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Résumé. — Nous étudions les valeurs moyennes d’observables prises sur ’ensemble des solutions des équations
de Thouless Anderson Palmer. Ces moyennes sont calculées a poids constant (moyenne blanche) ou variable.
Pour la moyenne blanche nous donnons des résultats analytiques prés de la température de transition et pres de
T = 0 en bon accord qualitatif avec les résultats attendus pour le paramétre d’ordre d’Edwards Anderson. La
valeur trop élevée de I’énergie du fondamental est attribuée au caractére non discriminatoire de la moyenne blanche.
Nous vérifions la stabilité locale dans toutes les directions pour le col pertinent (diagonal dans 'espace des répli-
ques). Nous étudions aussi la moyenne microcanonique 2 7 = 0. Dans ce cas le col diagonal est instable et les
équations pour le col non diagonal ne sont pas solubles par des moyens purement analytiques.

Abstract. — We study white and weighted averages of observables over all solutions of Thouless Anderson and
Palmer equations. For the white average we give analytic results near the transition temperature and near 7 = 0,
in good qualitative agreement with expected results for the Edwards Anderson order parameter. A too high value
for the ground state energy is attributed to the non discriminating character of the white average. Local stability
in all directions is verified for the relevant saddle point (diagonal in replica space). We also study a microcanonical
average at T = 0. In that case, the diagonal saddle point is unstable and equations for the off-diagonal one are not
soluble by purely analytical means.

1. Introduction. — Finding a sensible mean field
theory for spins glasses still remains an unsolved
problem. The Edwards Anderson [E.A., 1] order
parameter was used by Sherrington and Kirkpa-

trick [S.K., 2] in their long range random Ising model

described by the Hamiltonian :

X = —%ZJJ-,GJ-G,

J#l

HlI=12..,N (1)

together with the probability law

N O\ NJ2
Py = (m) Xp ~ 572 @

for the random coupling J;. To calculate quenched
averages, the S.K. solution relies on the use of the
(symmetric) replica trick which turns out to be incor-
rect for T < T, (= J). Symmetry breaking schemes

(*) Laboratoire de Physique des Solides (L.A.2), Université
Paris-Sud, 91405 Orsay, France.

between replicas have mostly failed in their descrip-
tion of the low temperature phase, the most promising
one being that of Parisi [3]. Following a different route
Thouless Anderson and Palmer [T.A.P., 4] have
written N equations for the thermal averages

m; = <Uj>T

F] = tanh-lmj —;

J2
+m,-;-#(1 —md) =0, (3

equations that are valid to order 1/N. These authors
have given an analytical solution for T £ T, and
together with some assumptions, numerical results
for T~ 0 in close agreement with Monte-Carlo
computations.

Recently it has been realized [5] that computing
averages (over the random bond distribution) of
solutions { m; } of T.A.P. equations, can be reduced
to a self consistent one site problem. The self consis-
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tent equations involve four order parameters. They
contain as special cases the S.K. solution (where the
E.A. order parameter is the only survivor) and the
Sommers [6] solution (where the linear response ano-
maly also appears).

In the following we first recall, in section 2, the
reduction to a one site self consistent problem. In
section 3 it is shown that the (averaged) number N’
of solutions to T.A.P. equations is large. This forces
us to decide what weight to attribute to each solution.
Also in order to build averages over the ensemble of
solutions (rather than sum over solutions) we are
forced to introduce what we were striving to avoid i.e.
replicas. In section 4 we argue to the relative « inno-
cence » of our replicas and point to two types of
saddle points (diagonal in replica space, and off-
diagonal). In section 5 we concentrate on the diagonal
saddle point of the white (equal weight) average over
solutions. We give analytic results near T = T,
and T = 0. These results are qualitatively good but
too high for the ground state energy, presumably

-

F.
¥ = det; =

cmy

IH dn} dn} exp Z, n} {[
J Iy
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on account of the chosen weight. To proceed further
we work in section 6 in the simpler limiting case
T = 0. We confirm the local stability of the white
average diagonal saddle point. For the microcanonical
average the diagonal saddle point is unstable. Equa-
tions for the off-diagonal saddle point — a more
likely but tougher candidate — are exhibited in the
appendix.

