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Abstract

Alzheimer’s disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in

grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years,

neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and

progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter

degeneration and demyelination may be also important pathophysiological features. Here we review the evidence

for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination

in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of

Alzheimer’s disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload,

Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and

in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be

potential treatment targets.
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Introduction

Alzheimer’s disease (AD) is conceptualized as a pro-

gressive consequence of two hallmark pathological

changes: extracellular neuritic plaques, which are

composed of amyloid-beta (Aβ) surrounded by dys-

trophic neuritic processes, and neurofibrillary tangles,

which are intraneuronal aggregates of insoluble

cytoskeletal elements, composed mainly of phosphory-

lated tau protein. These pathological changes are

believed to result in neurodegeneration, which can be

appreciated with structural neuroimaging as regional

and global atrophy [73]. Because of the distribution of

this pathology and its associated neurodegeneration,

AD is typically considered a disease of the brain’s

grey matter. However, over the past several years,

neuroimaging studies have implicated micro- and

macrostructural abnormalities in white matter in the

risk and progression of AD, suggesting that in

addition to the neuronal loss characteristic of the

disease, white matter degeneration and demyelination

may be important pathophysiological features. Myelin

loss and the inability of the oligodendrocytes, the

cells responsible for the production and maintenance

of myelin, to repair myelin damage may be additional

central features of AD [5, 53, 55, 60]. Because of the

essential role of oligodendrocyte cell lineage in myelin

production and remyelination processes, changes in

the number of oligodendrocytes or their precursor

cells and/or their dysfunction can affect myelin inte-

grity and therefore be potentially implicated in AD

pathogenesis.

The purpose of this review is to discuss the evi-

dence for white matter abnormalities in AD with a

focus on myelin damage and oligodendrocyte lineage

cells and to review the relationship between white

matter changes and the pathological hallmarks of

AD. In addition, we discuss whether white matter

changes are a secondary result of cortical AD path-

ology or whether they contribute directly or indir-

ectly to the pathogenesis and clinical manifestation

of AD.
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Evidence of white matter abnormalities from imaging

studies

The observation that neuroimaging-defined white matter

abnormalities are characteristic of AD is relatively new.

Work from our laboratory, for example, demonstrated that

the burden of white matter hyperintensities (WMH), dis-

tributed signal abnormalities visualized on T2-weighted

magnetic resonance imaging (MRI), predicts incident AD

[18, 19, 21], the rate of cognitive decline among individuals

with prevalent AD [78], and is associated with genetic risk

factors for late onset AD [20]. We recently showed in the

Dominantly Inherited Alzheimer’s Network that WMH vol-

ume is elevated among individuals with autosomal domin-

ant, fully penetrant mutations for AD up to 20 years before

the expected onset of symptoms, demonstrating that white

matter abnormalities are indeed a core feature of AD. Fur-

thermore, the appearance of WMH in these patients

emerges contemporaneously with AD-related cerebrospinal

fluid (CSF) amyloid and tau abnormalities [49]. WMH se-

verity also correlates with CSF levels of Aβ1–42 in preclin-

ical AD [49] and predicts increasing CSF tau levels in

individuals with mild cognitive impairment [79]. White

matter hyperintensity severity is associated with cerebro-

spinal fluid (CSF) amyloid levels independent of vascular

risk factors [71].

The important role of vascular disease in the deve-

lopment of white matter damage should be emphasized.

