
j�2�

2
a−

2
2��0�2�

e��2�−2����R − 1

��2� − 2���R
, �27�

we can write the expression for the SH field generated inside

the cavity as

A2��2�� =
K̃A�

2

1 − �2�e−j
̃2�2�
. �28�

We can now obtain the expression of the conversion

efficiency �:

� = 
Aout

Ain


2

=
��2��2���� �4�K̃�2�Ain�

2e−�2�2�R

�1 − ��e−j
̃�2��4�1 − �2�e−j
̃2�2��2
, �29�

which shows good agreement with the expression given in

Ref. �15� for a planar monolithic microcavity.

C. FF and SH field impedance matching

Equation �29� should be written for each mode of the bus

waveguide at SH frequency. We have already emphasized

that this waveguide has several modes at FF and SH frequen-

cies. We still consider uniquely the fundamental �mz=0�
even mode in the vertical direction for the FF and SH fields

since the resonant modes inside the microcavity have mz=0

and will couple preferentially with a same order mode. In

order to take into account the different modes with

x-dependent profiles �mx=0,1 ,2� we will link the coupling

coefficients to the external quality factor and derive an ex-

pression of the conversion efficiency as a function of Q fac-

tors �in this case Aout is the overall power flow correspond-

ing to the generated SH field�. Since the external quality

factors which take the multimodal behavior of the bus wave-

guide into account can be calculated analytically as a func-

tion of d �37�, this will give us a physical insight into the

impact of d on the conversion efficiency. Taking into account

that 
� is an integer, Eq. �29� can be written

� =
��2��2���� �4�K�2�Ain�

2e−�2�2�R

�1 − ��e−���R�4�1 − �2�e−�2��R�2
. �30�

Carrying out the high finesse cavity approximation we can

write that ���1 and

1 − ��e−���R � 1 − �� + ���R . �31�

It is possible to link these parameters to Q factors �38�. With

this objective in mind, we define the internal quality factor as

Q�
0 =

2�N�

����

�32�

and the external quality factors as

Q�
e =

�
�

1 − ��

, Q�
e
� =

�
�

1 − ���
. �33�

We can write the expression of the conversion efficiency as a

function of quality factors for the FF and the SH field:

� �
8�K�2�Ain�

2

�3
�
2
2��Q�

e
��2

�
�Q�

e �4Q2�
e e−4�2N2�R/��2�Q2�

0 �

�1 +
2�N�R

��
�

Q�
e

Q�
0 �4�1 +

2�N2�R

�2�
2�

Q2�
e

Q2�
0 �2

, �34�

where �K�2 is the first order development of �K̃�2 in

��2�−2��� R:

K = −
�j�2�

2
a−

2
2��0�2�

. �35�

Using the following crude approximation:


� �
2�

��

N�R , �36�

we can generalize the result of Di Falco et al. �17� and write

� �
8�K�2�Ain�

2

�3
�
2
2�

�Q�
e �4Q2�

e e−2�
2�/Q2�
0

�Q�
e
��2�1 +

Q�
e

Q�
0 �4�1 +

Q2�
e

Q2�
0 �2 . �37�

Depending on the relative values of Q�
0 and Q�

e �and obvi-

ously the relative values of Q2�
0 and Q2�

e �, the conversion

efficiency can be greatly enhanced or decreased. We used the

analytical model proposed by Morand et al. in Ref. �37� to

evaluate Q�
e for the different modes of the bus waveguide

and the two frequencies as a function of d. Following Ref.

�37�, we now present the expression of the intrinsic Q factor

�i.e., only limited by diffraction and external coupling� Q�
int

for a microdisk waveguide side coupled without internal

losses �37�

1

Q�
int

=
1

Q�
diff�1 +

P�
G

P�
rad� , �38�

where Q�
diff is the Q factor diffraction limited, P�

G the power

carried by the waveguide and P�
rad the power radiated outside

the microdisk for a given polarization. Note that here we

calculate the value of Q�
diff by
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Q�
diff =

�E�
inside

P�
rad

, �39�

where E�
inside is the energy stored in the microdisk, see �37�.