2. Transformation to a self consistent one site pro-
blem. — The generating functional of the m; correla-
tion functions, can be written, 4 la Martin Siggia

Rose [7] as :
i} = fl'[ dm; F (Z k mk)
@

where the delta functions impose that T.A.P. equa-
tions (3) are satisfied and the determinant is the Jaco-
bian normalizing properly the delta functions. We
express the Jacobian § as :

jk le Jﬁ
+ Z (1 - mk 51'1 - 7 b 2mj Fzm, 41 (5)

where the integration is over anticommuting c-numbers #, n*, and we also use :

dm;
oF) = Eexp

{" l.’;lj<tanh_l m; —

Y —=mp+m;y, 6)

Jﬂ Jﬁ )}
L, S La-—md)); .
: T - TZ( ml)

On the properly normalized expression (4), we may now directly take quenched averages over the probability

law (2), as

Zav { lj} = jHP(Jﬂ)Z{ lj;le }-

[0}

Following notations of reference [5], one then introduces four (order) parameters

)
-5 ®
=5 3 iy ©)
Q=5 % i)’ (10)
1 a1

that turn out to decouple all sites, i.e. transform the problem into a self consistent one site problem. Here g is
the E.A. order parameter, g the linear response, with its exhibited anomaly a, and n the ghost occupation.
Indeed, if we impose constraints (8)-(11), the generating functional (7) reads :

v=1

, NV (& i i,
Zav = (ﬁ) J l—[ dxv dxv l:[dmjﬁdrljd'h €Xp

{NC + Y L+ Y M, ’71} 12)
7 7

where we use x, for ¢, g, §, n and X, for the corresponding constraint variables. Here :

2
C=

_2_7:3[_92 +n—qi-21-gn—g]—i)y x %

(13)
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L; = — imjtanh™! m; + igm] + ig(im;m;) + iqlim)* + I; m; (14)
and
1 2

The only non locality left is now removed by inte-
gration over fermionic variables that replaces the
integrand in (12) by exp NA (within a factor of order
one)

A=C+In jdmd—meL(iﬁ+ 1 2). (16)
2n 1—m

Saddle point conditions on A then determine g, g,
g, n self consistently as :

+1 1
— N1 L B 2 17
qg=N J‘_ldme< +1_m2)m a7
+1
g= J\F“J. dm e"(B-f— N _lmz) x
-1
_1 _
X(tanh én Am)m (18)

+1 1
g= d\“‘lj dme‘:(B + 2) x
4 1—m

tanh™'m — Am\* 1
[(e) o] o

+1
n= J\”‘l". dm e’ (20)
-1
together with the normalization
+1 1
N = j dm e“(B + 2) (3}
- 1 —m
and
£ = — —1—-(tanh_1 m — Am)* +

20

+(% + 4+ B)m2 . (22)
The notation used is X, = (J?/T?) x,. These self
consistent equations incorporate the S.K. solution
(g =a=05b=0) and the Sommers [6] solution
(g = a + b = 0) as special cases.

3. Average number of solutions and normalization. —
So far we have assumed that there exists only one
solution (beside the trivial one m; = 0) to T.A.P.
equations. This applies to solutions that can be retriev-
ed by perturbation resummation as S.K. or Sommers
solutions and can be checked with the help of equa-
tion (12) since the number of solutions N, averaged,
is given by

Ne=Z,1=0). (23)

For the general solution (17)-(22) however this num-
ber turns out to be of order exp NA.(T), where
#,(T) vanishes near T..

This immediately raises one technical question

 namely that the Jacobian § defined in equation (5)

should be replaced by | ¥ | in equation (4), this repla-
cement being irrelevant when the solution to T.A.P.
equations is unique. Again we have checked that &
keeps the same sign near T, and at 7 = 0 (see also
comment in conclusion).

Moreover, the existence of many solutions raises
conceptual questions :

1) Since equation (4) sums over solutions, when
we have many of them, we have to give a weight
§ { m, } to each solutions. In the following we consider
an uniform weight (white average) and a weight that
selects solutions of a given energy (microcanonical
weight).

2) When we have a unique solutions {m; },
the value of any observable {O(m;) > is given by
0(@m;,). When we have many, we have to normalize
the sum over solutions s as :

Y. 00m;) 8 {m, )
COm) > = S

s

24)

This necessity seems to push us again towards the
technique we wanted to avoid, namely replicas.

4. Introducing « innocent » replicas. — To be able
to take a quenched average of (24) over the bond
probability law (2), we use replicas and write :

Z O(mj,s) ‘(F { ms }

O0my) > == STim]

n—0 [%2)] J.a

x det <6F’a> MmP) T {mi}. (25
omg

k

The replica index o runs from one to n, and «y is fixed.