White matter hyperintensities tend to be distributed in

brain areas with relatively low perfusion levels, particularly

in the deep, periventricular white matter. The density of

vessels in these areas decreases both with normal aging

and in AD [23], consistent with reports of decreased blood

flow to white matter [69], which could cause hypoxic/is-

chemic damage in these areas. White matter hyperintensi-

ties are related to small vessel disease, and inflammation

[26, 61, 64], but comprehensive analysis of postmortem

tissue in areas known to be affected by WMH, including

evaluation of possible hypoxic damage to oligodendrocyte

lineage cells, has not been completed. A recent study re-

ported that parietal WMH pathogenesis in AD is related

to axonal loss, through Wallerian-like degeneration, which

corresponds to cortical phosphorylated tau burden, and

demyelination in patients with AD but to vasculopathy

and ischemia (by sclerotic index as a marker of small ves-

sel disease and myelin associated glycoprotein to proteoli-

pid protein ratio as a measure of hypoperfusion) in

individuals without AD, suggesting that some degree of

WMH is secondary to neurodegeneration in the context

of AD [57]. However, neuroimaging studies showed that

white matter networks are defective in preclinical AD, at a

time when neurodegenerative changes, cortical atrophy, or

cortical glucose reduction were not apparent [33]. Vascu-

lar and blood brain barrier (BBB) impairments, small

hemorrhagic lesions and buildup of iron have been

reported in the brains of AD patients even in the preclin-

ical stages of the disease [86].

Histopathological evidence of white matter abnormalities

The neuroimaging studies establish that there is some de-

gree of white matter abnormality in the context of AD,

which may be radiological manifestations of more wide-

spread white matter pathological abnormalities. White mat-

ter hyperintensities have been associated histopathologically

with myelin pallor, myelin loss [31, 38] (as shown in Fig. 1)

and the loss of myelinated axons, as well as changes in ar-

terial adventitia in deep white matter [68]. In our aim to re-

view the widespread white matter abnormalities, we focus

on the changes in the myelin sheath and oligodendrocyte

lineage cells.

Myelin damage

In the normal development of the central nervous system

(CNS), different brain regions are myelinated at different

times. Myelination begins in the fourth month of human

embryonic development and continues until the third or

fourth decade of life [22, 47] . In general, the spinal cord

and brain stem myelinate earlier, while other areas, such as

the telencephalon, the entorhinal cortex, hippocampus and

the amygdala myelinate later [17, 30]. Diffusion tensor im-

aging studies show the development of association tracts in

post-adolescent subjects [47]. In addition, there is a particu-

lar susceptibility for demyelination in areas that are

myelinated at older ages, a phenomenon referred to as

“neuropathologic retrogenesis” [8, 12, 17, 66, 76]. Myelin

loss has been observed consistently in AD and the later-

myelinated areas are also most vulnerable [13, 36, 65]. They

demonstrate significantly greater myelin loss compared with

areas that myelinate earlier [6]. Analysis of postmortem

brain tissue of AD patients has revealed that the white mat-

ter is altered chemically, compared with that of patients

without dementia: the amounts of total protein, myelin

basic protein (MBP), myelin proteolipid protein (PLP), Cyc-

lic nucleotide phosphohydrolase (CNPase), and cholesterol

is significantly decreased, indicating a loss of myelin. White

matter fatty acid ratios are also altered in AD [67].

White matter and myelin changes in AD need to be

taken with respect to changes during aging. For example,

the overall hemispheric white matter volume decreases

with age [50]. How much of this is due to changes in water

content or water infusibility is not completely clear [42].

However, a decrease in the total length of myelinated fi-

bers, reaching a 45% decrease from 20 to 80 year-old indi-

viduals and the appearance of thinner axons has been

reported [50]. Thus, a number of investigations conclude

that with age, myelin production by oligodendrocytes con-

tinues but leads to thinner myelin sheaths and shorter in-

ternodes [50]. Axon caliber decreases in experimental

models of demyelination and remyelination [52]. Thinner
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myelin sheaths and smaller axons can lead to functional

white matter deficits due to conduction failure and by a

greater vulnerability to trauma, oxidative stress, or Aβ tox-

icity [5]. Axonal loss and demyelination are both associated

with white matter abnormalities in AD and are predictors

of severity of white matter abnormalities [57]. Future stud-

ies with the aim of preventing or repairing myelin damage

could elucidate the impact of white matter changes as one

of the core pathologies of AD.