Since Q�
diff is always very large, we will consider that

Q�
e =Q�

int. We can calculate P�
G�mx� for the different modes

and for the two frequencies we link the overall external Q

factor Q�
e to the external Q factors calculated for each mode

Q�
e �mx�:

1

Q�
e

= �
mx=0

s�
1

Q�
e �mx�

�40�

with s�=2 and s2�=3. We will consider here that the incom-

ing FF mode corresponds to mx=0 so we have Q�
e
�=Q�

e �mx

=0� since ��� corresponds to the coupling coefficient from

the fundamental mode �mz=0� of the bus waveguide to the

FF WGM. Otherwise, Q�
e takes into account the two modes

of the bus waveguide since the resonant FF can escape from

the microcavity coupling with these two modes. Figure 4

represents Q�
e �mx� and Q2�

e �mx� �calculated from Eq. �38�� as

a function of d. First, we can notice that for mx=0 the fields

are well confined both at FF and SH frequencies and Q�
e

reach their intrinsic limits Q�
diff for d�400 nm. As expected,

Q�
e increase with d because the evanescent coupling also

increases. In the case of FF, Q�
e �mx=0��Q�

e �mx=1� for large

values of d since the confinement is weaker for mx=1 than

for mx=0. For low values of d, even the mode with mx=1 is

less confined than the fundamental mode �mx=0�, we have

Q�
e �mx=0��Q�

e �mx=1�. This can be attributed to the large

propagation constant mismatch between the mode indexed

by mx=1 and the FF WGM. The overall values Q�
e �white

circles� and Q2�
e �white squares� are also represented. We can

notice that Q2�
e �Q2�

e �mx=2� for all the values of d since

Q2�
e �mx = 2� � Q2�

e �mx = 1� � Q2�
e �mx = 0� . �41�

It is then possible to calculate the value of � /�0 as a

function of d �Fig. 5� using Eq. �34� and considering

�0 = �K�2�Ain�
2. �42�

The ratio � /�0 represents the enhancement factor due to the

double resonance for different values of internal losses or

internal quality factors at FF and SH field frequencies. We

can see that the conversion efficiency can reach an optimal

value depending on the internal losses. This demonstrates

that from a practical point of view, an optimal coupling can

be chosen for given overall losses. Defining the overall Q

factor Q� as

1

Q�

=
1

Q�
e

+
1

Q�
0

, �43�

in the case of Q2�
0 =Q�

0 =7.5�104 �values compatible with

recent achievements of AlGaAs microdisks �24��, we obtain

an optimal coupling distance d�185 nm, Q��8700 and

Q2��28 000, this gives us a conversion efficiency equal to

1% for an external FF power of 130 �W and a vertical FF

mode thickness equal to h �39�.

IV. CONCLUSION

We have derived CMT for SHG in microdisk resonators

adapting the results of Ref. �29� to the case of WGMs. We

also proposed a simple way to achieve combination of modal

and quasi-phase-matching in WGM resonators. This can be

applied to the case of isotropic III-V semiconductors grown

along the commonly used �001� crystallographic direction

combining the advantages of resonant fields enhancement

and waveguiding fields confinement. We would like to em-

phasize the crucial role of the coupling between the micro-

disk and the bus waveguide and overall optical losses. An

FIG. 4. External Q factors as a function of distance between the

microdisk and the bus waveguide d. For FF frequency Q�
e �mx� is

represented for the two possible modes �mx=0,1�, for SH, fre-

quency Q2�
e �mx� is represented for the three possible modes

�mx=0,1 ,2�. The overall values Q�
e and Q2�

e are also shown �white

circles and squares, respectively�.

FIG. 5. Enhancement factor � /�0 as a function of the distance

between the bus waveguide and the microdisk calculated for differ-

ent values �Q�
0 ,Q2�

0 � of internal Q factors: �i� solid triangles

�7.5�104 ,7.5�104�, �ii� white circles �4�104 ,7.5�104�, �iii�
white triangles �7.5�104 ,4�104�, �iv� solid circles �4�104 ,4

�104�.
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external tuning parameter �such as temperature, for example�
will have to be found to reach experimentally the double

resonance condition as it is done with the incident angle

in the vertical access approach �16,19�. When this condition

will be fulfilled, this configuration could be used to

obtain micron-size integrated parametric devices such as

converters or generators. Second order nonlinear microdisk

coupled with waveguides could be used to integrate the

all-optical processing function proposed by Cojocaru et al.

�40�. Adaptation of this approach to materials grown on InP

could present the possibility of monolithic integration with

communication lasers at 1.3 and 1.55 �m �41�.
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