Note that our replicas help to normalize with res-
pect to the sum over solutions of T.A.P. equations,
in contradistinction with usual replicas which help
in normalizing with respect to the sum over all
configurations. When only one solution exists the
replica way and the no replica way give identical
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results. In that sense our replicas should be rather
« innocent » ().

The averaged order parameters (or correlations)
can now be « diagonal »

1
qaoao=___ Z(;n—;gu_f=

J

=%Zj:§mf’sﬂ’{ms}/;ﬂ’{ms} (26)

or « off-diagonal »

1
qioﬁo - N Z m;to m}@o —
J

=%§(§mmﬁhmvgfhmvz(ﬂ)

where it is understood that the n = 0 limit is taken.
Note that g** > g*oPo,

The self consistent saddle point equations that
generalize (17)-(22) are immediately written following
the derivation of section 2. Two distinct simple classes
of solutions emerge from these equations :

1) A diagonal solution where :

x® =x

28
x* =0 a#p 28)
withx = ¢, ¢, g, n.
2) A solution with off-diagonal components :
X =
¥ 29)
xf=x, a#pB.

We first specialize in the study of the diagonal
solution for the white average case (eqs. (17)-(22)).

5. Analytic results for the white average diagonal
solution. — Given the large number of solutions that
seem to exist to T.A.P. equations, the average
Y (m;) / Y. appearing in (27) seems likely to be very

small, an indication that the diagonal solution (rather
than the off-diagonal) will emerge from the dominant
saddle point. Thus it is reasonable to study (17)-(22)
and we now quote a few results concerning solutions
thereof.

First we note that there are two classes of solutions
(B = 0 and B # 0) since equation (20) implies :

+1 1 J2
oy _ 2 £ =0.
BU. dm {B+ T T2(1 m)} e]

-1
(30

() Indeed the Sommers solution for example is obtained in the
direct approach of S.K. via a peculiar way of breaking the replica
symmetry [9, 10]. Here instead, it is obtained as a special case of the
no replica way. It also arises as a special case of the diagonal saddle
point in the replica way, see below.

Ne 9

The vanishing of the bracket together with B = 0
is the Bray-Moore [8] criterion for the existence of
a massless mode in the spin glass phase. Both B = 0
and B # 0 give consistent results near 7, but only
B = 0 turns out to be acceptable near T = 0.

i) Near T, : Setting t = (T, — T)/T,. from equa-
tions (8)-(10) we get, after some labour :

g=1t+ 1 -3+ 0% 31
g=3%2 -3 +00% (32)
Gg=—s2+%1 + 00 (33)

noting that we need ¢ to order t* to obtain (g, g) to
order £. This value of ¢ leaves us with a stable solu-
tion in the sense of Bray-Moore [8] (mass of replicon
positive and of order 73).

ii)) Near T = 0 : The averaged internal energy U
is given by

- _7:9 F
U=-T"z7
where
F J. 1 J;
TFT R Tt Lo mh -
Jl J
1 (1 +my
_'2';[(“'"")1“—2—_
1 ~m.
+(1—mj)ln(——z—ﬁ1i):|- (34)
Near T = 0,
U 1
t=ar=—57ll — ¢ +2a) (3
and
g=1-4iT1? (36)
where
e | = —= exp(—é>><
J2n 2
) le} o2 -1
x |1+ e dt = 0.506. (38)
~/27'C 0

The behaviour obtained near T, and 7 = 0 is in good
qualitative agreement with results of reference {4, §],
equation (36) implying an entropy in T2. However
the numbers we obtain disagree with Monte-Carlo
simulations [11, 12], in particular our value (38) for
the ground state energy is too high. A plausible expla-
nation for this result, stems from the type of unweight-
ed (white) average that we are using. In the next
section we consider a weight that selects the lowest
ground state solution (paramagnetic solution { m;=0 }
excepted). To keep things simple we restrict ourselves
to the zero temperature case.
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6. White and weighted averages at T = 0. — At We have used the fact that :

zéro temperature equation (3) is replaced by : J3 , J?
SFEU-m)~F -9
Jy !
P — ; _} sgng; =0 (39) is negligible as T — 0 (an approximation that is not

valid for the S.K. solution). Careful examination of
the 7 = 0 limit of equation (20) shows that it is
consistent to take the Jacobian as unity (and neglect
what would result from the local field term of (39)
in this limit).

where sgn ¢ is sign of ¢, and we have set :

Jo.
m; = tanh =%, (40) .
T 1) White average : We now have, instead of (7)

. ‘ J.
Zz?v(lj) = H dJ; p(J ) JH de; 5(%’ - Z T]J‘l sgn (Pl) exp(Z A ‘Pk) . 1)