Abnormalities of oligodendrocyte lineage cells in AD

The primary role of oligodendrocytes is to produce

myelin, but they also play a supportive, modulatory

and regulatory role for neurons, including the pro-

duction of neurotrophic factors, inhibition of neurite

growth, and stabilization of neuronal connectivity

[44, 70]. The adult central nervous system contains

both precursor cells for oligodendrocytes in addition

to mature, myelinating cells [10]. Oligodendrocyte
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Fig. 1 This figure demonstrates examples of white matter myelin loss in brain sections from a patient with Alzheimer’s disease. Tissues from

frontal and occipital areas are stained with Luxol fast blue-hematoxylin and eosin (LHE). b2 and b1 represent the regions with and without myelin

pallor in the frontal area, respectively. d2 and d1 represent the regions with and without myelin pallor in the occipital area, respectively. The scale

bars in images a, b, c and d are 1000 μm. The scale bars in images b1, b2, d1 and d2 are 100 μm
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precursor cells (OPCs) in the adult central nervous

system are capable of proliferating and migrating and

effecting new myelination after demyelinating insults.

Animal studies have shown that during adulthood,

oligodendrocytes are generated from ventricular-

subventricular zone and the new oligodendrocytes

progenitors migrate to white matter tracks from

there [59]. Mature human oligodendrocytes in the

condition of being deprived from their myelin sheath

may return into their previous subtype capacity and

change their phenotype and their myelination pro-

gram [37]. The different oligodendrocyte lineage cells

express changes in morphology during their develop-

ment and maturation [10]. Figure 2 shows an example

of oligodendrocyte distribution throughout white matter

areas in an adult postmortem human brain. In mammals,

OPCs, by presence of intrinsic hypoxia-inducible factor

(HIF) signaling, control white matter angiogenesis, axonal

integrity, and the onset of myelination at postnatal stages

[85]. Oligodendrocytes are able to modulate ion homeo-

stasis in the axon environment [60]. OPCs are the specific

glial cells that directly make synapses with neurons; they

build synapses with glutamatergic neurons in the hippo-

campus (rat) [15], cortex (mouse) [24], white matter

tracks (rat) [46] and other areas. However, they only make

postsynaptic connection with neurons. The behavior of

OPCs can be controlled by neurotransmitters and by sur-

rounding neuronal demands. For example, in the pres-

ence of higher neural activity, oligodendrocytes change

the amounts of myelin sheaths, which affects the
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Fig. 2 An example of Olig2+ oligodendrocyte distribution throughout the white matter from a neurologically-healthy adult, postmortem brain.

The insets show Olig2+ nuclei at higher magnification. H&E counterstaining. Arrowheads: Olig2+ nuclei (brown). Dashed line: the border of white

and grey matter. LV: lateral ventricle; SVWM: subventricular white matter; DWM: deep white matter; SCWM: subcortical white matter; GM: grey

matter. The scale bars in a, b and c are 100 μm and the scale bars in the insets are 10 μm
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electrical transmission in the neuronal network [32]. We

could speculate that neuronal AD pathology, which is

characterized by neuronal and axonal dysfunction, could

alter the amounts of myelin produced by oligodendro-

cytes. This dynamicity of myelin and oligodendrocytes

thus could ultimately affect behavior [58].

A number of human and animal studies investigated

oligodendrocyte changes in AD. In one study, 6–8-

month-old APPPS1 mice showed an increase in the num-

bers of OPCs, while the number of Olig2+ cells in post-

mortem tissues of AD patients was decreased [11].

Another study reported a higher number of MAP-2 posi-

tive remyelinating oligodendrocytes in the areas adjacent

to periventricular white matter lesions and a higher num-

ber of PDGFR-α positive OPCs in white matter lesions

[74]. In a PS1 knock-in mouse model, increased vulner-

ability and death of oligodendrocytes due to glutamate

and Aβ were demonstrated and these cells showed a def-

icit in calcium regulation [60]. This study suggests that

the abnormalities of oligodendrocytes in the presence of a

PS1 mutation could be an early event in the disease

course. Another study demonstrated that MBP and the

number of myelinating oligodendrocytes were decreased

in 6-month old triple transgenic mice (3xTg-AD), the

number of immature oligodendrocytes remained un-

changed and mature non-myelinating cells were increased

[29]. The authors reported that myelinating oligodendro-

cytes are highly sensitive to oxidative stress due to their

higher metabolic demand, higher iron, and lipid content.

Reduction of the diameter of oligodendrocyte nuclei in

AD patients in parahippocampal white matter was also re-

ported [35] while the mean nuclear diameter of neurons

remained unchanged. Alzheimer’s-related changes in oli-

godendrocytes for human studies and animal models are

summarized in Table 1.

One of the frequently accepted themes related to oligo-

dendrocyte damage in AD is that these cells suffer from

oxidative stress, which can be produced by a wide range of

factors. The adult CNS contains oligodendrocyte precursor

cells, which can be mobilized to differentiate into myelinat-

ing oligodendrocytes [10]. Oxidative stress impairs the dif-

ferentiation of OPCs, in part by decreasing the levels of

expression of genes that promote oligodendrocytes differ-

entiation, such as Shh, Sox10 and HDAC3 [34]. In cell cul-

ture, pre-oligodendrocytes show a sensitivity to oxidative

stress and glutathione depletion [2]. In rat cell cultures,

low antioxidant content and high iron capacity, in addition

to excitotoxicity through metabotropic glutamate recep-

tors, makes oligodendrocytes more vulnerable to oxidative

stress [27, 77]. Other factors affecting oligodendrocytes are

listed below.

Aβ and tau: Several studies suggest that Aβ is toxic to

oligodendrocytes [28, 29, 41, 48, 84]. For example, a cell

culture study of rat oligodendrocytes demonstrated that

Aβ-induced oxidative stress can drive oligodendrocyte

death and dysfunction [84]. This study also showed that

mitochondrial DNA damage and the consequent NF-kB

and AP-1 activation are other possible mechanisms of Aβ

toxicity for oligodendrocytes [84]. Note that although

amyloid plaques are exceedingly rare in AD white matter,

the levels of soluble Aβ are elevated in the white matter

[25]. Thus, a direct exposure of white matter oligodendro-

cytes to increased amounts of Aβ is likely. Although there

are toxic effects of Aβ on oligodendrocytes, clinical trials

that have aimed to remove the Aβ plaque in symptomatic

AD patients, did not prevent the progressive neurodegen-

eration and cognitive decline in AD patients [39, 72].

These findings suggest that this toxic effect needs to be

targeted earlier or it could not be the only pathology lead-

ing to cell death and atrophy in symptomatic patients. In

addition to the effects of amyloid pathology, the impact of

tau pathology on white matter needs to be considered.

Tau can affect the normal function of neurons through a

toxic gain of function or a loss of its normal function in

stabilizing microtubules. Although severe neocortical

tauopathy occurs in later stages of AD and mostly affects

grey matter, phosphorylated tau transforms into neurofibril-

lary tangles in neurons as well as glial tangles in astrocytes

Table 1 This table summarizes the studies, the specimen that was used, and oligodendrocyte alterations in AD animal models and human

The model and specimen Oligodendrocyte changes Source

PS1 knock-in mouse Vulnerability and death of OLs Pak et al. 2003

Postmortem AD Increased MAP-2 positive remyelinating
OLs adjacent to WM lesions

Increased PDGFR- α positive
OPCs in WM lesions

No change in Myelinating
OLs in deep white matter

Simpson et al. 2007

3xTg-AD mouse Decreased myelinating OLs No change in immature OLs Increased mature non-
myelinating OLs