(§)]

We introduce replicas as in (24), and instead of (8-11), (26), (27) we use the order parameters

1

¢”=N28gn<p§<p§’ o # B 42)
J
—iig’”zy“”=-—1—2(q3“~ sgn ¢f + ¢f sgn ¢3) (43)
T ZNJ J J J J
N R DY (@4)
T2 N 5

where the T~ !, T~ *weights arise from T m= .
The only surviving diagonal order parameter is y**. The saddle point exponent 4 of equation (16) now reads :

= =335 (O el ) — i+
a J

2¥Ep

+ Y+ + )+ In j [1de" czlq; exp £ 45)
2% B o«

£ = — Y [i¢" 0" + ¥¢")*] + ¥ 7™ ¢*sgn ¢* +

+ Y (7 Ho* sgn o + ¢ sgn @”) + ik ¢* ¢* + 17 sgn p* sgn ¢¥) . (46)

a*+p

At the diagonal saddle point (x** = 0, ¥** = 0,a # B) one obtains :
2

. 2 (7 . -1
j= e 2 [1 + J e V2 dt] = 0.506 . 47
YA J271do

This is also the ground state energy value in units of /. The saddle point value of A that measures ]—:[ In Fs is

4T=0=-1@ +m [1 - j e v dt] ~ 0.198 8)
2 J2rdo

(and 4T = 0) = 0 for S.K. and Sommers solutions).

Fluctuations about this saddle point are governed the matrix of the quadratic form in 6x*#, 53*#. This matrix
contains n diagonal 2 x 2 blocks in §y** §5**

-1 —i
—i =27
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and n(n — 1) off-diagonal 6 x 6 blocks in 6x** §x* that decompose into a éx, dx block (in order dy, dq, k),

-1 0 0
0 0o -1
0 -4 0
a fluctuation 6X 6% block
~1 iy
-1 7§ 49)
A

the ox 6% blocks being i1. One easily checks that for the saddle point value given by (47) the quadratic form is

(locally) stable.

The white average thus seems to give consistent results and the stability of the diagonal saddle point justifies

the presumed « innocence » of our replicas.

A corresponding computation done for S.K. or Sommers solution would display their unstability.

2) Microcanonical or canonical average : given the large (averaged) number of T.A.P. solutions, we may wish
to select the ones that are of lowest energy. This may be done by imposing a canonical weight exp — (F — Fo)/T

or with equivalent results a microcanonical weight §(—

E + E,). Here for example, E, will be determined to

as to select the least degenerate (or lowest energy) solution, i.e. by imposing the condition

1. —
SN, = 4T =0,60) = 0.

The saddle point exponent becomes now

A = — %Z[,ym.yazz + %/11;11 + 2/11,))11] —

a#F

(0)

3Y PP+ xf gt + N + (0 + )y e +

d o
+ it — iy P+ kR + P 7+ In j I d(p“—z% expf &)
2. a

where £ is again given by (46).

The diagonal saddle point leads, after elimination of 4 and y to

and for condition (50), to

2 2
0=n(T =0,e0) = — & +l(2|so|—)7)2+ln|:1 + j e_’/zdt:|.
2 J2ndo

This yields a ground state value
g = — 0.791. 54)

Note that equations (52)-(53) also admit the higher
solution &, = — 0.286.

However, as expected from turning around the
argument mentioned above (Section 4), the diagonal
saddle point should not he stable for the micro-
canonical ensemble. Indeed fluctuations computed
as in (6 (1)) for the white average, show its instability.

The off-diagonal saddle point becomes obviously
relevant if one tries to impose the condition

InN, ~ 0(1),

(52

(33)

a more natural constraint than the above In N’; ~ 0(1).
The self consistent saddle point equations can no
longer be solved analytically (near T = T, or T = 0).
One is left with four self consistent equations for four
order parameter y, yo %, and g, (and the equation
Ag9) = 0). In these equations the order parameters
appear as averages of «local» order parameters
y(x, ¥), 7o(x, »), etc... in external fields x, y, the
averages over x, y, being taken with gaussian weights.
These equations are given in the appendix. We do
not yet know what ground state energy these equa-
tions imply.

7. Conclusion. — We have been able to reduce
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white and weighted averages over solutions of T.A.P.
equations to a set of self consistent equations involv-
ing a small number of « order parameters ».