Desai et al. 2010

Postmortem AD Reduced OLs nuclear diameter
in parahippocampal white matter

Gagyi et al. 2011

APPPS1 mouse Increased OPCs number Behrendt et al. 2013

Postmortem AD Decreased Olig2+ Behrendt et al. 2013

It depicts the verity of the results in different animal models and human studies. PS1 Presenelin-1, OL oligodendrocyte, MAP microtubule associated protein, PDGFR

platelet-derived growth factor receptor, OPCs oligodendrocyte progenitor cells, WM white matter, 3xTg-AD triple transgenic AD mouse model. APPPS1 mouse

mouse with both APP and PS1 transgenes
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or oligodendroglia [4]. Furthermore, phosphorylated tau in

grey matter is associated with white matter abnormalities

and demyelination in AD patients [56, 57]. The increased

levels of calpain2 in the AD white matter, an indicator of

axonal loss, was shown to be associated with increased cor-

tical phosphorylated tau and amyloid [57] and the phos-

phorylated tau showed to be a predictor for white matter

hyperintensities [56].

Iron: During myelination, oligodendrocytes require 2–3

fold higher energy levels than other cell types in the CNS to

produce such an extensive amount of membrane. Oligoden-

drocytes synthesize cholesterol, a process that is highly

metabolically demanding, making them vulnerable to hypo-

perfusion, excitotoxicity, heavy metals, and free radicals that

induce oxidative stress. Oligodendrocytes have the highest

iron content of all cell types, which increases with age and

even further in AD [5]. Oligodendrocytes at all stages of their

differentiation, compared with other glial cells contain

smaller amounts of antioxidant agents (e.g. glutathione per-

oxidase) and only half of the glutathione reductase activity

[43]. Thus, a high iron content and a low antioxidant content

make oligodendrocytes one of the most vulnerable cell

classes to oxidative stress in the CNS. If oxidative stress is

exacerbated by age, it may lead to increased cell damage

[81]. Bartzokis by comparing a map of cortical myelination

with maps of Aβ deposition hypothesized that age-associated

myelin breakdown leads to iron release from oligodendro-

cytes and that this iron release promotes Aβ oligomerization

in the parenchyma [7].

Hypoxia/Ischemia: Deep white matter areas lie at the ends

of the CNS arterial circulation, making them susceptible to

decreases in blood flow and oxygenation. Some anterior and

posterior white matter lies in watershed zones between the

anterior cerebral and middle cerebral arteries and middle

cerebral and posterior cerebral arteries respectively. Vascular

pathology in these regions is greater in patients with AD

than in individuals without dementia [23, 69]. Late-stage

oligodendrocyte progenitors are more sensitive to hypoxic

or ischemic damage than early-stage progenitors and more

mature oligodendrocytes [3]. A recent rodent study, using

single cell RNA sequencing, identified a population of oligo-

dendrocyte precursors as vascular and leptomeningeal cells.

These OPCs are located along vessels and they show simila-

rities with pericyte lineage cells [51]. In addition, to

emphasize the importance of relationship between vascular

system and oligodendrocyte lineage cells Tsai showed that

those OPCs require the physical infrastructure provided by

the vascular system to facilitate their migration during de-

velopment [80].

Excitotoxicity: In general, oligodendrocytes show a great

vulnerability to excessive ATP and/or activation of glu-

tamate receptors [55]. Oligodendrocytes express a wide

variety of receptors and membrane channels (e.g. ionotro-

pic glutamate and ATP receptors, ligand gated Ca2+

channels and P2x7 receptors). Because of the lack of the

GluR2 subunit in oligodendrocyte AMPA receptors, there

is a higher permeability to Ca2+ ions compared with neu-

rons [54]. Another example is the sustained activation of

p2x7 receptors in oligodendrocytes due to excitotoxicity

or to high levels of ATP/ADP/AMP, which leads to exces-

sive Ca2+ in the cytosol and the activation of apoptosis

through caspase-3 activation. Extensive activation of these

receptors can result in oligodendrocyte damage and sub-

sequently myelin destruction. Back and colleagues showed

maturation-dependent vulnerability of oligodendrocytes

caused by intracellular glutathione depletion [2]. In

addition, as we mentioned, oligodendrocytes and myelin

damage due to excitotoxicity and calcium dysregulation

could be an early pathological feature of AD [45, 60].

DNA damage: Age related DNA damage in myelinating

oligodendrocytes may contribute to myelin loss [81, 82].

Postmortem analysis of white matter lesions obtained from

aging individuals shows the presence of oxidative damage

(8-OHdG immunoreactivity) in oligodendrocyte nuclear

DNA. These cells are also positive for senescence markers

such as SA-β-gal [1]. In older adults, excessive DNA dam-

age occurs in vulnerable oligodendrocytes and the DNA re-

pair mechanism becomes overwhelmed. Studies of changes

in genomic integrity and genomic instability of oligodendro-

cytes in the white matter of patients and animal models

could illuminate the role of oligodendrocyte in white matter

damage and pathology of AD [81, 82]. In addition, oligo-

dendrocyte lineage transcription factor 2 (Olig2) is located

on chromosome 21 which is 6.8 Mb telomeric of the amyl-

oid precursor protein (APP) gene. The possibility of these

two genes interacting in a context of the disease needs to be

studied [75].

Discussion

A variety of structural, histopathological and biochemical

pathologies take place in the white matter of AD

patients (summarized in Fig. 3). In this review, we have

tried to answer two questions:

What changes occur in white matter in the course of

AD and what is the relationship between these

changes and the pathological hallmarks of the disease?

Radiological, pathological, and molecular changes occur in

the white matter of AD patients. Radiological markers of

white matter damage occur as early as 22 years before the

estimated age of symptom onset in humans who carry AD

mutations [49]. These white matter changes are believed to

reflect demyelination and axon damage [63]. It is possible

that the oligodendrocytes or the precursors responsible for

remyelination of these areas are altered in number and in

DNA stability or are functionally less efficient in the pres-

ence of genetic changes, oxidative stress, increased iron
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levels, and vascular pathology [5, 81]. In addition to gross

white matter damage in AD, there are chemical alterations

marked by loss of proteins and cholesterol. The decreases in

the levels of myelin proteins, such as myelin basic protein

(MBP), myelin proteolipid protein (PLP) and CNPase, in

white matter reflects the changes in oligodendrocytes and

myelin sheaths. In animal models of AD, the white matter

disruption and changes in myelin marker expression are

among the earliest pathological changes [16, 30]. Although

white matter changes are believed to be partly related to

neuronal degeneration in the cortex [57], there is also evi-

dence that oligodendrocyte and myelin pathology, which are

detected in AD mouse models, are affected prior to appear-

ance of amyloid and cortical pathology. It is not clear if these

changes are independent of cortical pathology or the cortical

structural damages are beyond the detection limits of

methods at early stages of the disease [29, 30, 40] and subtle

neurodegenerative changes could precede or promote white

matter changes even if they are not detectable with conven-

tional methods. In terms of therapeutic implications,

contemporary clinical trials have focused on the removal of

fibrillar forms of amyloid protein as a primary target, moti-

vated by the “amyloid hypothesis” that has dominated the

field’s conceptualization of the disease for many years [73].

Accordingly, interventions that target the removal of

amyloid would arrest the progression of disease and

improve cognitive outcomes. However, to date, clinical trials

aimed to clear Aβ plaques in AD have not resulted in clin-

ical improvement or reduction in the rates of disease pro-

gression. New strategies for disease treatment and

prevention are therefore necessary. The consistent observa-

tions that implicate white matter abnormalities in AD

pathogenesis and progression point to opportunities to tar-

get potential novel mechanisms implicated in the disease.