We have studied extensively the « white » average
and obtained a satisfactory behaviour near T, (where
solutions to T.A.P. equations are unique to order #°)
and a good qualitative behaviour near T = 0 (where
the average number of solutions is of order exp 0.2 N).
The stability of such an average has been verified at
T = 0, lending credence to the presumed innocence
of our replica scheme.

We have also studied a « weighted » average, where
one clearly sees the necessity to consider the off-
diagonal saddle point (at 7 = 0, and in contrast to
the white average).

Because of their complexity we have not yet been
able to reach any numerical answer concerning the
self consistent equations arising at the off-diagonal
saddle points. Besides, it is not clear whether, given
a weighted average, the diagonal or off-diagonal
saddle points dominate over the entire range of
temperature between T = 0 and T = T, or whether
one will undergo a cross over.

Of course, none of the weights mentioned are
really « natural ». The only weight that may deserve
to be so called, is the one that the S.K. model itself
dictates. This study is differed to a further publica-
tion.

At the les Houches meeting (February 18-29th
1980) where this work was presented, we learned of
the work of A.J. Bray and M. A. Moore who have
followed a close but slightly different approach.
They have obtained results for the microcanonical
average at T = 0 identical to equation (54). This
ensemble seems to have been also considered by
F. Tanaka and S. F. Edwards [13]. A. J. Bray and
M. A. Moore have further studied numerically the
region near T = 0 where they show that the micro-
canonical average diagonal saddle point leads to a
negative entropy. This last result fits with the insta-
bility revealed by the fluctuation matrix as mentioned
above. Equations produced by M. A. Moore for the
off-diagonal saddle point, seem to differ from the
ones of the appendix (by involving more integrations).
Finally their numerical work also confirms that the
Jacobian does not change sign at least near 7 = 0.

Acknowledgments. — One of us (C.D.) would like
to thank E. Brezin for useful discussions.

APPENDIX

Microcanonical average at T =0 : off-diagonal
saddle point equations. — We consider the off-diagonal
saddle point for the microcanonical average at
T = 0 introduced in section (6 (2)).

The order parameters involved are y = %, y, = y*#,
ko, = k%, qo = ¢?* and the corresponding constraint

AVERAGES OVER SOLUTIONS OF T.A.P. EQUATIONS
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variables 7, J,, Ry, §o. Besides, one has the constraint
#* = 4 conjugate to E — E,, and the condition on
E,, ie. n7! #.(g) = O that imposes minimal dege-
neracy for the projected states.

From expression .t given by equation (51), one
writes saddle point equations. To work with real
quantities only we use

g =iy (A.1)
go = o (A.2)
I =il (A.3)

(there should be no confusion with the corresponding
quantities (g, go) at T # 0 which contain an extra
o/ /J factor). We now quote the result.

The order parameters are obtained in terms of
double averages, e.g.

+ oc + oc
. dxdy
2 —
<<(P >>—j_m J_ 27.[ X
1 N
x CXP<— §(x2 + y2)> (P* ey (A4
where
+ o +cx:d,‘
CH? ey = N7 j dq»j Fo¢te (A5
+ o + ¢
y d¢ L
N = j_w do j._oc 52€ (A.6)
The effective Lagrangian { writes
L= —ipp — 31 — q0) 9> +
+[g— g0+ U1 — qo0)] i sgn o
+ B sgno + AV xi¢p + [qo — A1V yip (A.7)
with
BE2iqo=12q0+21go—K0 (AS)
7o + 1go)?
4= To _ (go + Iq0) (A.9)

T 24G, 17qe + 21lge — Ko

Note that the gaussian ¢ integration is trivially effect-
ed. The ¢ integration leads to error functions. For
simplicity we do not carry them out here. Note also
that x and y play the role of external fields.

Given those definitions we write now the four equa-
tions determining g, ¢¢, Ko, 9o :

g=<«Kipsgne» (A.10)

= A 1/2 )
[<< xi¢p » _(‘Io _A>- L yip >>]

g —go =
(A.11)
1—go=B""[{xsgne» — A" (g — go)]
(A.12)

Ko =K @D + (g0 — A) V2 Kyip y .
(A.13)
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Equations determining / and &, (saddle point 4 and
minimal degeneracy) write

/
ol =51 —a) + 9~ dodo  (A.14)
Ik 1
el =70~ 40)° -§(yz—yé)—lgo(l—qo)+

Ko
+ —2—(1 - go) + In N . (A.15)

Ne 9

This completes the set of self consistent equations.
These equations, via double averages defined in
(A.4-A.6), involve at most, double gaussian integrals
over ratios involving gaussians or error-functions.
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