Are the clinical changes in AD secondary only to the

cortical hallmarks of the disease or do white matter

abnormalities contribute directly or indirectly to the

disease?

Beside amyloid hypothesis as the cause of AD, it is

crucial to note that there is a weak association between

amyloid plaques and AD symptoms [5]. Further, senile

plaques can be found in about 20–40% of older adults

without symptoms of dementia and cognitive impair-

ment [14, 62]. As discussed above, myelin loss contrib-

utes to cognitive decline in humans [67, 83] and in AD

animal models, early changes in white matter are

followed by the first cognitive impairment detected after

intracellular accumulation of Aβ but before Aβ plaques

Fig. 3 This figure summarizes the pathological cascades, and their relation with each other, occurring during the development of Alzheimer’s disease

in white matter and cortex. While ischemia, excitotoxicity, oxidative stress, and iron overload in white matter damage oligodendrocytes, on one hand,

and amyloid toxicity affects them, on the other hand, the iron released from damaged oligodendrocytes promotes amyloid polymerization and

deposition in grey matter. The consequent demyelination and axonal loss result in further white matter damage and neuronal dysfunction. Neuronal

dysfunction is also a result of amyloid deposition in cortex and a proposed cause for white matter abnormalities in AD patients. White matter

hyperintensities are labelled with red in the MRI (FLAIR) scan of an AD patient. Blue arrows: direction of the damages originating in grey matter.

Maroon arrows: direction of the damages originating in white matter. LV lateral ventricle
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appear [29]. Altering axonal conduction by demyelin-

ation or axonal damage could directly and/or indirectly

affect cognition. Future studies with the aim of repairing

myelin loss could clarify the impact of white matter

changes on AD pathogenesis and may have therapeutic

benefit. In addition, dysfunctional oligodendrocytes early

in the course of the disease may not be able to play a

protective role for neurons and their axons. Hence, the

process of remyelination and myelin repair will be af-

fected. Signal conductivity, and synchronicity of im-

pulses, which are required for information processing

between neurons, depend on the amount of myelin pro-

duced by oligodendrocytes and therefore will be affected

[10]. In general, a number of animal AD model studies

suggest that white matter pathology emerges prior to ap-

pearance of cortical plaques and tangles [29, 30, 40]. Hu-

man studies with autosomal dominant forms of AD

suggest that Aβ levels begin to change as early as 25–

30 years prior to symptom onset, followed by tau path-

ology about 15 years prior to symptom onset, cerebral

hypometabolism, brain atrophy, and cognitive and func-

tional deficits [9, 29]. As noted above white matter abnor-

malities are also early findings in these patients [49], but

causal relationships among AD biomarkers in humans are

difficult to infer even from observed temporally-ordered

observations; white matter changes appear to emerge con-

temporaneously with other AD pathology, but it is unclear

if one is causing the other. Studies of 3xTg-AD triple trans-

genic AD mice show that the first pathological features

start to appear in 2 to 6-month old mice as white matter

disruption and changes in myelin marker expression in the

hippocampus and entorhinal cortex. At this age, the mice

do not show learning or memory deficits [16, 30]. Cognitive

impairment emerges after at around 3 to 6-months of age

[29]. The studies discussed regarding vascular insufficiency

in white matter suggest that the white matter pathology is

not caused by cortical pathology. On the other hand, neur-

onal accumulation of tangles and neuronal death will lead

to axonal loss in white matter [57]. It is not clear how this

would produce white matter hyperintensities in deep white

matter, however, it could well contribute to a more wide-

spread decrease in axons and myelin.

In conclusion, the various observations suggest that

white matter abnormalities and in particular impaired

myelin and oligodendrocytes could promote cognitive im-

pairment and AD pathology and could be the important

targets for studying and early treatments of AD. Future

studies with the aim of repairing myelin damage, beside

other efforts focused on the hallmark of Alzheimer’s dis-

ease, could elucidate the impact of white matter changes

as one of the core pathologies of AD.
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